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Abstract 
An experimental method is described for measuring the shear modulus of thin porous layer. 
An acoustical excitation with a loudspeaker and a simulation performed with the Biot theory 
allow measurement without any mechanical excitation.  
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1 - Introduction 
The Biot theory of fluid-saturated porous media provides a description of the waves 
propagating in soils (water saturated rocks)[1]. Several authors have extended this theory to 
sound-absorbing materials, such as glass wool and plastic foams, for noise control 
applications in engineering activities such as aeronautics and the automotive industries. At 
low frequencies or when the skeleton is fixed to a vibrating structure, the elastic properties are 
needed and their measurements are generally performed with mechanical excitations [2- 4 ].  
These methods are limited to small sample with low frequency range. 
 In this paper, the measurements are performed through an acoustical excitation and two 
microphones ; this method [5] was initially used for the measurement of acoustic impedance. 
We describe the experimental setup and we used a numerical simulation of the Biot-Johnson-
Allard theory [7] for calculating the shear modulus at various frequencies. These results are 
compared to the literature.  
 
2 - Acoustical measurements 
The experiment [5] is an adaptation of a method primarily worked out for measuring normal 
impedance in normal incidence. The layered media is an impervious plate fixed on thin 
acoustic foam backed on rigid ground. As shown in Fig. 1, two positions M1 and M2 are taken 
by a moved microphone (Sennheiser KE-4) on the axis of the panel. A loudspeaker S is set at 
a distance of about 4 m from the panel and generates a linear chirp signal (200-1000 Hz).  In 
this configuration, the transfer function )(H between the measured pressure p1 and p2 at  
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points M1 and M2 is related to the reflection coefficient R as [6]: 
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where d1 and d2  are the distances between the impervious plate and  the microphone 
positions;   and k represent the radian frequency and the wave number in air. The M1 
position is very close to the plate surface without any contact with the microphone; the 
distance between the positions M1 and M2 are about 4 to 5 cm. 
 
The simplified equation of motion of the spring-mass model is given by: 
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where m and u are the mass and the displacement of the plate, K is the stiffness of the porous 
layer and p is the pressure exerted on the plate. The area S of the panel is about 3 m2 and the 
thickness L of the PU foam (Recticel)  layer is 2 cm. The experiments where performed with 
two plates in PMMA (thickness 2 and 5 mm) and one plate in aluminium. 
 
 
The stiffness K = P/L where P the longitudinal compression modulus is related to the shear 
modulus N and to the Poisson ratio   as /6/: 
 

fKN
N

P 



 )(
)21(3

)1(2

3

)(4
)( 


     (3) 

 
where fK  is the incompressibility of the air saturating the porous frame which is neglected. 

The model given by Eq. (2) gives an illustration of the experiment and doesn’t take into 
account of the complete effects described in the Biot-Johnson-Allard theory such as the 
coupling effects between the saturated air and the skeleton. For this reason the experimental 

determination of the absorption coefficient 
2

)(1)(  RA    (where )(R is given by 

Eq. (1)) is compared with the simulated absorption by using Maine3A; the general method [7] 
of modelling acoustic fields in stratified media (which include elastic solid, fluid and porous 
layers) is developed in this program.  
 
 
 
3 – Results and conclusion  
In Fig. 2 a typical curve of the measured absorption coefficient A is presented. We observe a 
resonant peak at 300 Hz. In the same figure, a computed A by means of the MAINE3A 
program and fitted to experimental A by using the foam parameters (Table 1). The 
longitudinal compression modulus P given by Eq. (3) is extrapolated in this fitting. The values 
of shear modulus N are obtained at different frequencies (218, 308 and 412 Hz).  
The real and imaginary part of N are presented in Fig. 3 and are compared to quasistatic 
results [3] and time-temperature equivalence measurement [8]. The present method gives  a 
good agreement with the time-temperature equivalence results which are obtained with quasi 



static torsion tests and where the coupling frame-air effects are not present. 
This is a new example of the adequacy of the Biot theory for the description of the acoustic 
properties of sound-absorbing materials. The direct characterisation of porous layer is 
performed at a frequency depending on the plate mass and the layer thickness. 
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Captions for illustrations 
 
Table : Parameters of the foam 
 
Figure 1 : Experimental setup 
 
Figure 2 : Absorption coefficient versus frequency 
 
Figure 3 : Comparison between present results (*), quasistatic measurements (o) and 
frequency-temperature equivalence characterisation (- - -) 
 
 
 



 

 

 
 
 

flow resistivity )sNm( 4  57000 

porosity   0.97 

viscous dimension )m(   40 

thermal dimension )m( '   130 

tortuosity   1.1 

density )m/kg( 3
s  31 

Poisson ratio  0.3 
thickness L (cm) 2 

 
 
 
 
Table  
 

Reticel foam (S20 Bulpren family) 



 
 
 

 
 
Figure 1:  
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Figure 2 
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Figure 3 :  
 
 


