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Abstract

The interaction between a boundary-layer flow and an elastic plate is ad-

dressed by direct numerical simulation, taking into account the full cou-

pling between the fluid flow and the flexible wall. The convectively unstable

flow state is harmonically forced and two-dimensional nonlinearly saturated

wavelike disturbances are computed along archetype-plates with respect to

stiffness and natural frequencies. In the aim of determining the low-Mach

number radiated sound for the system, the simulation data are used to solve

the Lighthill’s equation in terms of a Green function in the wavenumber-

frequency space. Different degrees of fluid-structure coupling are imple-

mented in the radiated sound model and the resulting acoustic pressure levels

are compared. The sound radiation levels are shown to be increased in the

presence of flexible walls with however significant differences in the radiated

pressure levels for different coupling assumptions.
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1. Introduction

An increasing effort is devoted to the understanding, the modeling and

the reduction of the self-noise received by sonar antennas and flank arrays,

that equip surface ships as well as underwater vehicles. In that context,

the hydrodynamic noise, generated by the boundary layer flow that devel-

ops along their surface covering, is given a particular attention. The mod-

els available are based on wavenumber-frequency spectrum models for the

turbulent pressure fluctuation, such as the Corcos’ model (cf. Corcos [1]),

which has been subsequently improved by Chase [2, 3], and Ffowcs Williams

[4], among others. For the archetype configuration of a boundary-layer flow

over an elastic plate, it is generally assumed that the pressure field at the

fluid-structure interface is the sum of the turbulent pressure, which would

be observed for a flow along a rigid plate, and the acoustic pressure induced

by the plate motion. The reliability of this weak coupling assumption has

been addressed by Graham [5], in the context of aeroacoustics. While the

weak-coupling hypothesis appears to be satisfactory for subsonic flows, it is

shown in this latter work that there may be discrepancies when considering

supersonic flow regimes. More recently, and considering a low Mach-number

two-dimensional turbulent boundary layer, Zheng [6, 7], clarified the effect

of an elastic plate on radiated sound in the framework of the weak coupling

approximation. Applying the celebrated Lighthill’s analogy [8, 9], Zheng de-

termined the pressure fluctuation outside the turbulent boundary layer using
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a Green function for appropriate boundary conditions at the compliant wall

which has been derived from Dowling [10]. The pressure fluctuation at the

outside edge of the boundary layer provides the boundary condition for the

homogeneous wave equation, whose solution is the radiated sound in the uni-

form flow region. It has indeed been shown by Tam [11] that if the Mach

number of the mean flow is small, the simple acoustic wave equation can

be used, rather than the convected wave equation. Applying the model to

the case of an infinite steel plate, Zheng showed that the radiated pressure

frequency spectrum over the flexible surface has much higher levels than the

rigid one in the low frequency range.

The present work readdresses the sound radiation issue, by considering

a strong coupling between the boundary layer and an elastic plate of finite

length. Such systems have been extensively studied from a mere stability

point of view, through stability analyses as well as spatial numerical sim-

ulations. It has been shown that, depending on the plate and flow char-

acteristics, the transition could be either delayed by stabilization of the

Tollmien-Schlichting waves interacting with the plate motion, or triggered

by surface-induced flow instabilities (see for instance Carpenter & Garrad

[12], Davies & Carpenter [13], Gad-el Hak [14], Wiplier & Ehrenstein [15], to

cite a few). Here, we compute the two-dimensional flow, coupling the per-

turbed incompressible Navier-Stokes system with the elastic plate dynamics

at a highly supercritical Reynolds number. The computed flow states pro-

vide the source terms for the radiated sound analysis in the framework of the

Lighthill’s analogy. It is hence assumed that in the disturbance region inside

the boundary layer, the source terms, computed as incompressible quantities,
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decouple from the acoustic disturbances. This is generally considered as a

reliable approximation for low-Mach number flows (cf. Wang, Lele & Moin

[16]). In realistic boundary layers at supercritical Reynolds numbers the flow

is three-dimensional and turbulent. However, the direct numerical simula-

tion of a turbulent flow bounded by a compliant wall is still challenging. Xu,

Rempfer & Lumley [17] for instance addressed a turbulent channel flow in

the presence of a compliant wall. To limit the computational effort, in the

latter work a so-called minimal flow unit with respect to the turbulent flow

structure is considered. The aim of the present investigation is to address dif-

ferent coupling assumptions between the flow and a compliant coating in the

radiated pressure model. The simplified case of two-dimensional nonlinear

disturbances in the fluid-structure system is numerically tractable without

any simplifying assumption regarding the fluid-structure coupling. Also, as

discussed for instance by Guo [18], two-dimensional analyses may be signifi-

cant for acoustic problems in engineering application.

The paper is organized as follows. Section 2 is devoted to the description

of the numerical tools. In section 3 simulation results for the coupled fluid-

structure system are analyzed for two different elastic plates. The pressure

fluctuation and Lighthill’s tensors are computed and are used in section 4 to

solve Lighthill’s equation. Radiated sound is computed and comparisons are

provided for different coupling assumptions. Some conclusions are drawn in

section 5.
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2. Numerical tools

2.1. Fluid-structure system

For a supercritical flow regime, the fluid-structure system is solved and

the time-integration of the coupled system provides the flow-field used in the

subsequent radiated noise analysis. We consider a two-dimensional boundary

layer flow that develops along an elastic plate of finite length, clamped into

a rigid wall at both ends. The flow is solution of the incompressible Navier-

Stokes equations inside the fluid domain, whose bottom boundary consists of

a clamped wall. The simulation domain is therefore defined as xi ≤ x ≤ xo,

η(x, t) ≤ y ≤ ∞, where xi and xo are respectively the inflow and outflow

boundaries of the flow domain in the streamwise x direction, y is the wall-

normal coordinate and η is the wall displacement (cf. figure 1).

Figure 1: Simulation domain.

The flow domain is transformed into a Cartesian computational domain,

using the time-dependent mapping

x̄ = x ȳ = y − η(x, t) t̄ = t.
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The spatial and time operators of the Navier-Stokes system are then modified

by the addition of terms resulting from the mapping and the dimensionless

equations are

∂u

∂t̄
+

(
u · ∇̄)

u + ∇̄p− 1

Re
∇̄2u = S(η,u, p), (1)

∇̄ · u = −Gη · u. (2)

In the above system ∇̄ is the Cartesian gradient and S contains all terms

depending on η with

S(η,u, p) = −Tη u − (u ·Gη)u − Gη p +
1

Re
Lη u ,

and

Gη = (− ∂ η

∂ x̄

∂

∂ ȳ
, 0), (3)

Lη = − ∂2 η

∂ x̄2

∂

∂ ȳ
− 2

∂ η

∂ x̄

∂2

∂ x̄ ∂ ȳ
+ (

∂ η

∂ x̄
)2 ∂2

∂ ȳ2
, (4)

Tη = − ∂ η

∂ t̄

∂

∂ ȳ
. (5)

The discretization has been adapted from that used by Marquillie & Ehren-

stein [19, 20], for the simulation of a separated boundary-layer flow along a

bump geometry, taking into account that in the present case the displace-

ment η(x, t) depends also on time. In the above equations the quantities have

been made dimensionless using the displacement thickness δ∗0 of the Blasius

profile that is chosen at inflow, and the uniform velocity U∗
∞ far from the

boundary layer. Fourth-order finite differences are used in the streamwise x-

direction whereas the wall-normal y-direction is discretized using Chebyshev-

collocation, an appropriate mapping (cf. [19]) transforming the unbounded

domain into a finite domain 0 ≤ ȳ ≤ ymax. A value of ymax = 80 proved
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appropriate to recover uniform flow far from the wall. In all simulations 97

collocation points have been considered whereas a grid spacing ∆x = 0.2 has

been used in the streamwise direction. For convenience the inflow is located

at xi = 0 and domains with streamwise lengths from xo ≈ 820 to xo ≈ 1200

have been considered (and hence approximately 4000 to 6000 points in x). A

semi-implicit scheme is used in time, considering the second-order accurate

implicit backward differentiation formula for the Cartesian part of the diffu-

sion term. The nonlinear and metric terms are evaluated using an explicit

second-order Adams-Bashforth scheme. In most of the computations a step

∆t = 10−2 has been considered for time-marching.

The wall displacement η(x, t) is solution of the elastic plate equation

m
∂2 η

∂ t2
+ d

∂ η

∂ t
+ B

∂4 η

∂ x4
+ κ η = σP . (6)

A spring stiffness term κ has been added to model the action of a viscous

substrate beneath the plate, similar to numerous previous studies dealing

with stability issues (cf. for instance Carpenter & Garrad [12]). The quan-

tities m and B have been made dimensionless using the same reference

length δ∗0 and time δ∗0/U
∗
∞ as for the Navier-Stokes system. They corre-

spond respectively to the plate surface mass h∗ ρ∗P and its bending stiffness

B∗ = E∗ h∗ 3 / 12 (1 − ν2), with h∗ and ρ∗P the plate thickness and density.

In the dynamical equation (6), a viscous damping factor d is added to the

plate model. The finite-length plate is clamped into a rigid basis at both end

positions xa and xb and the dynamical equation is completed by the clamped

end-conditions

η = ∂ η / ∂ x = 0, at x = xa, xb.
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The right-hand side

σp = −p + τ (7)

in the dynamical equation (6) stands for the wall-normal fluid-flow stress

which is a function of the wall pressure p and the normal projection of the

viscous stress tensor

τ = (D · n) · n =
2

Re

[
∂u

∂x
n2

x +

(
∂u

∂y
+

∂v

∂x

)
nxny +

∂v

∂y
n2

y

]
,

with n = (nx, ny) the unit wall-normal vector.

In return, the plate motions affect the flow through the kinematic con-

dition v = d η
d t

. In the absence of wall longitudinal displacement, the latter

condition becomes

u = 0 v =
∂ η

∂ t
(8)

at the interface ȳ = 0 in the transformed coordinate system.

Special care has been devoted to the computation of the pressure which

is the dominant term in (7). The pressure is solution of the modified Poisson

equation

∇̄2 p = −Lη p + 2

[
∂ u

∂ x̄

∂ v

∂ ȳ
− ∂ u

∂ ȳ

∂ v

∂ x̄

]
, (9)

and in order to achieve a full coupling between the flow field and the wall

dynamics, the fractional time step procedure (cf. Kim [21]) is used. This ap-

proach has been adapted to the fluid flow computation in the time-dependent

geometry resulting from the interaction with the compliant wall. Details con-

cerning the time-marching and coupling procedure are provided in Appendix

A.
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2.2. Radiated noise model

We intend to compute the radiated noise in the uniform flow domain from

the acoustic sources resulting from the boundary-layer flow. In the present

hydrodynamic context at a very low Mach number, noise computations are

performed in the framework of the Lighthill’s analogy, which is based on the

assumption that the acoustic sources may be estimated from the boundary

layer incompressible velocity fluctuation (u′, v′). The dimensionless acoustic

sources are

S(x1, x2) =
∂2 Tij

∂xi ∂xj

, (10)

where the Lighthill’s tensor

Tij = u′i u
′
j − τij (11)

is a function of the viscous stress fluctuations tensor τij

τij =
1

Re
(
∂u′i
∂xj

+
∂u′j
∂xi

). (12)

In (10) the summation convention applies, by writing conveniently the co-

ordinates (x, y) as (x1, x2) and the velocity fluctuations components (u′, v′)

as (u′1, u
′
2). The acoustic pressure field in the boundary layer flow is then

governed by the forced wave equation (cf. Lighthill [8])

M2 ∂2p′

∂t2
− ∂2p′

∂x2
− ∂2p′

∂y2
= S(x, y, t), (13)

where M is the flow Mach number. For the low Mach number considered here,

convective effects due to the mean flow velocity are neglected in the acoustic

equation. It is common (cf. Hariri & Akylas [22], Dowling [10], Zheng

[6], Shariff & Wang [23] among many others) to employ the Green function
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approach to compute the acoustic pressure field. We introduce coordinates

and time with capital letters and from the definition of the Dirac δ-function

we can write for the radiated pressure

p′(X,Y, T ) =

∫
p′(x, y, t)δ(X − x, Y − y, T − t) dx dy dt

=

∫ (
M2∂2G

∂t2
−∇2G

)
p′(x, y, t) dx dy dt. (14)

In the above equation the Green function G(X, Y, T, x, y, t) is solution of

M2 ∂2G

∂t2
−∇2G = δ(X − x, Y − y, T − t). (15)

The domain of integration is sketched in figure 1. Integration by parts in (14)

yields, by identifying the source term S from the pressure wave equation (13),

P (X,Y, T ) =

∫
G(X, Y, T, x, y, t) S(x, y, t)dx dy dt

+

∫

y=0

(
∂G

∂y
pw(x, t)−G

∂pw

∂y
(x, t)

)
dx dt. (16)

(from now on we write the acoustic pressure field with capital letters P (X,Y, T )).

Under the hypothesis of periodic flow in the streamwise x-direction as well

as in time t and assuming a decreasing wave-behaviour at infinity for the

Green function, only the boundary term (16) along the plate is left. This

term involves the flow perturbation pressure fluctuation pw(x, t) = p′(x, 0, t)

at the wall as well as its wall-normal derivative. The wall-displacement is

small and the undisturbed wall position at y = 0 is considered for the surface

integral, which is a common assumption in noise prediction analyses in the

presence of compliant surfaces (cf. Hariri & Akylas [22]). The wall-normal

pressure gradient ∂pw/∂y is the sum of the wall displacement acceleration

∂2η/∂t2, as a consequence of the kinematic condition on the wall 8, and the
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nonlinear as well as viscous terms of the y-momentum equation at the wall.

These nonlinear and viscous effects are generally discarded in the radiated

pressure models based on the Lighthill’s analogy, when making the assump-

tion of a weak coupling between the wall and the flow dynamics. If the Green

function is chosen such that

∫

y=0

(
∂G

∂y
pw(x, t)−G

∂pw

∂y
(x, t)

)
dx dt = 0, (17)

one recovers

P (X,Y, T ) =

∫
∂2G

∂xi∂xj

(X,Y, T, x1, x2, t)Tij(x1, x2, t) dx1 dx2 dt (18)

with (x1, x2) = (x, y) for convenience in the above equation. The partial

derivatives have been switched from the Lighthill’s volume source term (10)

to the Green function by performing integration by parts and by assuming

negligible viscous surface shear-stress fluctuations. When radiation due to

viscous stress is taken into account, as for instance by Hu, Morfey & Sandham

[24] or Shariff & Wang [23] for a turbulent boundary layer, the contribution

Pv(X,Y, T ) = −
∫

x2=0

∂G

∂xi

τ2i(x1, 0, t) dx1 dt, (19)

with τij the fluctuation viscous stress tensor (12), is to be added. For the

solution of the Green function, a Fourier transform in x and t is performed

with

Ĝ(X, Y, T, k, y, ω) =

∫
G(X,Y, T, x, y, t)e−i(kx−ωt) dx dt. (20)

Indeed, it will be shown in section 3.2 that the harmonically forced flow

perturbation is nonlinearly saturated in space and time allowing for a Fourier

analysis of the fluctuation flow quantities.
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In Appendix B it is shown how a Green function for the present problem

can be determined. In the present boundary-layer configuration, the velocity

fluctuations in the Lighthill’s tensor Tij become negligible for y > h with h

of the order of the boundary-layer thickness. Consequently, the integration

with respect to x2 = y in (18) is performed to an upper limit h at some units

from the wall (the unit-length corresponding to the displacement thickness

of the flow profile at inflow). The pressure radiation is evaluated for Y ≥ h

and the expression (B.7) given in Appendix B for the Fourier transformed

Green function has to be considered. Applying Parseval’s formula and the

product theorem for Fourier transforms one gets

P (X, Y, T ) =

=
eiγY

(2π)2

∫ (∫ h

0

L+(−k, y,−ω)eiγy dy

) iγp̂∗w +
∂p̂∗w
∂y

2iγ(iγp̂∗w −
∂p̂∗w
∂y

)

ei(ωT−KX)dk dω

+
eiγY

(2π)2

∫ (∫ h

0

L−(−k, y,−ω)e−iγy dy

)
1

2iγ
ei(ωT−KX)dk dω, (21)

where

L±(k, y, ω) = [kδi1 ± γδi2] [kδj1 ± γ δj2]T̂ij(k, y, ω), (22)

with T̂ij(k, y, ω) the Fourier transform of the Lighthill’s tensor (δij being the

Kronecker-symbol). Finally, from (21) it follows that the Fourier transform

of P (X,Y, T ) can be written as a function of the Fourier transforms of the

wall pressure, the wall-normal pressure gradient and the Lighthill’s stress
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tensor with

P̂ (k, Y, ω) =

eiγY (iγp̂w +
∂p̂w

∂y
)

2iγ(iγp̂w − ∂p̂w

∂y
)

∫ h

0

L+(k, y, ω)eiγy dy

+
eiγY

2iγ

∫ h

0

L−(k, y, ω)e−iγy dy. (23)

The root γ of γ2 = M2ω2− k2 is chosen according to the radiation condition

(B.5) at infinity (cf. Appendix B). In this expression the contribution due to

wall shear stress fluctuations has been discarded, similarly to the analyses by

Zheng [6] or Dowling [10]. To assess the validity of this hypothesis, according

to equation (19) the Fourier transformed quantity can be computed with

P̂v(k, Y, ω) =

(
ikp̂w τ̂21(k, 0, ω)− ∂p̂w

∂y
τ̂22(k, 0, ω)

)
eiγY

∂p̂w

∂y
− iγp̂w

(24)

(where τ̂ij(k, 0, ω) is the Fourier transformed viscous stress tensor at the

wall). This issue will be addressed in section 4.2).

3. Fluid-structure dynamics

Elastic plates with different characteristics have been considered, in par-

ticular in terms of natural plate frequencies and stiffness. Parameter values

have been chosen, typical of polyurethane and glass-resins composite which

are used for instance in the manufacturing of sonar flank arrays that equip

underwater vehicles. Results for two plates are reported. The plate called

plate 1 has a non zero stiffness parameter (accounting for a spring-backed

plate) and its natural frequencies are distinct from that of the harmonic fluid
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Dimensionless parameters Plate 1 Plate 2

thickness h 26.3 14.9

mass m 28.2 26.2

bending stiffness B 7.85 105 1.58 107

stiffness κ 4.58 0.0

Dimensional parameters

thickness h∗ 4 mm 2.275 mm

density ρ∗P 1100 kg.m−3 1800 kg.m−3

Young’s modulus E∗ 1.31 108 Pa 1.43 1010 Pa

Poisson’s ratio νP 0.49 0.49

stiffness κ∗ 1010 kg.m−2.s−2 0.0

Table 1: Characteristics of the two elastic plates considered in the study.

flow forcing. Plate 2 has lower natural frequencies and zero stiffness. The

Reynolds number Re = 2000, based on the displacement thickness of the

Blasius profile at inflow, has been considered which is much higher than the

critical Reynolds number Rec ≈ 520 for convective flow instabilities. The

dimensionless as well as physical parameters, considering δ∗a = Re ν / U∗
∞

with ν the kinematic viscosity of water and U∗
∞ = 18 m/s, are reported in

table 1.

3.1. Steady state and added mass phenomena

In the rigid-wall case the flow is known to be convectively unstable and

in the absence of external perturbations the basic state is the non-parallel
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boundary-layer flow U = (U, V ) which can be reached by time-marching.

The dashed line in figure 3 depicts the pressure distribution along the wall

in the rigid case. The pressure has been set to zero at inflow (x = 0, y = 0)

and is shown to exhibit a small negative gradient along the wall. Notice that

this solution corresponds to a steady state of the Navier-Stokes system and

there is no reason for the pressure to be constant, as it would be when using

Prandtl’s boundary-layer approximation.

For the flow along the elastic plate, steady flow states are retrieved by

adding high damping into the dynamical equation (6). Plates of dimension-

less length L = 614 (L∗ ≈ 9.3 cm), clamped between xa = 40 and xb = 654

into a rigid wall upstream and downstream, have been considered. The com-

putational domain in the streamwise direction is 0 ≤ x ≤ 820.

The coupling leads to a bent steady state, the resulting plate shape de-

pending on the plate characteristics, as shown in figure 2. To interpret the

wall behaviour, it is convenient to solve equation (6) by use of an expansion

into wall modes

η (x, t) =
N∑

j=1

aj (t) η̂j (x) , (25)

where the modes η̂j (x) are solutions of the eigenvalue problem

B
d4 η̂j (x)

d x4
+ κ η̂j (x) = λj η̂j (x) . (26)

The fourth-order differential operator in (26) is discretized using second-

order centered finite differences. The clamped boundary conditions are added

and the modes and the eigenvalues are computed by solving the algebraic

eigenvalue problem. The dynamical equation (6) is then turned into a set of
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Figure 2: Steady-state displacements (a) plate 1 (b) plate 2.

equations

m
d2 aj (t)

d t2
+ dj

d aj (t)

d t
+ λj aj (t) = 〈σP , η̂j 〉 (27)

whose solutions are the modal amplitudes aj. Due to the orthogonality of the

modes, the projection 〈σP , η̂j 〉 is merely the discrete inner product with the

modes. It has been checked that the truncation N = 240 used in the expan-

sion (25) is high enough to capture all significant spatial scales. The resulting

wall displacement is hence equivalent to that recovered when solving directly

(6). In the case of plate 1, it appears that for the first modes the stiffness

dominates and λj ≈ κ. The wall displacement at the steady state is shown

in figure 2 (a). The wall shape is seen to increase monotonously in a region
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Figure 3: Steady state pressure spatial distributions along the rigid wall (· · · ) and plate 2

(−−).

between the leading and trailing edges, while exhibiting sharp gradients at

both edges due to the clamped end conditions. The corresponding pressure

distribution, not shown, is very close to that along the rigid wall, depicted

as the dashed curve in figure 3. For plate 2 however, the eigenvalue of the

first mode dominates, leading to the distribution shown in figure 2 (b). Now

the plate displacement is much higher, leading to a significant modification

of the steady-state pressure along the plate, which is shown as the solid line

in figure 3.

Once a steady state along the compliant wall is obtained, the damping

factor is decreased generating transient oscillations, in the absence of external

perturbations. The natural frequencies of the system (27) can easily be seen

to be ωj =
√

λj/m and the damping factor can conveniently be chosen for

each mode as dj = 2 mωj εj, so that a low εj value gives rise to a decreased

frequency ωj

√
1 − ε2

j and to an exponentially decreasing amplitude factor

e− εj ωj t. A damping factor of εj ≈ 0.05 proved to be sufficient to avoid
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Plate 1 Plate 2

j ωj ω′j ωj ω′j

1 0.40 0.26 0.05 -

2 0.40 0.26 0.13 0.09

3 0.41 0.26 0.25 0.16

4 0.41 0.26 0.41 0.27

5 0.42 0.26 0.61 0.42

Table 2: Initial natural frequencies ωj and frequencies ω′j with added mass for the two

elastic plates.

resonant plate dynamics through coupling with the fluid wall pressure when

considering plate 1. In the case of plate 2 without stiffness, given the large

scale plate deformation shown in figure 2 (b), it was necessary to completely

damp out the first mode in order to avoid high-amplitude oscillations at

the scale of the computational domain. The value εj ≈ 0.05 proved to

be sufficient for the higher modes j = 2, 3, · · · . In the system (27), the

dominant term of the right-hand side is the projection of the wall pressure, in

comparison with the viscous stress term which is small at the high Reynolds

number considered. The projection of the wall pressure onto a mode shape

has an in-phase temporal evolution with respect to the mode amplitude aj,

due to the added mass effect, that is

〈−p, η̂j〉 = βj aj + γj.

The added mass factors βj have been numerically determined for the first

modes and the modified frequencies ω′j =
√

(λj − βj)/m appeared to differ
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by about 30 % from the natural ones. Table 2 summarizes the natural as

well as the modified frequencies for the two plates, considering the first 5

modes. Note that as we mentioned before, the frequencies of the first modes

for plate 1 are almost identical, due to the dominant stiffness parameter κ in

that case.

3.2. Unsteady fluid-structure coupling

In order to trigger the flow instability, a volume forcing is introduced in

the vicinity of the inflow, located at xi = 0. The forcing functions fu, fv in

the streamwise and wall-normal directions respectively are

fu(t) = −A (y − yf ) exp

(−(x− xf )
2

2σ2
x

− (y − yf )
2

2σ2
y

)
Σi cos(ωit), (28)

fv(t) = A
σ2

y

σ2
x

(x− xf ) exp

(−(x− xf )
2

2σ2
x

− (y − yf )
2

2σ2
y

)
Σi cos(ωit).(29)

This volume forcing, which is oscillatory in time at various frequencies ωi,

is set divergence-free with an appropriate Gaussian-type spatial envelope.

The parameters (xf , yf ) = (35, 1.5) fix the location of the forcing in space,

whereas (σx, σy) = (2, 0.3) account for its spatial extent which is about 10 in

the streamwise direction and 1.5 in the wall-normal direction. The parameter

A characterizes the forcing amplitude, such that the maxima of |fu| and |fv|
are respectively approximately 0.18 A and 0.03 A. Four forcing frequencies

have been considered with ω1 = 0.04, ω2 = 0.08, ω3 = 0.12, ω4 = 0.16. Note

that the first three frequencies are in the unstable frequency range for the

Blasius profile at inflow, at the Reynolds number Re = 2000 considered. The

harmonic forcing gives rise to a wavepacket which grows along the plate due

to the convective instability. When the permanent flow regime is reached,
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Figure 4: Steady state streamwise velocity for the flow bounded by the rigid wall at

x = 450 and y = 0.63, for A = 0.1.

the flow perturbation amplitude saturates at some distance from the forcing,

as a consequence of the nonlinearities in the Navier-Stokes system.

First, the flow perturbation has been computed in the rigid-plate case for

a small forcing amplitude A = 0.005 and a high one A = 0.1. A permanent

perturbed flow regime sets in when the convective instability reaches the out-

flow boundary (at t ≈ 1800 for xo = 820 and A = 0.1). Given the harmonic

nature of the forcing, the resulting disturbance flow quantities exhibit a time-

periodic behaviour, as shown in figure 4 for the streamwise component u′ of

the perturbation flow velocity u′ = u −U, with U the unperturbed steady

state (the time t in the figure is reset to zero when the permanent flow regime

is reached). Figure 5 shows the instantaneous streamwise component of the

perturbation flow velocity at the distance y = 0.63 from the wall, for the

two amplitudes A = 0.005, 0.1 which have been considered. These spatial

distributions are plotted slightly downstream of the forcing position x = 35,

from x = 100 to x = 800. While for the low amplitude forcing there is a con-
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Figure 5: Instantaneous spatial distributions of the perturbation velocity component u′ at

y = 0.63 for the flow bounded by the rigid wall, for two forcing amplitudes (a) A = 0.005

(b) A = 0.1.

tinuous perturbation growth exhibiting saturation only close to the outflow

boundary, the flow perturbation is seen to saturate already at x = 100 when

the high amplitude is considered.

One key quantity in the forthcoming analysis is the perturbation pressure

along the wall, whose spatial evolution is shown in figure 6. Again, there is

clear evidence of saturation at x = 100 for the high-amplitude forcing with

A = 0.1 (figure 6(b)).
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Figure 6: Instantaneous spatial distributions of the wall pressure fluctuation for the flow

bounded by the rigid wall, for two forcing amplitudes (a) A = 0.005 (b) A = 0.1.
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Although the simulations have been performed for the finite-length do-

main 0 ≤ x ≤ 820, the flow perturbation is seen to exhibit almost peri-

odic structures in time as well as in space, for the high-amplitude forcing

and inside the box 100 ≤ x ≤ 800 in the streamwise direction. Hence,

a wavenumber-frequency Fourier transform of the flow quantities appears to

be legitimate when the forcing amplitude A = 0.1 is considered. It is defined,

for instance for the perturbation pressure at the wall, as

p̂(k, y = 0, ω) =

∫ t0+T

t0

∫ l0+L

l0

p′(x, 0, t) e−i(kx−ωt) dx dt

with T = 2048 and L = 700 (l0 = 100). For that purpose the pressure has

been sampled at every time unit and every discretization point in the stream-

wise x-direction. Note that the rectangular window has been considered for

the spectral analyses and the Fortran 90 fftpackage has been used which is

not restricted to a power of 2 number of data.

The transformed wall perturbation pressure is depicted in figure 7. The

structure is characteristic of a convective wave in the downstream direction

and it is seen to be dominated by peaks at the four forcing frequencies, as

well as their harmonics which are generated by nonlinearities in the flow. A

convective disturbance velocity close to 0.5 can be estimated from the data.

For the same forcing device and amplitudes, the flow instabilities have

been computed for the coupled fluid-structure system, with elastic plates of

length 614 (clamped at xa = 40 and xb = 654) for an overall domain extend-

ing from xi = 0 to xo = 820. The resulting instantaneous wall displacement

for plate 1 is depicted in figure 8, for both amplitudes A = 0.005 and A = 0.1.

It exhibits a fluctuation around the steady state deformation (shown in figure

2 (a)) which increases with the amplitude. The time-dependent wall fluctu-

23



Figure 7: log |p̂(k, y = 0, ω)| for the rigid wall with A = 0.1, color scale ranging from 1 to

4.5.
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Figure 8: Instantaneous spatial evolutions of plate 1 displacements for A = 0.005 (−−)

and A = 0.1 (· · · ).
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Figure 9: Plate 1 displacement fluctuations η′ = η − η̄ at x = 194 (−−), x = 347 (− · −)

and x = 500 (· · · ) for A = 0.1.

ations η′ = η − η̄, with η̄ the time-averaged value, at locations x = 194,

347 and 500, which correspond to 1/4, 1/2 and 3/4 of the plate length, are

shown in figure 9, for A = 0.1. There is clear evidence of a main fluctuation

at the modal frequency ω′ = 0.26 (taking into account the added mass, cf.

table 2) and a modulation at a lower frequency ω ≈ 0.04 associated with

the most unstable convective flow instability. Note that given the particular

instantaneous wall shape, the amplitude of the fluctuation increases along

the plate, while being almost saturated in time at a given location.

The instability behaviour for plate 2 is very different, as shown in figure

10, where the instantaneous wall fluctuation shape is depicted for A = 0.005

and A = 0.1. The main deformation is seen to be associated with mode

3. Indeed, in the previous section (cf. table 2), the modified frequency of

this mode has been shown to be ω′ = 0.16, which is precisely one of the

forcing frequencies for the flow. The wall fluctuation at mid-plate is shown

in figure 11 confirming the oscillation at a frequency close to 0.16. For the
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Figure 10: Instantaneous spatial evolutions of plate 2 displacement fluctuations η′ = η− η̄

for A = 0.005 (−−) and A = 0.1 (· · · ).
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Figure 11: Plate 2 displacement fluctuations η′ = η − η̄ at mid-plate for A = 0.005 (−−)

and A = 0.1 (· · · ).
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Figure 12: Plate 1 wall pressure fluctuation for A = 0.1: (a) time evolution at x = 450

(b) instantaneous spatial distribution.

flow perturbation with high amplitude there is again a modulation in the

wall displacement associated with the convective flow frequency of 0.04.

The perturbation pressure along plate 1 is shown in figure 12 for the

high-amplitude forcing A = 0.1. The wall pressure fluctuation at x = 450

is depicted as a function of time as well as the instantaneous pressure along

the compliant wall for 100 ≤ x ≤ 800. Similarly to the rigid case, the

perturbation structure is saturated in time and space, for plate 1 as well as

plate 2 (these latter results are not shown).
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Again, a wavenumber-frequency Fourier transform can be performed and

the results are shown in figure 13 for both plates. While the convective part

of the transformed pressure is very similar to that of the rigid case (cf. figure

7), additional peaks are clearly visible at ω = ±0.26 in figure 13 (a) for plate

1, with k close to zero, corresponding to the dominant mode frequency. The

Fourier transform for plate 2 exhibits additional peaks for k ≈ 0 at ω = ±0.16

but interestingly also at ω = ±0.42, which is actually the frequency (modified

by added mass) of the fifth mode given in table 2.

The wavenumber Fourier transform at constant ω = 0.26 for plate 1 is

shown in figure 14 and is compared with the rigid wall result. The convective

peak (due to the flow perturbation harmonics) is visible at k ≈ 0.52 together

with the modal peak at k ≈ 0. The latter peak is proper to trigger acoustic

pressure fluctuations to be addressed in the next section.

Considering the peak at ω = 0.42 for plate 2, the corresponding cut as

a function of the wavenumber k is shown in figure 15. Now, the convective

peak is located at k ≈ 0.75, however with a lower amplitude, and again the

modal peak can be distinguished for vanishing wavenumbers.

4. Radiated sound

The acoustic pressure field is determined as solution of the equation (13)

for the forcing associated with the Lighthill’s tensor Tij = u′i u
′
j − τij, with

τij the viscous fluctuation stress tensor (12). In section 2.2 the coordinates

(X, Y, T ) have been introduced for the acoustic pressure P (X,Y, T ), whose

expression using the Green function approach is given by (18). By assuming

homogeneity in the streamwise direction as well as statistically stationary
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Figure 13: log |p̂(k, y = 0, ω)| for A = 0.1 and (a) plate 1, (b) plate 2, color scales ranging

from 1 to 4.5.
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Figure 14: Comparison of the spectral components log |p̂(k, y = 0, ω = 0.26)| for plate 1

(−−) and the rigid wall (· · · ) with A = 0.1.
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Figure 15: Comparison of the spectral components log |p̂(k, y = 0, ω = 0.42)| for plate 2

(−−) and the rigid wall (· · · ) with A = 0.1.
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behaviour in time, in wall bounded turbulent flow it is common to compute

the Fourier transformed acoustic pressure. Indeed, in general the spectral

response of the perturbation flow quantities are available rather than the

physical quantities in space and time (which would represent a tremendous

amount of data). Our simulation data have been shown to be saturated in

time as well as over a large distance in the streamwise direction, for the

nonlinear perturbation evolution with forcing amplitude A = 0.1. Hence,

for this high-amplitude flow forcing a periodic perturbation flow assumption

in the streamwise direction and in time has been adopted and the Fourier

transformed acoustic pressure P̂ (k, Y, ω) given by formula (23) is computed.

The flow quantities forming the Lighthill’s tensor have been sampled and

stored at the discrete points in y inside the boundary-layer, over a time

interval T = 2048 in the permanent flow regime and in the saturated flow

region 100 ≤ x ≤ 800. A height h ≈ 4 in the integrals of (23) proved to

be sufficient in order to recover an approximate uniform flow. Note that

given the grid spacing ∆x = 0.2 and the number of 30 collocation points in

0 ≤ y ≤ h, together with the sampling at each timestep, more than 2. 108

data had to be stored for each perturbation flow quantity.

In the case of the rigid wall, the wall pressure components p̂w and ∂p̂w/∂y

that appear in (23) are directly computed from the simulation using an iden-

tical sampling at the wall. For the elastic plates, on the contrary, these terms

are modelled in order to take into account the compressible effects for the

pressure induced by the plate motions. The different models that have been

developed are detailed in section 4.1.

A convenient quantity to evaluate the sound estimates has been com-
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puted, that is the radiated pressure spectral density

P (Y, ω) =

∫
|P̂ (k, Y, ω)|2dk.

Note that in order to avoid singularities at the sonic wavenumber, as γ

appears in the denominator of formula (23), the wavenumber band 0.9 ≤
|k/Mω| ≤ 1.1 has been excluded from the integration.

Considering the Mach number M = 0.012 (corresponding to U∗
∞ =

18 m/s and water), for the lowest non zero wavenumber ∆k = 2π/L ≈ 0.009

the wavespeed ω/k is supersonic only for frequencies higher than 0.75. Far-

field radiation is hence negligible at this Mach number and near-field results

are analyzed in the following, considering the value Y = 100 in most of the

computations.

4.1. Acoustic wall pressure models

In most hydrodynamic noise models involving vibrating walls based on

wavenumber-frequency spectra, the flow pressure is computed as the sum of

the pressure prigid along a rigid wall in an equivalent configuration and a

vibrating contribution pa, that is

p̂(k, y, ω) = p̂rigid(k, y, ω) + p̂a(k, y, ω) (30)

∂ p̂

∂ y
(k, y, ω) =

∂ p̂rigid

∂ y
(k, y, ω) +

∂ p̂a

∂ y
(k, y, ω) (31)

(cf. Graham [5] for a review). Inside the boundary layer, p̂a is sought as

being solution of the homogeneous wave equation

(k2 − M2 ω2) p̂a − ∂2 p̂a

∂ y2
= 0, (32)
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which yields, using the γ coefficient defined in (B.5),

p̂a(k, y, ω) =
− i

γ

[
∂ p̂a

∂ y

]

y =0

ei γ y.

At the wall y = 0 this component in the pressure decomposition becomes

p̂a(k, 0, ω) =
− i

γ

[
∂ p̂a

∂ y

]

y =0

. (33)

Under the weak coupling assumption, which is generally used for self-noise

prediction issues (see for instance Hariri & Akylas [22], Graham [25] or Zheng

[6]), the pressure normal derivative at the wall is estimated by writing merely
[
∂ pa

∂ y

]

y = 0

= −
[
∂ v

∂ t

]

y =0

, (34)

which gives in the spectral domain
[
∂ p̂a

∂ y

]

y =0

= ω2 η̂ (35)

by taking into account the kinematic condition (8). Hence, the vibrating

component at the wall (y = 0) is written when using the weak coupling

assumption as

p̂a(k, 0, ω) =
− i ω2

γ
η̂. (36)

However, when nonlinearities result from the coupling between the flow and

the plate, the simple relation (34) may not be reliable anymore. Our solution

procedure provides a wall pressure gradient ∂p̂w/∂y associated with the full

coupling between the boundary layer and the plate. Consequently, when

taking into account full coupling, the relation (31) is written at the wall and

the resulting expression for the gradient ∂p̂a/∂y is used in (33). This gives

rise to the expression

p̂a(k, 0, ω) = − i

γ

[
∂ p̂w

∂ y
− ∂ p̂w, rigid

∂ y

]
, (37)
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rather than (36), with ∂p̂w, rigid/∂y the pressure gradient for the flow along

the rigid wall. The wavenumber-frequency spectra for both ω2η̂ and ∂ p̂w

∂ y
−

∂ p̂w, rigid

∂ y
are shown in figure 16. Both spectra have similar modal peaks

but when strong coupling is considered the convective part is much more

pronounced.

The pressure decomposition (30), (31) has been considered in (23) to com-

pute the acoustic pressure P̂ (k, Y, ω). When the weak coupling hypothesis is

made, p̂a and ∂p̂a/∂y are given respectively by (35), (36), and when strong

coupling is considered the acoustic pressure (37) is used. In order to highlight

the effect of the wall pressure, the Fourier transform of the Lighthill’s tensor

for the rigid wall has been taken into account for both coupling assumptions.

The radiated pressure spectral densities (at Y = 100) are depicted in

figure 17 for plate 1 and compared with the case of the rigid wall. For the

latter, the highest pressure levels are reached at the forcing frequencies and

at their harmonics. Similar peaks are visible in the case of the compliant

wall, but the pressure densities are now clearly dominated by a large peak at

its natural frequency 0.26. Also, the acoustic levels are globally much higher

in the mid- and high-frequency ranges than in the rigid case. Comparing the

spectral densities for plate 1, the levels are seen to depend on the coupling

model, although the modal peaks at ω = 0.26 are identical. In the low

frequency range, the full coupling assumption gives rise to higher acoustic

pressure levels, both at the forcing frequencies and the intermediate ones,

than the weak coupling model. In the high frequency range, the acoustic

levels seem to be slightly overpredicted under the weak coupling assumption.

Figures 18 (a), (b), (c) show isolines of the radiated pressure in the phys-
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Figure 16: log |∂p̂a

∂y | for plate 1 at y = 0 (a) ∂ p̂a

∂ y = ∂ p̂w

∂ y − ∂ p̂w, rigid

∂ y , color scale ranging

from −0.5 to 2.5 (b) ∂ p̂a

∂ y = ω2 η̂, color scale ranging from −1.5 to 2.
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Figure 17: Radiated pressure spectral densities at Y = 100 for plate 1 under the full

coupling (−−) and weak coupling (− · −) assumptions, and for the rigid wall (· · · ).

ical space, for the flow over the rigid wall as well as for the weak and strong

coupling models. The frequency ω = 0.142 corresponding to an intermediate

value between two forcing frequency peaks has been chosen (cf. figure 17).

For the rigid wall there is hardly any sound at some distance from the wall.

The sound levels are clearly enhanced by the full coupling, exhibiting non

negligible levels at Y = 200 and beyond.

The same general trend arises from the comparison between the weak and

strong coupling assumptions in the case of plate 2, although the differences

are much less pronounced than for plate 1. Both radiated pressure spectral

densities, shown in figure 19, exhibit modal peaks of moderate amplitude at

the natural frequencies 0.16 (which is also a forcing frequency) and 0.42. The

acoustic levels at intermediate frequencies are increased as well, compared to

the case of the rigid wall.
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Figure 18: Isolines of the radiated pressure levels at ω = 0.142, ranging from 0.0003 to

0.03: (a) rigid wall, (b) plate 1 under the weak coupling assumption, (c) plate 1 under the

full coupling assumption.
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Figure 19: Radiated pressure spectral densities for plate 2 at Y = 100 under the full

coupling (−−) and weak coupling (− · −) assumptions, and for the rigid wall (· · · ).

4.2. Wall shear stress contribution

As mentioned in section 2.2, the above radiated pressure levels have been

obtained neglecting the contribution due to the wall shear stress fluctua-

tions. Equation (24) provides the Fourier-transformed radiated pressure term

P̂v(k, Y, ω) associated with the wall shear stress. The magnitude of this term

compared with the radiated pressure computed in the previous section has

been assessed for plate 1, for the full coupling model only. The result is shown

in figure 20, which compares the radiated spectral densities of P̂ and P̂v at

Y = 100. In the whole frequency range, except at a few very low frequency

values, the levels obtained for P̂v are seen to be several orders of magnitude

smaller than the levels for P̂ , and may hence be neglected for sound radiation

estimates. Indeed, the spectral density for P̂ + P̂v would superimpose to the

curve with P̂ and it is not depicted in the figure.
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Figure 20: P̂ (−−) and P̂v (· · · ) spectral densities for plate 1 under the full coupling

assumption at Y = 100.

4.3. Lighthill’s tensor from the coupled simulation

In order to highlight the effect of the coupling assumption involving the

wall pressure, the previous results have been obtained using the Lighthill’s

tensor Tij for the simulation with the rigid wall, as for instance in [6]. Per-

forming coupled simulations involving elastic plates, the velocity fluctuations

(u′,v′) resulting from the fluid-structure interaction may be directly used in

(11) and (12) to compute a modified Lighthill’s tensor. This so-called ‘elas-

tic’ Lighthill’s tensor (in contrast with the former ‘rigid’ tensor) has been

considered for the case of plate 1, under the full coupling assumption. The

corresponding acoustic field has been computed and is compared in figure 21

with the result of section 4.1. Both spectral densities exhibit similar acoustic

levels at the forcing frequencies and their harmonics. To take into account

the velocity fluctuations resulting from the full coupling between the flow

and the plate motions in the construction of the Lighthill’s tensor is however

seen to enlarge the modal peak and to give rise to higher acoustic levels at
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Figure 21: Radiated pressure spectral densities for plate 1 under the full coupling assump-

tion at Y = 100 using the elastic Lighthill’s tensor (−−) and the rigid tensor (· · · ).

the intermediate frequencies in the whole frequency range. t These effects

are highlighted when comparing the corresponding spatial distributions of

radiated pressures P̂ (X,Y, ω) at the same distance Y = 100 for given inter-

mediate frequencies. The cases of a very low frequency ω = 0.02 and of the

same frequency ω = 0.142 as considered in figure 18 are depicted in figures

22 (a) and (b) respectively. At both frequencies the levels induced by the

elastic Lighthill’s tensor are seen to dominate throughout the spatial domain.

5. Conclusion

The prediction of self noise induced by the interaction of a boundary-

layer flow with a flexible wall is in general based on a weak coupling assump-

tion. The models commonly available consider a linear superimposition of

the wavenumber-frequency spectrum for the (turbulent) boundary layer over

a rigid wall, and an acoustic pressure fluctuation due to the plate motion,
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Figure 22: Spatial distributions of the radiated pressure P̂ (X, Y, ω) at Y = 100 for plate 1

under the full coupling assumption using the elastic Lighthill’s tensor (−−) and the rigid

tensor (· · · ) (a) ω = 0.02 (b) ω = 0.142.

by making the assumption that the wall pressure normal gradient is only

linearly coupled to the wall-normal velocity.

To perform a simulation of a turbulent boundary layer interacting with

a flexible plate without simplifying assumptions would hardly be feasible, or

would at least demand considerable numerical efforts. The present analy-

sis, addressing the noise radiation issue for the model of a two-dimensional

nonlinearly saturated boundary-layer along an elastic plate, may hence be

considered as a first attempt to assess the reliability of different coupling

assumptions. As in [6], the flexible wall effects have been represented by

the Green function, used to solve the Lighthill’s equation, for data from the

numerical simulation of the fully coupled fluid-structure system. It appears

that for nonlinearly saturated flow states, nonlinear terms arise through the

coupling between the boundary-layer flow and the plate motion, affecting

in turn the wavenumber-frequency spectrum of the pressure gradient at the

wall. The acoustic pressure fluctuation due to the wall motion is modified
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accordingly, the effect on the radiated sound depends, however, on the plate

characteristics. For the low Mach number considered, owing to the hydro-

dynamic context of the analysis, the radiated pressure levels at moderate

distances from the wall have been computed. For the different coupling hy-

potheses, our results are in agreement with the general trend that the sound

levels are enhanced in the presence of a flexible wall, reported for instance in

[6] under the weak coupling assumption and considering experimental data

for the turbulent wall-pressure spectra.

Addressing the strong versus weak coupling models, for a plate with high

stiffness and one dominant natural frequency (plate 1 in the above sections),

we found that the radiated sound levels are enhanced in the low-frequency

range when the full coupling is taken into account, in particular at inter-

mediate frequencies with respect to those of the harmonic forcing of the

boundary-layer. In the high-frequency range however the radiated pressure

levels resulting from the weak coupling hypothesis slightly dominate. When

considering an elastic plate without stiffness and with a natural frequency

within the range of the harmonic flow forcing (plate 2), the weak and strong

coupling results are almost identical at low-frequencies. At higher frequencies

the radiated pressure levels are again slightly overpredicted when the weak

coupling assumption is made. The contribution to the radiated pressure due

to wall shear stress fluctuations appears to be negligible for the flow over the

compliant walls considered in the present analysis.

In radiated pressure models for compliant walls, rigid-wall turbulent fluc-

tuating velocity quantities are considered as sources in the Lighthill’s equa-

tion. For the academic configuration considered here, these quantities can
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be computed as arising from the coupling between the flow perturbation and

the wall motion. Combining this approach with the previous full coupling

assumption for the fluctuating wall pressure quantities, we obtain an acoustic

model which takes even more into account the fluid-structure coupling. The

resulting radiated pressure levels are shown to be enhanced in comparison

to the previous results regarding elastic plates. It would be hazardous to

directly interpret the present findings with regard to real flow situation, ex-

hibiting three-dimensionality and turbulence. However, the results indicate

that wavenumber-frequency models for radiated sound are likely to depend

on the specific coupling assumption used to take into account the wall motion.
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Appendix A. Coupling between pressure and wall displacement

Once the spatial operators in (1) and (2) are discretized and applying the

second-order backward difference formula for the time derivative, the velocity

field un+1 and the pressure pn+1 at the new time (n + 1)∆t are solutions of

(
1

Re
∇̄2 − 3

2∆t

)
un+1 = ∇̄pn+1 + [f ]n,n−1 (A.1)

∇̄ · un+1 = − [Gη · u]n,n−1 ,

where [ ]n,n−1 means that the terms inside the brackets, containing the

nonlinear as well as the metric terms, are evaluated according to the explicit

second-order Adams-Bashforth rule and the system has to be solved for the
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time-dependent wall displacement η. Applying second-order finite-differences

to ∂4/∂x4 in (6), together with second order finite-differences formulae for

the first and second-order derivatives in time, the system to be solved for

ηn+1 may be written formally as

Lηn+1 = ηn,n−1 + σp, σp = −pn+1 + τn,n−1 (A.2)

with τn,n−1 the Adams-Bashforth rule applied to the viscous normal stress.

Knowing the flow quantities and the wall displacement up to time step n,

a first intermediate pressure p∗ at time step n + 1 is obtained solving the

discretized version of the Poisson equation (9) for the pressure

∇̄2 p∗ =

[
−Lη p + 2

[
∂ u

∂ x̄

∂ v

∂ ȳ
− ∂ u

∂ ȳ

∂ v

∂ x̄

]]n,n−1

.

The Neumann boundary condition for p∗ is given by projection of the mo-

mentum equations normal to the wall. The estimated pressure p∗ provides

u∗ as well as η∗. In order to recover a divergence-free velocity field at the

new time step n + 1, the correction of the pressure φ is such that

∇φ = − 3

2∆t

(
un+1 − u∗

)
.

Taking the divergence of the equation one gets in physical coordinates

∇2φ =
3

2∆t
∇ · u∗ (A.3)

and applying the mapping one has to solve

(∇̄2 + Lη

)
φ =

3

2∆t
(∇ · u∗ + Gη · u∗) ,

where the operators Lη and Gη are defined in (5). The equation above is

solved iteratively with

∇̄2φ(k+1) =
3

2∆t

(∇ · u∗ + Gη(k) · u∗)− Lη(k) , k = 1, · · · , K
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with η(k) solution of the plate equation with the right-hand side

σp = − (
p∗ + φ(k)

)
+ τn,n−1.

In general K = 3 iterations proved to be sufficient to achieve an error of order

∆t2. The system (A.1)-(A.2) is hence solved up to the overall truncation error

in time and the wall displacement as well as the divergence-free velocity field

at the new time step n + 1 are

pn+1 = p∗ + φ(K)

un+1 = u∗ − 2∆t

3

(∇̄φ(K) + Gη(K)φ(K)
)

ηn+1 = η(K).

The equation (A.3) is solved using a homogeneous Neumann boundary con-

dition and hence the boundary-integral zero mass-flux condition

∫

δΩ

u∗ds = 0

has to be satisfied. This could not be achieved by solely considering the

advection condition at outflow

∂u

∂t
+ Uc

∂u

∂x
= 0

and the kinematic condition v = ∂η/∂t has been mirrored at the upper

boundary y = ymax. This condition leads to a (small) oscillation of v in

the upper region which does not affect the fluid-structure interaction inside

the boundary layer. Indeed, as the flow is uniform in the upper part of the

computational domain, the gradient ∂v/∂y vanishes in the region adjacent

to ymax.
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Appendix B. Green function calculation

According to equation (15) the Fourier transform (20) of the Green func-

tion is easily seen to be solution of

(k2 −M2ω2)Ĝ− ∂2Ĝ

∂y2
= e−i(kX−ωT )δ(Y − y). (B.1)

Using the product theorem of Fourier transforms, the boundary condition

(17) can equivalently be written

∫ (
∂Ĝ

∂y
p̂w(−k,−ω)− Ĝ

∂p̂w

∂y
(−k,−ω)

)
dk dω = 0 (B.2)

with p̂w(k, ω),
∂p̂w

∂y
(k, ω) the Fourier-transform of the wall fluctuation pres-

sure and its wall-normal derivative, respectively. According to (B.1), the

function ĝ = Ĝ/e−i(kX−ωT ) is solution of

(M2ω2 − k2)ĝ +
∂2ĝ

∂y2
= −δ(Y − y) (B.3)

and the condition (B.2) is satisfied if

∂ĝ

∂y
(k, 0, ω)p̂w(−k,−ω)− ĝ(k, 0, ω)

∂p̂w

∂y
(−k,−ω) = 0. (B.4)

To solve the equation for ĝ, a root of γ2 = M2ω2 − k2 has to be chosen and

we define

γ =





ω
√

M2 − k2

ω2 if M2 − k2

ω2
≥ 0,

i
√

k2 −M2 ω2 if M2 − k2

ω2
< 0.

(B.5)

Hence, when γ is real, that is for supersonic conditions |ω/k| ≥ 1/M , γ has

the sign of ω and if γ is imaginary the root is chosen such that eiγy vanishes
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at infinity (cf. Dowling [10], Tam [11]). By prescribing a decaying wave

behaviour at infinity, the solution ĝ is (for Y > 0)

ĝ+ = A+eiγy, y > Y

ĝ− = A−eiγy + B−e−iγy, 0 ≤ y < Y
(B.6)

The coefficients A+, A−, B− are such that continuity ĝ+ = ĝ− as well as

the jump condition ∂ĝ+/∂y − ∂ĝ−/∂y = −1 are satisfied at y = Y . The

boundary condition (B.4) for ĝ− at y = 0 provides the third equation and the

coefficients can hence be determined. One recovers the Fourier-transformed

Green function expression

Ĝ = −ei(ωT−KX+γY )




(iγp̂∗w +
∂p̂∗w
∂y

)eiγy

2iγ(iγp̂∗w −
∂p̂∗w
∂y

)

+
e−iγy

2iγ


 , 0 ≤ y < Y, (B.7)

and

Ĝ = −ei(ωT−KX+γy)




(iγp̂∗w +
∂p̂∗w
∂y

)eiγY

2iγ(iγp̂∗w −
∂p̂∗w
∂y

)

+
e−iγY

2iγ


 , y > Y. (B.8)

(in the above equations the superscript ∗ denotes the complex conjugate,

that is p̂∗w = p̂w(−k,−ω) etc.). For y > Y and considering the limit case

Y = 0, one recovers the expression provided for instance in [6].
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