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ABSTRACT

Undo/Redo has been recognized as an important fea-
ture of collaborative editing systems. The undo mecha-
nism allows any user to undo any edit operation at any
time. Preserving consistency of shared data with the
undo feature is a complex issue. Several algorithms ex-
ist for managing Undo in collaborative editing, but they
are still open issues concerning correctness or intrinsic
limitations of these algorithms. Therefore, in this pa-
per we present an novel undo approach in the context
of Operational Transformation (OT) framework. We
prove the correctness of our solution, we leverage some
limitations of current Undo approaches and we indicate
how it can be combined with existing OT integration
algorithms to provide a complete usable system.

INTRODUCTION

Undo/Redo has been recognized as an important fea-
ture of collaborative editing systems [1, 2, 3]. In collab-
orative systems, the most general model of undo mech-
anism allows any user to undo any edit operation at
any time. Preserving consistency of shared data with
the undo feature is a complex issue. Several Undo al-
gorithms have been published within the Operational
Transformation (OT) [3, 4] framework.

Ressel proposed the first undo algorithm with Adopted [5].
However, this undo algorithm does not allow the user to
undo any operation. The user can only undo his proper
operations in the inverse order of their generation.

Next, the ANYUNDO approach [6] provides a mecha-
nism to undo any operations. However it requires the
verification of the properties TP1, TP2 and IP1. Un-
fortunately, transformation functions satisfying these
properties have never been published. The undo al-
gorithm from [7] suffers from the same limitations as
the ANYUNDO approach.

The COT approach [8] has been designed to simplify the
ANYUNDO approach. The major changes presented
in COT include, along the integration algorithm, the
usage of context vectors and the breaking of property
TP2. In this paper, we demonstrate that property TP2
is not broken in the COT approach. We also point
out that context vectors grow linearly with the number
of undo performed during the editing session. Thus,
context vectors limit the number of operation that we

can undo. Consequently, the number of operation a user
can undo depend on the number of participants and the
network’s bandwidth.

In this paper, we present the compensation approach.
This approach does not require context vectors and
property IP1. Moreover, compensation can be used
with all integration algorithms such as adOPTed, SOCT2,
GOTO and COT. It makes the undo feature available
even for algorithms with no native undo support such
as SOCT2 and SOCT4.

As a proof of concept, we applied the compensation
framework to the Tombstone Transformation Functions
(TTF) [9]. The correction of the obtained model is
proved formally by the automated proof environment
VOTE [10].

Based on this approach, we build the Graveyard real-
time editor prototype. Graveyard combines a SOCT2
algorithm that does not provide a native undo feature,
with TTF transformation functions extended with com-
pensation operations.

COMPENSATION IN THE OT APPROACH

Existing undo methods for OT enforce the document
to return to a previous state after the execution of an
undo operation. The compensation approach does not
require the system returns to a previous state but only
to a state semantically equal to a previous state. How-
ever, this semantically equal state can also be syntacti-
cally equal to the previous state.

We call C(op) the operation which compensates op. The
execution of the operation C(op) undoes, from a seman-
tic point of view, the effect of the operation op. C(op)
is not necessary the inverse operation of op but it is de-
fined in order to compensate op just after the execution
of op. We need to define each operation C(op) in such
a way that S ◦ op ◦ C(op) is a state where the effect of
op has been semantically undone.

However, the operation C(op) does not take account of
the effect of operations executed between the execution
of op and it’s compensation by the user. We need to
compute an operation C(op)′ which realize the effect of
C(op) on the current state. To compute the operation
C(op)′, we need the following algorithm (also illustrated
by the Figure 1).



1. First, we determine the operation C(op) which com-
pensates op. C(op) should have compensated op if op
was the last operation executed on the current site.

2. We use the forward transformation functions in or-
der to transform C(op) with all operations which have
already been executed on this site. The resulting op-
eration is called C(op)′. C(op)′ is defined on the cur-
rent state and will be send to other sites where it will
be integrated as any other new operation.

This algorithm is known as the naive algorithm for
undo [7].

site 1

C(op)

��

op

op1

op2

C(op)′ = T (C(op), op1 ◦ op2)

Figure 1. Algorithm of the compensation

CORRECTNESS OF THE COMPENSATION APPROACH

The compensation approach does not depend of the in-
tegration algorithm. It is defined at the transformation
functions level. In order to be correct, the transfor-
mation functions defined for regular and compensation
operations have to ensure the following properties.

• The properties TP1 and TP2 are defined to ensure
consistency. Depending on the OT integration al-
gorithm, both properties are required or only TP1.
Indeed, in our approach, integration algorithms make
no distinction between compensating operations and
other operations. Then, compensating operations have
also to satisfy the correctness properties.

• The property TPC ensures the respect of the compen-
sation. This property ensures that the compensation
effect will always be the same, even if the operation
compensated is not the last executed one. This con-
dition is similar to the conditions C4 [7] and IP3 [8,
11].

TPC : T (C(op), T (seq, op)) = C(T (op, seq))

Figure 2 explains the TPC property. Two sites make
concurrent operations. Site1 generates op while site
2 generates a sequence of operations seq. Both sites
receive remote operations, transform and integrate
them. Now, they are on the same state. Conse-
quently, if they want to compensate the same op-
eration on the same state, they must obviously gen-
erate the same operation. Site1 generate C(op) and
transform it through following operations T (seq, op).
Site2 compensate the last received operation which is
T (op, seq). These two compensating operations are
defined on the same state, they compensate the same
operation, so they must be the same. The verification

of this property ensures that whenever an operation
is compensated, the compensation effect remains the
same.

So, there are three – or two – properties to verify in or-
der to ensure a correct OT system with compensation.
Due to their conciseness, these properties are theoreti-
cally easy to prove. However, one of the particularity of
the OT approach is the huge numbers of cases to check.
In such conditions, a hand proof is error-prone, and
many transformation functions supposed hand-proven
finally revealed themselves false (all counter examples
can be found in [9]). On another hand, each of the
cases to check can be easily handle by an automated
formal theorem prover. Consequently, we choose to use
the proof environment VOTE [10] based on the theorem
prover Spike [12] which generates all cases and ensures
the verification of all required properties.

COMPENSATION IN THE TTF APPROACH

The TTF approach is divided in two parts: the model
and the transformation functions. A detailed explana-
tion of the TTF approach and its correctness can be
found in [9].

In the TTF approach, deleted characters are kept as
tombstones. The document’s view only shows visible
characters and tombstones are hidden. Consequently,
the model differs from the view. Assume that a doc-
ument is in a state “abcd”. Now, a user deletes the
character ’b’. In the TTF model, the character is re-
placed by a tombstone (i.e., the character with a visi-
bility flag set to false). The view differs from the model
as the view only contains “acd” while the model con-
tains “ab/cd”. Since tombstones are necessary to achieve
consistency, they cannot be removed and thus, the op-
eration “Ins” is not inversible.

As the TTF approach is defined for two operations:
“Ins(p, c, sid)” and “Del(p, sid)”, we need to find two
operations to compensate them. The compensating ef-
fect required is to obtain that visible characters are the
same.

Fortunately, it is obvious that there is no difference be-
tween compensating an insertion and deleting a charac-
ter. So we can use the operation “Del” for compensating
“Ins” since it has the desired effect which is removing
the character in the user’s view.

However, compensating the operation “Del” with the
operation “Ins” inserts a new character in spite of the
existing tombstone for this character. Thus, we define
a new operation “Undel(position, sid)” to compensate
the operation “Del”. This operation replaces the tomb-
stone of a deleted character by the original character.
This operation “Undel” allows to build transformation
functions which satisfy TPC and to reuse tombstones.

The function C(op) links normal operations to compen-
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Figure 2. Respect of the compensation effect

sating operations. As we have defined compensating
operations, we can now write the function C(op).

C(op):
IF op = Ins(p, c, sid) THEN C(op) := Del(p, sid)
IF op = Del(p, sid) THEN C(op) := Undel(p, sid)
IF op = Undel(p, sid) THEN C(op) := Del(p, sid)

Finally, we can write the transformation functions for
all operations. The definition of the transformation
functions for the operations “Ins” and “Del” are the
same as presented in [9].

T( Ins(p1, c1, sid1),Undel(p2, sid2)):
return Ins(p1, c1, sid1)

end

T( Del(p1, sid1), Undel(p2, sid2)):
return Del(p1, sid1)

end

T( Undel(p1, sid1), Ins(p2, c2, sid2)):
if (p1 < p2) then return Undel(p1, sid1)
else return Undel(p1 + 1, sid1)

end

T( Undel(p1, sid1), Undel(p2, sid2)):
return Undel(p1, sid1)

end

T( Undel(p1, sid1), Del(p2, sid2)):
return Undel(p1, sid1)

end

Correction of the approach

In the TTF approach, the transformation functions are
written in order to satisfy the property TP2. The prop-
erty TP1 is defined by a state equality, then we have to
define the effect of the operation “Undel” on the state.
If the effect of “Undel” is simply to make the character
visible, the property TP1 is violated (see Figure 3)

To ensure TP1, we define the effect of “Undel” replacing
the visibility flag associated to characters by a visibil-
ity level. This visibility level is an integer. Initially, a
character inserted has a visibility level of 1. Each time
an operation deletes this character, its visibility level is
decreased. Each time an operation undeletes this char-
acter, we increase its visibility level. A character is said
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Figure 3. Violation of the property TP1

“visible” and appears in the document’s view if its vis-
ibility level is at least 1. Similarly, a character is said
“invisible” and does not appear in the document’s view
if its visibility level is less than 1 (see figure 4).

Site1
”a1b1”

Site2
”a1b1”

Del(0, sid1)

&&NNNNNNNNNNN
Del(0, sid2)

����
��

��
��

��
��

��
��

��

“a/0b
′′

1
“a/0b

′′

1

Undel(0, sid1)

&&NNNNNNNNNNN
Del(0, sid1)

“a1b
′′

1
“a/−1b

′′

1

Del(0, sid2) Undel(0, sid1)

“a/0b
′′

1
“a/0b

′′

1

Figure 4. Visibility level

Using the proof environment VOTE [10], we have proven
that our transformation functions satisfy the proper-
ties TP1, TP2 and TPC . The system specification
given to the theorem prover Spike can be reviewed and
tested at the following url : http://potiron.loria.
fr/projects/graveyard.



Implementation

In order to validate our approach, we have built the
Graveyard prototype. Graveyard is a real-time col-
laborative text editor. It relies on the SOCT2 algo-
rithm for integrating concurrent operations. SOCT2
does not provide natively undo capabilities. We used
the TTF transformation functions with related com-
pensation operations to obtain a real-time collabora-
tive with an undo feature. The general architecture of
graveyard is described in figure 5.

For this implementation, we used SOCT2 but we can re-
place SOCT2 by SOCT4, adOPTed or COT and obtain
the same result. Indeed, our framework only introduces
the compensation algorithm. To compensate an opera-
tion op, we transform C(op) with all operations which
have been executed after op. Fortunately, the main goal
of every integration algorithms is to transform an opera-
tion against a set of concurrent operations. Thus, every
OT system already contains such a feature : Translate
Request for adOPTed, Transpose Forward for SOCT4 or
COT-DO for COT. Finally, the compensation approach
can be used any integration algorithm.

Figure 5. Graveyard architecture

RELATED WORK

In [5], the authors present an undo specific to the adOPTed
algorithm. Unfortunately, this solution cannot allow to
undo any operation at anytime.

The ANYUNDO algorithm [6] is associated with the
GOTO integration algorithm. The GOTO-ANYUNDO
approach needs transformation functions which satisfy
three properties TP1, TP2 and IP1. The property IP1
illustrates the neutrality of do-undo pairs toward the
document state. Unfortunately, transformation func-

tions satisfying all these properties have never been
published. For instance, TTF functions satisfy TP1
and TP2 but not IP1.

In [7], the authors define two properties C3 and C4
which are similar to IP2 and IP3. To ensure the verifi-
cation of these two properties, the authors introduce
a specific operation “undo(op)”. This approach de-
fines generic transformation functions for this operation
“undo(op)” using the proposed transformation functions.
Unfortunately, as the ANYUNDO, a property similar
to IP1 is required. Therefore, this approach cannot be
instantiate as it required properties which have never
been published.

In COT [8], the authors propose an approach which
requires only TP1. To ensure consistency, concurrent
operations are ordered before transforming remote op-
erations. Unfortunately, this ordering is not sufficient
as shown by Figure 6. Let’s assume that concurrent op-
erations order is op1, op2 and op3. When site3 receives
op1, due to concurrent operations order, op1 is trans-
formed with op2 ◦ op′

3
with op′

3
= T (op3, op2). Simi-

larly, site4 transforms op2 with the sequence op1 ◦ op′′
3

with op′′
3

= T (op3, op1). After the execution of op′
1

and
op′′

2
, site3 and site4 diverge. The property TP1 and the

same transformation order are not sufficient to ensure
consistency.
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Figure 6. COT Counter-example.

As the property TP2 is not broken, we need transfor-
mation function satisfying TP1 and TP2. Therefore,
we apply the TTF functions with the COT algorithm
(Figure 7)1. The TTF function does not satisfy the
1The site identifier sid is omited in this example since it



properties IP2 and IP3, but the COT approach aims to
enforces them. In figure 7, when site1 receives op2, it
has to transform this operation with op1 ◦ op3. As this
sequence is a do-undo-pair, the COT algorithm skips
this sequence and it does not transform op2. Using TTF
with COT does not ensure consistency in case of undo.
Thus, the COT approach fails to enforce IP2 in some
cases. And finally, none of the published transforma-
tion functions can be directly used with COT to build
a text editor with undo capability.
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Figure 7. Using TTF functions with COT.

Moreover, the COT approach introduces the notion of
context vector. A context vector is composed by a clas-
sical state vector and an extra component designed for
undo. This extra component stores all undone opera-
tions. Each of them is associated with an integer rep-
resenting how many times this operation has been un-
done. This context vector is associated to each opera-
tion. Its size grows linearly with the number of undone
operation. This means that the upload bandwidth will
be eventually saturated by the growing context vectors.

To illustrate this issue, let’s assume that 10 users are
editing the same text document using the COT algo-
rithm. They are connected through Internet using an
ADSL connexion. The upload limit for a such connex-
ion is usually 1Mb/s. We assume that a user generates
4 operations per second. If 32bits integer are used, the
bandwidth is saturated by context vectors after 4091
undo2. Consequently, each user can only undo around
400 operations and, thus, affects the same number of
characters.

On another hand, the TTF approach, which is inde-
pendent of the compensation approach, the document
model keeps the tombstones and is thus also unbounded.
However, the operations sent on the network have a

does not affect the result.
2We only count context vectors without any encapsulations
such as IP,TCP,...

fixed size and the bandwidth consumption is limited.

Finally, due to the space complexity of context vector,
we consider that the COT approach only supports few
users connected on an high bandwidth network.

CONCLUSIONS

Many approaches aimed to provide an undo mechanism
which allows a user to undo any operations at any time.
Unfortunately, most of them are not instantiable and
the other one generates heavy traffics which are not
compatible with real-time constraints.

In this paper, we introduced our compensation mecha-
nism. The compensation approach is more generic than
existing undo approach: we can apply compensation
to all transformation functions even if some operations
have no inverse. An important feature of our approach
is that the resulting transformation functions remain
generic towards integration algorithms. Consequently,
we can apply these functions with COT, SOCT2, SOCT4,
GOTO and adOPTed. We have a complete solution to
build text editors with undo capabilities. The compen-
sation approach proposed in this paper has been imple-
mented in the Graveyard collaborative text editor based
on the tombstone transformation approach.

In future works, we will implement more existing inte-
gration algorithms in the Graveyard prototype. Thus,
we will be able to benchmark the different integration
algorithms.
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