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ABSTRACT

A general method for the use of different types of fea-
tures in Automatic Speech Recognition (ASR) systems
is presented. A gaussian mixture model (GMM) is ob-
tained in a reference acoustic space. A specific fea-
ture combination or selection is associated to each gaus-
sian of the mixture and used for computing symbol pos-
terior probabilities. Symbols can refer to phonemes,
phonemes in context or states of a Hidden Markov
Model (HMM). Experimental results are presented of
applications to phoneme and word rescoring after ver-
ification. Two corpora were used, one with small vocab-
ularies in Italian and Spanish and one with very large
vocabulary in French.

1. INTRODUCTION

It is known that Automatic Speech Recognition (ASR)
systems make errors (see, for example, [17]). This is
due to the imperfection of the various models used, on
the limitations of the feature extracted and on the ap-
porximations of the recognition engines.

With the purpose of increasing robustness, recent
ASR systems combine streams of different acoustic
measurements, such as multi-resolution spectral/time
correlates. This is motivated by the assumption that
some characteristics that are de-emphasized by a par-
ticular feature are emphasized by another feature, and
therefore the combined feature streams capture comple-
mentary information present in individual features ([22],
[12], [8], [9], [6], [4], [11], [13], [14], [24], [16], [5]).

At another level, attempts have been recently report-
ed ([23], [21]) on the use of neural networks, decision

trees and other machine learning techniques to com-
bine the results of ASR systems fed by different fea-
ture streams or using different models in order to reduce
word error rates (WER). In ([26]) it is shown that log-
linear combination provides good results when used for
integrating probabilities provided by acoustic models.

Other approaches integrate some specific parameters
into a single stream of features ([20], [25], [19]). A
generalization of this approach consists in concatenating
different sets of acoustic features into a single stream.
In order to reduce modelling complexity, algorithms
have been described to select subsets of features in a
long stream using a criterion that optimizes automatic
classification of speech data into phonemes or phonetic
features. Unfortunately, pertinent algorithms are com-
putationally intractable with these types of classes as
stated in ([15]), where a sub-optimal solution is pro-
posed. Such a solution consists in selecting a set of
acoustic measurement that guarantees a high value of
the mutual information between acoustic measurements
and phonetic distinctive features.

An analysis of the factors affecting WER in ASR
systems is ceretainly useful for an effective use of dif-
ferentr feature sets. In ([10]) ASR errors of spoken di-
alog data collected from various telephony-based cus-
tomer care services are analyzed. It is shown that a
combination of utterance-based Signal-to-Noise Ratio
(SNR) and its local variations provide useful predictions
of recognition error rate. The correlation between SNR
and WER is also made evident in the study described
in ([18]) regarding the English portion of the MALACH
corpus for which an influence on WER of the number
of syllables per second is also reported. In ([7]) the im-
portance of correctly defining syllable boundaries is dis-



cussed and it is shown that ASR errors for certain conso-
nants depend on whether a consonant is in a prevocalic
or a postvocalic position in a syllable.

The approach described in this paper considers
the possibility of dynamically combining different
feature sets and acoustic models in an ASR system.
Given a sampled input signal S = s(kτ), where τ is
the sampling period, let us consider the sequence of
samples in a time window of length T and represent
such a sequence for the n-th window as follows:

Yn = [s(kτ)](n+1)T
nT

, n = 0, 1, ......, N

For each value of n, the window sequence [s(kτ)](n+1)T
nT

of signal samples is transformed into a feature vector
Y

a(nT ) represented in a feature space �a.
Features have an intrinsic variability with respect to the
symbols q ∈ Q which describe a spoken message. Vari-
ability may cause equivocation represented by the fact
that different symbols of Q may be coded into signal
segments leading to the same vector Y

a(nT ). Equivo-
cation varies from point to point of a given feature space.
In order to reduce equivocation, it is thus interesting to
vary the choice or the use of features depending on the
sample sequence based on which symbol hypotheses are
hypothesized.

2. INTEGRATING DIFFERENT FEATURES
AND MODELS

Given feature samples Y
a(nT ), hypotheses about sym-

bols q ∈ Q are generated by computing the posterior
probabilities Pµ[q|Y a(nT )]. Symbols may represent
phonemes, phonemes in context, transients or other pho-
netic descriptors. Computation of these probabilities is
performed using acoustic models µ. If different models
and features are available, then posterior probabilities
can be obtained with log-linear interpolation as follows:

log P [q|Yn] =
�

µ,a

w
a

µ[Y r(nT )] log Pµ[q|Y a(nT )] (1)

Where w
a
µ[Y r(nT )] are weights depending on the fea-

ture sample in a reference space indicated by the super-
script r. Initially, speech analysis is performed in the
reference space �r. The reference features can be the
ones that produce the best ASR results or good results
with minimal computation time.

Features Y
r(nT ) may be reliable in certain zones of

the acoustic space �r and less reliable in other zones.
Furthermore, in certain zones different models may pro-
vide better probability approximations than others.

The choice and use of models and features in a
given point of �r depends on the values of the weights
w

a
µ[Y r(nT )]. Let g(nT ) = w

a
µ[Y r(nT )] be a vector of

weights corresponding to a point of �r.
In practice, only a limited number of vectors of

weights can be considered in a system. Let G be the set
of these vectors. If only one feature stream is available
with symbol posterior probabilities computed with two
models, for example Artificial Neural Networks (ANN)
and Gaussian Mixture Models (GMM) and the symbols
are states of a Hidden Markov Model (HMM) then the
vectors contain the coefficients of a log-linear combi-
nation of the probabilities provided by the two models.
If vector elements are binary variables, and only one of
them is equal to one, then changing vectors corresponds
to switch between a feature stream and another.

In practice, vector values can be estimated or de-
termined by experiments only in certain points of the
reference space �r and the symbol posterior probabil-
ity in a point of the acoustic space has to be estimated
by smoothing the probabilities estimated with different
vectors of weight values. For this purpose, a probabil-
ity density P [g|Y r(nT )] is introduced. It indicates the
probability that vector g ∈ G provides the right weight
model for computing log P (g|Yn) with the (1). Different
weight models for computing a symbol posterior proba-
bility are then used as follows:

P (q|Yn) =
�

g∈G

P [qg|Yn] =
�

g∈G

Pg[q|Yn]P [g|Y r(nT )]

(2)
where Pg[q|Yn] indicates the posterior symbol probabil-
ity is computed with the (1), using the weight model g.

Probability P [g|Y r(nT )] can be computed by asso-
ciating to each weight model g a Gaussian distribution
as follows:

P [g|Y r(nT )] =
N(µg,Σg, Y

r(nT ))
�

γ∈G

N(µγ ,Σγ , Y
r(nT ))

(3)

There are many possible uses of the (1) and the (2).
An initial attempt has been made by considering two sets
of features, one of which is used as reference. Zones of



the acoustic space �r where the reference set of features
is unreliable are determined and a new set of features
is used in those zones. Hypothesis generation in these
zones depends on the two feature streams. The (2) is
used, in this case, as follows. A set of Gaussian distri-
butions P [g|Y r(nT )] is obtained in the reference space.
In each point Y

r of �r there is a Gaussian distribution
N(Y r) with the highest value. If features in �r are re-
liable, then the features in reference space �r are asso-
ciated to N(Y r), i.e. g(Y r) = {features in �r}, other-
wise the new set of features is associated to the point.
Other solutions are possible by associating to g(Y r) a
log linear combination of models and/or features accord-
ing to the (1).

A method for predicting the reliability of features
based on their variability in a point Y

r is described in
([1]).

3. EXPERIMENTAL RESULTS ON PHONEME
RECOGNITION

Two experiments have been conducted on the use of
the (2) for computing posterior phoneme probabilities.
They have been conducted on the French ESTHER cor-
pus [2] and on the Italian portion of the CH1 part of
AURORA3. The French ESTHER corpus has a very
large vocabulary and contains 80000 broadcast news
sentences in French. A set of 10000 sentences have been
isolated to infer a mixture of 1024 distribution probabil-
ities P [g|Y r(nT ) in a reference space of PLP features.
With Maximum A Posteriori (MAP) probability estima-
tion, a mixture of 1024 Gaussians has been obtained for
each of the 37 phonemes in French. After elimination of
the Gaussians which did not have samples associated to
them, a total of 10000 Gaussians were kept. A portion of
the corpus consisting of about 60000 sentences was used
to estimate a vector Pg[q|Yn] associated to each Gaus-
sian g of the mixture. This was obtained by introducing
a counter per phoneme and incrementing, after forced
alignment and for each time frame, the counter of the
phoneme f corresponding to a segment by a quantity
equal to Pg[f |Yn]. The contents of phoneme counters
have been normalized to ensure that the same number of
frames is used for each phoneme.

A test set containing 20000 phonemes was used. Af-
ter forced alignment, classification was performed on
each segment, ignoring the phonemes used for the align-
ment. In each segment, the (2) was applied and the

phoneme with the highest posterior probability was con-
sidered as the recognition result. Such a result was com-
pared with the one obtained using an HMM model per
phoneme.

Notice that probabilities Pg[f |Yn] can be computed
once forever using different features for different Gaus-
sians g .

A similar test was conducted with the CH1 Italian
portion of AURORA3. The training set was used for ob-
taining the GMM in the reference space and log-linear
interpolation was used for computing Pg[q|Yn]. The re-
sults are shown in Table 1.

corpus using the (2) using HMMs
Italian CH1 9.2 14
French ESTER 30.5 37.7

Table 1. Results in terms of phoneme error rates(%)
using the (2) and phoneme HMMs

With a KLD lower than 0.004, then 63% of the Ital-
ian digits are validated with a phoneme error rate of
0.59%.

4. HYPOTHESIS VERIFICATION AND
FEATURE SWITCHING

A simple application of the (1) is for hypothesis verifica-
tion. The features in �r are initially used for generating
word hypotheses.

An hybrid system consisting of an Artificial Neural
Network and a set of Hidden Markov acoustic Models
(HMM) is used. The recognizer uses a feature set ob-
tained by Multi Resolution Analysis (MRA) followed
by Principal Component Analysis (PCA). A denoising
technique described in ([3]) is used. The stream of
acoustic features will be indicated as {Y m(nT )}. The
value of T is 10 msecs and the feature set contains seven
analysis frames centered on the frame at nT . Let �m be
the space of the MRA features. In this case �r = �m.

The ANN is trained to recognize phonemes and
transitions using a corpus of phonetically balanced sen-
tences which are completely independent from the test
data. The ANNs have 636 outputs, one for each
phoneme and each transition between two successive
phonemes.

A new set of features is obtained with Perceptual
Linear Prediction (PLP) followed by RASTA filtering.



These features will be called JRASTAPLP and the corre-
sponding vector will be indicated as {Y j(nT )} belong-
ing to the acoustic space �j . The vectors Y

m(nT ) and
Y

j(nT ) represent two different observations of a speech
segment Yn centered on the same sample.

The two ASR systems separately fed by the two fea-
ture streams use acoustic models which are trained with
a general telephone corpus without using any data of the
application which is being tested. The ANNs of the two
systems have the same topology and he same denoising
algorithm is applied to the two feature streams.

Let W = w1 . . . wh . . . wH be the sequence of word
and pause hypotheses generated by an initial decoder us-
ing features of �r. Let wh = h1 . . . hk . . .HK(h) be the
sequence of phonemes given in the lexicon of wh.

Initially only feature streams Y
m(nT ) are used for

recognition, but the two feature streams are used for ver-
ification. The hypothesis wh is generated in the time in-
terval (thb, the), with segments labelled with phoneme
hypotheses. Let assume that phoneme hk is hypothe-
sized in the time interval (thkb, thke).

Two posterior probability streams
P

m

G
[q|SEG(hkb, hke)] and P

j

G
[q|SEG(hkb, hke)]

are computed in each segment
SEG(hkb, hke). The probabilities are computed using
segment Gaussian Mixture Models. The Kullback-
Leibler distance (KLD) between the two streams is then
computed:

KLD[SEG(hkb, hke)] =

D

�
P

m

G
[q|SEG(hkb, hke)]||P j

G
[q|SEG(hkb, hke)]

�
=

�
q∈Q

P
m

G
[q|SEG(hkb, hke)] log P

m
G [q|SEG(hkb,hke)]

P
j
G[q|SEG(hkb,hke)]

(4)

The features of �r are likely to be the cause of
a wrong hypothesization of wh if the probability
P [wh|Yn(thb, the)] is not low.

The symbol wh indicates the fact that hypothesis wh

is not correct. If the probability P [wh|Yn(thb, the)] is
above a given threshold for one word or for a time seg-
ment containing a sequence of words and pauses, then
the set of features Y

j(nT ) is considered in that segment
and recognition is also performed using feature vectors
Pg(q|Yn) in the (1) with a new selection g.

The following approximation is proposed for com-
puting P [wh|Yn(thb, the)]:

P [wh|σkld] =
1

H(Kh)

H(Kh�

k=1

P (hk|σkld) (5)

where P (hk|σkld) = 1− P (hk|σkld)
and σkld = KLD[SEG(hkb, hke)].

The hypothesis wh is accepted if P [wh|Yn(thb, the)]
is below a given threshold. Other specific thresholds are
used for dealing with the cases of word insertion and
deletion.

It is possible that contiguous word hypotheses gen-
erated with features {Y m(nT )} are incorrect. In this
case, the segment corresponding to the sequence is pro-
cessed with the new feature set {Y j(nT )} leading to a
sequence of word hypotheses with a different number of
words.

When word hypotheses are generated with feature
vectors {Y j(nT )}, it is possible that there is a word
consensus with hypotheses generated with the reference
features. It is possible to investigate whether or not there
is a consensus on an error. This has not been done yet
and the problem will be investigated in future work. In
the absence of word consensus, a decision is made based
on the hypothesis with the lowest probability of being
wrong.

5. EXPERIMENTAL RESULTS ON
VERIFICATION

Experiments have been performed with the Italian com-
ponents of the Aurora3 database (connected digits col-
lected in car environment). The acoustic models em-
ployed were hybrid HMM-ANN trained on large cor-
pora completely disjoint from Aurora3 namely the do-
main independent, phonetically balanced SpeechDat1-2
corpora. The training corpora are made of telephonic
read speech and were recorded in quiet environments.
Different HMM-ANN models were trained, one for J-
RASTA PLP and one for MRA, with the same training
set for each language.

The Aurora3 corpus contains a set of close-talking
utterances indicated as CH0 and a set of hand-free utter-
ances, indicated as CH1. Utterances of CH0 are nearly
clean, as the close-talking microphone collects little en-
vironmental noise, while utterances of CH1 are quite
noisy as the hand-free microphone gathers a lot of car
noise. Aurora3 is divided into training and test compo-
nents. The test corpus was used for producing the re-
sults, in terms of WER, reported in Table 2.

Baseline results were obtained with MRA features
which resulted to perform better than JRASTAPLP fea-
tures for this task and with this setting ([3]). Oracle re-



sults refer to what is obtained by comparing MRA and
JRASTAPLP result with the reference and always de-
ciding for the correct result if it is produced by at least
one of the systems. This strategy results are the results
obtained with the strategy proposed in this paper.

corpus baseline this strategy oracle
Italian CH1 21.13 17.04 15.03

Table 2. Results in terms of WER with the baseline, the
Oracle and the strategy proposed in this paper

6. CONCLUSIONS AND FUTURE WORK

A general method for the combined use of different fea-
ture sets has been proposed. Specific symbol posterior
probability computation is associated to each gaussian
of a mixture. These probabilities can be computed once
forever and simply retrieved during decoding or rescor-
ing. Examples of application have been presented show-
ing that the proposed method of computing phoneme
posterior probabilities is effective even when a single
feature set is used.

As an extension of the (2), it possible to consider
two acoustic spaces as reference. In this case, symbol
posterior probabilities are computed as follows:

P (q|Yn) =
�

gm,gj∈G

�
Pg[q|Y m

n , Y
j

n ] ∗ P [gm|Y m

n ] ∗ P [gj |Y j

n ]
�

(6)
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