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introduction

The classical Fermat point of a triangle in the plane is the point minimizing the sum of distances to the three vertices. This is a prototype of the more general Fermat-Weber problem concerning the same question but for more than three points and in higher dimensions. The solution of this problem is called the geometric median of these points and provides a notion of centrality for them. For this reason, the geometric median is a natural estimator in statistics which possesses another important property called robustness, that is, not sensitive to outliers. As a consequence, the geometric median is a widely used robust estimator in both theoretical and practical theory of robust statistics.

Naturally, one can also ask the question to find a point that minimizes the sum of distances to a set of given points in a much more general space as long as it carries a distance. This has been done in Sahib [START_REF] Sahib | Espérance d'une variable aléatoire à valeur dans un espace métrique[END_REF] who proved the existence of the geometric median of a probability measure on a complete, separable and finitely compact metric space. Recently, there is a growing interest of the method that characterize the statistical data lying on a Riemannian manifold and its applications , see for example Barbaresco [4], [START_REF] Barbaresco | Interactions between Symmetric Cone and Information Geometries[END_REF], [START_REF] Barbaresco | New Foundation of Radar Doppler Signal Processing based on Advanced Differential Geometry of Symmetric Spaces: Doppler Matrix CFAR and Radar Application[END_REF], Fletcher et al. [START_REF] Fletcher | Principle geodesic analysis on symmetric spaces: statistics of diffusion tensors[END_REF], [START_REF] Fletcher | Statistics of shape via principle geodesic analysis on Lie groups[END_REF] and Pennec [START_REF] Pennec | Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements[END_REF] in which the centrality of empirical data is modeled by the Riemannian barycenter which was first introduced by Karcher [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] and then has been studied by many other authors, for example see Arnaudon [START_REF] Arnaudon | Espérances conditionnelles et C-martingales dans les variétés[END_REF], [START_REF] Arnaudon | Barycentres convexes et approximations des martingales dans les variétés[END_REF], [START_REF] Arnaudon | Barycenters of measures transported by stochastic flows[END_REF], Emery [START_REF] Emery | Sur le barycentre d'une probabilité dans une variété[END_REF] and Kendall [START_REF] Kendall | Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence[END_REF]. As is known to all that the barycenter is not a robust estimator and sensitive to outliers, in order to overcome this drawback, Fletcher et al. [START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF] defined the weighted geometric median of a set of discrete sample points lying on a Riemannian manifold and proved its existence and uniqueness.

In many cases, especially in practice, one often needs to calculate or at least estimate the value of the geometric median. In the case of Euclidean spaces, Weiszfeld algorithm proposed firstly by Weiszfeld [START_REF] Weiszfeld | Sur le point pour lequel la somme des distances de n points donnés est minimum[END_REF], is a well known algorithm to do this calculation and has been studied, improved on by many other authors, for example see Khun [START_REF] Kuhn | A note on Fermat's problem[END_REF] and Ostresh [START_REF] Ostresh | On the convergence of a class of iterative methods for solving Weber location problem[END_REF]. In the contexts of Riemannnian manifolds, Fletcher et al. [START_REF] Fletcher | The geometric median on Riemannian manifolds with application to robust atlas estimation[END_REF] proposed a Riemannian generalization of Weiszfeld algorithm to estimate their geometric median, they proved a convergence result under the condition that the manifold is positively curved, it should be noted that the range of their stepsize α should not be [0, 2] but [START_REF] Arnaudon | Espérances conditionnelles et C-martingales dans les variétés[END_REF][START_REF] Arnaudon | Barycentres convexes et approximations des martingales dans les variétés[END_REF], and conjectured the convergence in negatively curved case.

The aim of this paper is to define the geometric median of a probability measure on a complete Riemannian manifold and investigate its uniqueness as well as its approximation. As in Karcher [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF] and Le [START_REF] Le | Estimation of Riemannian barycenters[END_REF], we suppose that the support of the probability measure is contained in a convex ball and we give a characterization of the geometric median which is proved in the case of Euclidean space by Khun [START_REF] Kuhn | A note on Fermat's problem[END_REF] for a discrete set of sample points. Then we prove the uniqueness of the median under a natural condition imposed on the probability measure and show that this condition yields a strong convexity property which is useful in error estimates. By regarding the Weiszfeld algorithm as a subgradient procedure, we introduce a subgradient algorithm to estimate the median and prove that this algorithm always converges without condition of the sign of curvatures by generalizing the fundamental inequality in Ferreira and Oliveivra [START_REF] Ferreira | Subgradient Algorithm on Riemannian Manifolds[END_REF] in which it was proved in positively curved manifolds. Finally, the results of approximating errors and rate of convergence are also obtained.

Throughout this paper, M is a complete Riemannian manifold with Riemannian metric • , • and Riemannian distance d. The gradient operator and hessian operator on M are denoted by grad and Hess, respectively. For every point p in M , let d p be the distance function to p defined by d p (x) = d(x, p). We fix a convex ball B(a, ρ) in M centered at a with a finite radius ρ, here the convexity of B(a, ρ) means that for every two points x and y in it, there is a unique shortest geodesic from x to y in M that lies in B(a, ρ). The lower and upper bounds of sectional curvatures K in B(a, ρ) are denoted by δ and ∆ respectively. Since ρ is finite, δ and ∆ are also finite. If ∆ > 0, we assume further that ρ < π/(4 √ ∆). It is easy to check that the following classical comparison theorems in Riemannian geometry: Alexandrov's theorem, Toponogov's theorem and Hessian comparison theorem can be all applied in B(a, ρ), thus it is necessary to introduce some notations for model spaces that provide us many geometric informations. Notation 1. Let κ be a real number, the model space M 2 κ is defined as follows:

1) if κ > 0 then M 2
κ is obtained from the sphere S 2 by multiplying the distance function by 1/ √ κ;

2) if κ = 0 then M 2 0 is Euclidean space E n ;
3) if κ < 0 then M 2 κ is obtained from the hyperbolic space H 2 by multiplying the distance function by 1/ √ -κ. The distance between two points A and B in M 2 κ will be denoted by d(A, B). Notation 2. Let κ be a real number, then we write for t ∈ R,

S κ (t) =      sin( √ κ t)/ √ κ if κ > 0; t if κ = 0; sinh( √ -κ t)/ √ -κ if κ < 0;
We begin with two useful estimations for our purposes, which are almost direct corollaries of the Hessian comparison theorem. Observe that the second estimation is the core of Le [START_REF] Le | Estimation of Riemannian barycenters[END_REF] where it is formulated in terms of Jacobi fields and is proved using an argument of index lemma. 

Lemma 1. Let p ∈ B(a, ρ) and γ : [ 0, b ] → B(a, ρ) be a geodesic, then i) Hess d p ( γ(t), γ(t)) ≥ D(ρ, ∆)| γnor (t) | 2 for every t ∈ [ 0, b ] such that γ(t) = p, where D(ρ, ∆) = S ′ ∆ (2ρ)/S ∆ (
C(ρ, δ) = 1 if δ ≥ 0; 2ρ √ -δ coth(2ρ √ -δ) if δ < 0;
Proof. Since in B(a, ρ) we have δ ≤ K ≤ ∆, hence by the classical Hessian comparison theorem we get, for γ(t) = p,

S ′ ∆ (d(γ(t), p)) S ∆ (d(γ(t), p)) | γ(t) nor | 2 ≤ Hess d p ( γ(t), γ(t)) ≤ S ′ δ (d(γ(t), p)) S δ (d(γ(t), p)) | γ(t) nor | 2
Since S ′ ∆ (θ)/S ∆ (θ) is nonincreasing for θ > 0 if ∆ ≤ 0 and for θ ∈ (0, π) if ∆ > 0, so the left inequality together with d(γ(t), p) ≤ 2ρ proves the first assertion. To show the second one, let γ(t) tan be the tangential component of γ(t) with respect to the geodesic from p to γ(t) then Hess 1 2

d 2 p ( γ(t), γ(t)) = d(γ(t), p) Hess d p ( γ(t), γ(t)) + | γ(t) tan | 2 ≤ d(γ(t), p) S ′ δ (d(γ(t), p)) S δ (d(γ(t), p)) | γ(t) nor | 2 + | γ(t) tan | 2 ≤ max d(γ(t), p) S ′ δ (d(γ(t), p)) S δ (d(γ(t), p)) , 1 | γ| 2
Observe that θS ′ δ (θ)/S δ (θ) ≤ 1 for θ > 0 if δ = 0 and for θ ∈ [0, π) if δ > 0, thus for the case when δ ≥ 0 we have

d(γ(t), p) S ′ δ (d(γ(t), p)) S δ (d(γ(t), p)) ≤ 1
if δ < 0, then θS ′ δ (θ)/S δ (θ) ≥ 1 and is nondecreasing for θ ≥ 0, thus we get

d(γ(t), p) S ′ δ (d(γ(t), p)) S δ (d(γ(t), p)) ≤ 2ρ S ′ δ (2ρ) S δ (2ρ) = 2ρ √ -δ coth(2ρ √ -δ)
hence the estimation holds for every δ ∈ R. Finally, the case when γ(t) = p is trivial and the proof is complete.

definition of riemannian median

As in Karcher [START_REF] Karcher | Riemannian center of mass and mollifier smoothing[END_REF], we now consider a probability measure µ on M whose support is contained in the open ball B(a, ρ), and define a function

f : B(a, ρ) -→ R + , x -→ M d(x, p)µ(dp)
This function is well defined since for every x ∈ B(a, ρ),

f (x) = B(a,ρ) d(x, p)µ(dp) ≤ 2ρ
and here are some simple properties of f : Lemma 2. f has the following properties: i) f is 1-Lipschitz thus continuous; ii) f is convex.

Proof. i) For every x, y ∈ B(a, ρ) we have

|f (x) -f (y)| ≤ M |d(x, p) -d(y, p)|µ(dp) ≤ M d(x, y)µ(dp) = d(x, y)
ii) Let p ∈ B(a, ρ) and γ : [ 0, 1] → B(a, ρ) be a geodesic then it suffices to show that the function t → d(γ(t), p) is convex. If p ∈ γ[ 0, 1 ], the convexity is trivial and if not, it follows form the first estimation in Lemma 1.

Since f is continuous on the compact set B(a, ρ), it attains its minimum here. Now it is time to give these minimum points of f a proper name. As the definition of barycenter in Emery and Mokobodzki [START_REF] Emery | Sur le barycentre d'une probabilité dans une variété[END_REF], we give the following definition. Definition 1. The set of all the minimum points of f is called the Riemannian median (or median) of µ and is denoted by M µ . The minimal value of f will be denoted by f * .

It is easily seen that M µ is compact. Since f is convex then along every geodesic, its right and left derivatives exist and now we calculate them for later use.

Proposition 1. Let γ : [ 0, b ] → B(a, ρ) be a geodesic, then d dt f (γ(t)) t=t 0 + = γ(t 0 ), H(γ(t 0 )) + µ{γ(t 0 )}| γ|, t 0 ∈ [ 0, b ) d dt f (γ(t)) t=t 0 -= γ(t 0 ), H(γ(t 0 )) -µ{γ(t 0 )}| γ|, t 0 ∈ (0, b ]
where for x ∈ B(a, ρ),

H(x) = M \{x} grad d p (x)µ(dp) = M \{x} -exp -1 x p d(x, p) µ(dp) ∈ T x M is well defined and satisfying |H(x)| ≤ 1. Particularly, if µ{x} = 0, then grad f (x) = H(x).
Moreover, H is continuous outside the support of µ.

Proof. We prove only the first identity since the proof of the second one is similar. For this, let

t 0 ∈ [ 0, b ) and ε ∈ (0, b -t 0 ], then f (γ(t 0 + ε)) -f (γ(t 0 )) ε = M d(γ(t 0 + ε), p) -d(γ(t 0 ), p) ε µ(dp) = M \{γ(t 0 )} d(γ(t 0 + ε), p) -d(γ(t 0 ), p) ε µ(dp) + µ{γ(t 0 )}| γ|
By letting ε → 0+ and using the bounded convergence to the above first integral we obtain that

d dt f (γ(t)) t=t 0 + = M \{γ(t 0 )} d dt d(γ(t), p) t=t 0 µ(dp) + µ{γ(t 0 )}| γ| = M \{γ(t 0 )} γ(t 0 ), grad d p (γ(t 0 )) µ(dp) + µ{γ(t 0 )}| γ| = γ(t 0 ), H(γ(t 0 )) + µ{γ(t 0 )}| γ|
Now we give a characterization of M µ which is proved in Khun [START_REF] Kuhn | A note on Fermat's problem[END_REF] for the case when µ is a finite set of points in an Euclidean space.

Theorem 1. M µ = x ∈ B(a, ρ) : |H(x)| ≤ µ{x} Proof. ( ⊂ ) Let x ∈ M µ , if H(x) = 0
there is nothing to prove, so we assume that H(x) = 0. Consider a geodesic in B(a, ρ):

γ(t) = exp x (-t H(x) |H(x)| ), t ∈ [ 0, b ] according to the definition of M µ , t = 0 is a minimum point of f • γ, thus d dt f (γ(t)) t=0+ ≥ 0 Moreover, by Proposition 1 we have d dt f (γ(t)) t=0+ = - H(x) |H(x)| , H(x) + µ{x} = -|H(x)| + µ{x} thus we have |H(x)| ≤ µ{x}.
( ⊃) Suppose that |H(x)| ≤ µ{x}, then for every y ∈ B(a, ρ), we consider the geodesic γ : [0, 1] → B(a, ρ) with γ(0) = x and γ(1) = y, then Proposition 1 and Cauchy-Schwartz inequality give that

d dt f (γ(t)) t=0+ = γ(0), H(x) + µ{x}| γ| ≥ | γ|(-|H(x)| + µ{x}) ≥ 0 By Lemma 2, f • γ is convex then we have f (y) -f (x) ≥ d dt f (γ(t)) t=0+ ≥ 0 hence we get x ∈ M µ .
In order to describe the location of the median of µ, we need the following geometric lemma which is also useful in the next section.

Lemma 3. Let △ABC be a geodesic triangle in B(a, ρ) such that ∠A ≥ π/2, then ∠B < π/2 and ∠C < π/2.
Proof. It suffices to prove that ∠B < π/2 . We show this only for ∆ > 0 since the cases when ∆ ≤ 0 are similar. Let

d(B, C) = a, d(A, C) = b and d(A, B) = c. We consider a comparison triangle △ Ā B C of △ABC in M 2 ∆ , since K ≤ ∆ in B(a, ρ), hence by Alexandrov's theorem we get ∠A ≤ ∠ Ā and ∠B ≤ ∠ B. The law of cosines in M 2 ∆ together with cos ∠ Ā ≤ 0 yields that cos( √ ∆a) ≤ cos( √ ∆b) cos( √ ∆c).
Using the law of cosines again we get

cos ∠ B = cos( √ ∆b) -cos( √ ∆a) cos( √ ∆c) sin( √ ∆a) sin( √ ∆c) ≥ cos( √ ∆b) -cos( √ ∆b) cos 2 ( √ ∆c) sin( √ ∆a) sin( √ ∆c) = cos( √ ∆b) sin( √ ∆c) sin( √ ∆a) > 0 thus ∠B ≤ ∠ B < π/2.
Proposition 2. M µ is contained in the smallest closed convex subset of B(a, ρ) containing the support of µ.

Proof. Let V be this set and by Theorem 1 it suffices to show that if x ∈ B(a, ρ) \ V then H(x) = 0. In fact, let y be a point in V such that d(x, y) = inf{d(x, p) : p ∈ V }, then by the convexity of V we get ∠xyp ≥ π/2 for every p ∈ V and hence Lemma 3 yields that ∠pxy < π/2. This gives that

H(x), exp -1 x y = V -exp -1 x p, exp -1 x y d(x, p) µ(dp) = -d(x, y) V cos ∠pxy < 0
The proof is completed by observing that exp -1 x y = 0.

uniqueness of riemannian median

In the Euclidean case, if the sample points are not colinear, then the geometric median is unique. Hence we get a natural condition of µ to ensure the uniqueness of the median in Riemannian case: * The support of µ is not totally contained in any geodesic. This means that for every geodesic γ:

[ 0, b ] → B(a, ρ), we have µ(γ[ 0, b ]) < 1.
Theorem 2. If condition * holds, then M µ has a single element.

Proof. We will prove this by showing that f is strictly convex, that is, for every geodesic γ: [ 0, b ] → B(a, ρ), the function f • γ is strictly convex. In fact, without loss of generality, we may assume that γ(0) and γ(b) are both in ∂ B(a, ρ). By the first estimation in Lemma 1, for every p ∈ B(a, ρ) \ γ[ 0, b ] the function t → d(γ(t), p) is strictly convex and for p ∈ γ[ 0, b ] it is trivially convex. Since the condition * yields that µ( B(a, ρ) \ γ[ 0, b ]) > 0, thus by integration we obtain the strict convexity of f and this completes the proof.

In the above proof, we have seen that f is strictly convex if condition * holds. However, things are better than this. In fact, we can show that the condition * implies the strong convexity of f . In fact, the compactness of B(a, ρ) and the condition * can give a stronger result and the following lemma clarifies this. Lemma 4. If condition * holds, then there exist two constants ε µ ∈ (0, ρ) and η µ ∈ (0, 1] such that for every geodesic γ:

[ 0, b ] → B(a, ρ) we have µ(B(γ, ε µ )) ≤ 1 -η µ where for ε > 0, B(γ, ε) = {x ∈ B(a, ρ) : d(x, γ[ 0, b]) < ε}.
Proof. If this is not true, then for every ε ∈ (0, ρ) and η ∈ (0, 1], there exists a geodesic γ:

[ 0, b ] → B(a, ρ) such that µ(B(γ, ε)) > 1 -η. Then we obtain a sequence of geodesics (γ n ) n : [ 0, b ] → B(a, ρ) verifying µ(B(γ n , 1/n)) > 1 -1/n for sufficiently large n. Since B(a, ρ) is compact, there exists a subsequence (γ n k ) k and a geodesic γ: [ 0, b ] → B(a, ρ) such that γ n k → γ uniformly on [ 0, b ].
Then for every j ≥ 1, when k is sufficiently large we have B(γ n k , 1/n k ) ⊂ B(γ, 1/j), hence for these k we have µ(B(γ, 1/j)) ≥ 1-1/n k , by letting k → ∞ we get µ(B(γ, 1/j)) = 1 and then by letting j → ∞ we get µ(γ[0, b ]) = 1 which contradicts the condition * .

Lemma 5. Let (△A i B i C i ) i=1,2 be two geodesic triangles in model space M 2 κ such that ∠A 1 ≤ ∠A 2 , ∠B 1 ≤ π/2, d(A 1 , C 1 ) = d(A 2 , C 2 ) and d(A 1 , B 1 ) = d(A 2 , B 2 ). Then ∠C 2 ≤ ∠C 1 .
Proof. We prove the lemma for the case when κ > 0, the proof for the cases when κ ≤ 0 is similar. 

Let d(B 1 , C 1 ) = a 1 , d(B 2 , C 2 ) = a 2 , d(A 1 , C 1 ) = d(A 2 , C 2 ) = b and d(A 1 , B 1 ) = d(A 2 , B 2 ) = c. Since ∠A 1 ≤ ∠A 2 , hence a 1 ≤ a 2 .
L(ρ, δ) =        2 √ δ π 1 -cos 4 (2ρ √ δ) if δ > 0; 1 (2 √ 2ρ) if δ = 0; √ -δ cosh 4 (2ρ √ -δ) -1 if δ < 0; Proof. Let (△A i B i C i ) i=1,2 be two geodesic triangles in M 2 δ such that △A 1 B 1 C 1 is a comparison triangle of △ABC and △A 2 B 2 C 2 verifies that d(A 2 , C 2 ) = d(A, C), d(A 2 , B 2 ) = d(A, B) and ∠A 2 = ∠A. Assume that d(B, C) = a, d(A, C) = b, d(A, B) = c and d(B 2 , C 2 ) = a 2
. By Lemma 3 we get that ∠B < π/2. Since K ≥ δ in B(a, ρ), then by Toponogov's theorem we get ∠A 1 ≤ ∠A = ∠A 2 and ∠B 1 ≤ ∠B < π/2, hence by Lemma 5 we obtain that ∠C 2 ≤ ∠C 1 . Observe that we have also ∠C 1 ≤ ∠C < π/2, thus sin ∠C ≥ sin ∠C 2 . Now it suffices to estimate sin ∠C 2 according to the sign of the lower sectional curvature bound δ:

If δ > 0, using ∠A 2 = π/2 and the laws of sines and cosines in M 2 δ we get

sin ∠C 2 = sin( √ δc) sin( √ δa 2 ) and cos( √ δa 2 ) = cos( √ δb) cos( √ δc)
hence we obtain that

sin ∠C 2 = sin( √ δc) 1 -cos 2 ( √ δb) cos 2 ( √ δc) ≥ 2 √ δc π 1 -cos 4 (2ρ √ δ) since b, c ≤ 2ρ and sin θ ≥ 2θ/π for θ ∈ [0, π/2].
Using the same method as above, we obtain that

If δ = 0, sin ∠C 2 = c √ b 2 + c 2 ≥ c 2 √ 2ρ If δ < 0, sin ∠C 2 = sinh( √ -δc) cosh 2 ( √ -δb) cosh 2 ( √ -δc) -1 ≥ √ -δc cosh 4 (2ρ √ -δ) -1 since sinh θ ≥ θ for θ ≥ 0.
We know that f is convex, thus along every geodesic it has a second derivative in the sense of distribution, the following proposition gives its specific form as well as the Taylor's formula.

Proposition 3. Let γ: [ 0, b ] → B(a, ρ) be a geodesic then for t ∈ [ 0, b ] f (γ(t)) = f (γ(0)) + d ds f (γ(s)) s=0+ t + (0,t) (t -s)ν(ds)
where ν is the second derivative of f • γ on (0, b) in the sense of distribution, i.e. a bounded positive measure, which is given by Proof. Firstly, observe that since γ is a homeomorphism of (0, b) onto its image, µ • γ is a well defined measure on (0, b). By Proposition 1 we get

ν = M \γ[0,b ] Hess d p ( γ, γ)µ(dp) • λ| (0,b) + 2| γ| • (µ • γ)| (
M \γ[0,b] d(γ(t), p)µ(dp) = M \γ[0,b] d(γ(0), p) + d ds d(γ(s), p) s=0 t + t 0 (t -s) d 2 ds 2 d(γ(s), p)ds µ(dp) = M \γ[0,b] d(γ(0), p)µ(dp) + γ(0), M \γ[0,b] -exp -1 γ(0) p d(γ(0), p) µ(dp) t + t 0 (t -s)ds M \γ[0,b] Hess d p ( γ(s), γ(s))µ(dp) = f (γ(0)) - γ(0,b] d(γ(0), p)µ(dp) + d ds f (γ(s)) s=0+ t -γ(0), γ(0,b] -exp -1 γ(0) p d(γ(0), p) µ(dp) t -µ{γ(0)}| γ|t + t 0 (t -s)ds M \γ[0,b] Hess d p ( γ(s), γ(s))µ(dp) Since f (γ(t)) = M \γ[0,b] d(γ(t), p)µ(dp) + γ[0,b] d(γ(t), p)µ(dp))
we obtain

f (γ(t)) -f (γ(0)) - d ds f (γ(s)) s=0+ t - t 0 (t -s)ds M \γ[0,b] Hess d p ( γ(s), γ(s))µ(dp) = - γ(0,b] d(γ(0), p)µ(dp) + µ(γ(0, b])| γ|t -µ{γ(0)}| γ|t + γ[0,b] d(γ(t), p)µ(dp) = - γ(0,b] d(γ(0), p)µ(dp) + γ(0,b] d(γ(0), γ(t))µ(dp) + γ(0,b] d(γ(t), p)µ(dp) = - γ(0,t) d(γ(0), p)µ(dp) + γ(0,t) d(γ(0), γ(t))µ(dp) + γ(0,t) d(γ(t), p)µ(dp) + - γ[t,b] d(γ(0), p)µ(dp) + γ[t,b] d(γ(0), γ(t))µ(dp) + γ[t,b] d(γ(t), p)µ(dp) = 2 γ(0,t) d(γ(t), p)µ(dp) + 0 = 2| γ| (0,t) (t -s)(µ • γ)(ds)
hence the desired formula holds. To show that ν is the second derivative of f • γ on (0, b) in the sense of distribution, let ϕ ∈ C ∞ c ( 0, b) and by Fubini's theorem and integration by parts we get

(0,b) f (γ(t))ϕ ′′ (t)dt = f (γ(0)) (0,b) ϕ ′′ (t)dt + d ds f (γ(s)) s=0+ (0,b) tϕ ′′ (t)dt + (0,b) ϕ ′′ (t)dt (0,t) (t -s)ν(ds) = (0,b) ν(ds) (s,b) (t -s)ϕ ′′ (t)dt = (0,b) ϕ(s)ν(ds)
the proof is complete. Now we are ready to show the strong convexity of f under condition * which will be useful for our error estimates. Certainly, this also yields the uniqueness of the median. 

f (γ(t)) ≥ f (γ(0)) + d ds f (γ(s)) s=0+ t + τ | γ| 2 t 2 , t ∈ [ 0, b ] where the constant τ = (1/2) ε 2 µ η µ D(ρ, ∆) L(ρ, δ) 2 . Hence f is τ -convex. That is, for every unit velocity geodesic γ: [ 0, b ] → B(a, ρ), the function t → f (γ(t)) -τ t 2 is convex.
Proof. Without loss of generality we may assume that γ(0) and γ(b) are both in ∂ B(a, ρ). Then by the first estimation in Lemma 1 we obtain that for every s ∈ [ 0, b ],

M \γ[0,b] Hess d p ( γ(s), γ(s))µ(dp) ≥ M \γ[0,b] D(ρ, ∆)| γnor (s)| 2 µ(dp) = D(ρ, ∆)| γ| 2 M \γ[0,b] sin 2 ∠( γ(s), exp -1 γ(s) p)µ(dp)
Then for every p ∈ M \ γ[ 0, b ], let q = q(p) be the orthogonal projection of p onto γ. If γ(s) = q, the triangle △pqγ(s) is a right triangle with ∠pqγ(s) = π/2. Hence Lemma 6 yields that sin ∠( γ(s)), exp -1 γ(s) p) ≥ L(ρ, δ)d(p, q) thus by Lemma 4 we obtain

M \γ[0,b ] Hess d p ( γ(s), γ(s))µ(dp) ≥ D(ρ, ∆)| γ| 2 L(ρ, δ) 2 M \γ[0,b ] d 2 (p, q)µ(dp) ≥ D(ρ, ∆)| γ| 2 L(ρ, δ) 2 M \B(γ,εµ) d 2 (p, q)µ(dp) ≥ ε 2 µ η µ D(ρ, ∆) L(ρ, δ) 2 | γ| 2 = 2τ | γ| 2 Then by Proposition 3 we get that for t ∈ [ 0, b ], f (γ(t)) = f (γ(0)) + d ds f (γ(s)) s=0+ t + (0,t) (t -s)ν(ds) ≥ f (γ(0)) + d ds f (γ(s)) s=0+ t + 2 τ | γ| 2 (0,t) (t -s)ds ≥ f (γ(0)) + d ds f (γ(s)) s=0+ t + τ | γ| 2 t 2
hence the desired inequality holds. To show the τ -convexity of f , let γ: [ 0, b ] → B(a, ρ) be a unit velocity geodesic, then the above inequality shows that the function f (γ(t))τ t 2 has an affine support on every t ∈ [ 0, b ], so that it is convex.

a subgradient algorithm

To begin with, we recall the notion of subgradient for a convex function on a Riemannian manifold. For our purpose, it suffices to consider this notion in a convex subset of the manifold. Definition 2. Let U be a convex subset of M and h be a convex function defined on U . For every x ∈ U , a vector v ∈ T x M is called a subgradient of h at x if for every geodesic γ:

[ 0, b ] → U with γ(0) = x, we have for every t ∈ [ 0, b ], h(γ(t)) ≥ h(x) + γ(0), v t
Our idea to approximate the Riemannian median of µ by the subgradient method stems from the following simple observation. Lemma 7. For every x ∈ B(a, ρ), H(x) is a subgradient of f at x.

Proof. Let γ: [ 0, 1] → B(a, ρ) be a geodesic such that γ(0) = x, then by Proposition 1 together with the convexity of f we get for every t ∈ [ 0, 1 ],

f (γ(t)) ≥ f (γ(0)) + d ds f (γ(s)) s=0+ t = f (x) + ( γ(0), H(x) + µ{x}| γ| ) t ≥ f (x) + γ(0), H(x) t
thus the assertion holds.

In order to introduce our subgradient algorithm we need the following notations. Notation 3. Let x ∈ B(a, ρ) with H(x) = 0, then we write

γ x (t) = exp x (-t H(x) |H(x)| ) , t ≥ 0 r x = sup{t ∈ [ 0, 2ρ ] : γ x (t) ∈ B(a, ρ)}
We can now describe our subgradient algorithm to approximate the Riemannian median of the probability measure µ.

Algorithm 1. Subgradient algorithm for Riemannian median:

Step 1: Choose a point x 0 ∈ B(a, ρ) and let k = 0.

Step 2:

If |H(x k )| ≤ µ{x k }, then stop and let m = x k .
If not, then go to step 3.

Step 3: Choose a stepsize t k ∈ ( 0, r x k ] and let

x k+1 = γ x k (t k ), then come back to step 2 with k = k + 1.
Observe that according to the definition of r x , the sequence (x k ) k is contained in the ball B(a, ρ). Now we turn to the convergence proof of the above algorithm under some conditions of the stepsize. It is well known that the following type of inequalities are of fundamental importance to conclude the convergence of the subgradient algorithms in Euclidean spaces:

||x k+1 -y|| 2 ≤ ||x k -y|| 2 + A 1 t 2 k + A 2 2t k ||v k || (f (y) -f (x k ))
see for example, Correa and Lemaréchal [START_REF] Correa | Convergence of some algorithms for convex minimization[END_REF], Nedic and Bertsekas [START_REF] Nedic | Incremental Subgradient Methods for Nondifferentiable Optimization[END_REF]. For a positively curved Riemannian manifold, Ferreira and Oliveira [START_REF] Ferreira | Subgradient Algorithm on Riemannian Manifolds[END_REF] obtained a generalization of the above inequality by using Toponogov's comparison theorem. But their method is not applicable in our case since we do not suppose that δ ≥ 0. However, we can still obtain a similar result using a different method.

Lemma 8. If H(x k ) = 0, then for every point y ∈ B(a, ρ) we have

d 2 (x k+1 , y) ≤ d 2 (x k , y) + C(ρ, δ)t 2 k + 2t k |H(x k )| (f (y) -f (x k ))
Particularly,

d 2 (x k+1 , M µ ) ≤ d 2 (x k , M µ ) + C(ρ, δ)t 2 k + 2t k (f * -f (x k ))
Proof. By Taylor's formula and the second estimation in Lemma 1, there exists ξ ∈ (0, r x ) such that

1 2 d 2 (x k+1 , y) = 1 2 d 2 (γ x k (t k ), y) = 1 2 d 2 (γ x k (0), y) + d dt 1 2 d 2 (γ x k (t), y) t=0 t k + 1 2 d 2 dt 2 1 2 d 2 (γ x k (t), y) t=ξ t 2 k = 1 2 d 2 (x k , y) + γx k (0), grad 1 2 d 2 y (x k ) t k + 1 2 Hess 1 2 d 2 y ( γ(ξ), γ(ξ)) t 2 k ≤ 1 2 d 2 (x k , y) + H(x k ), exp -1 x k y |H(x k )| t k + C(ρ, δ) 2 t 2 k By Lemma 7, H(x k ) is a subgradient of f at point x k and hence H(x k ), exp -1 x k y ≤ f (y) -f (x k ) thus we get 1 2 d 2 (x k+1 , y) ≤ 1 2 d 2 (x k , y) + t k |H(x k )| (f (y) -f (x k )) + C(ρ, δ) 2 t 2 k
then the first inequality holds. The second one follows from

f * ≤ f (x k ) and |H(x k )| ≤ 1.
As in the Euclidean case, once the fundamental inequality is established, the convergence of the subgradient algorithm is soon achieved, see for example Correa and Lemaréchal [START_REF] Correa | Convergence of some algorithms for convex minimization[END_REF], Nedic and Bertsekas [START_REF] Nedic | Incremental Subgradient Methods for Nondifferentiable Optimization[END_REF]. Since our fundamental inequality is very similar to the one in Euclidean case, the proof of convergence is also very similar. 

f (x k ) = f * Moreover, if the stepsize (t k ) k verifies also that ∞ k=0 t 2 k < +∞ then there exists some m ∈ M µ such that x k → m, when k → ∞.
Proof. If |H(x k )| ≤ µ{x k } for some k ≥ 0, then Theorem 1 yields that x k ∈ M µ and the the desired result is trivially true. Hence in the following we assume that |H(x k )| > µ{x k } for every k, this means that none of x k is in the median of µ. We will show firstly that lim inf k→∞ f (x k ) = f * If this is not true, then there exist N 1 ∈ N and η > 0 such that for every

k ≥ N 1 we have f * -f (x k ) ≤ -η. Since |H(x k )| > 0, then Lemma 8 gives that d 2 (x k+1 , M µ ) ≤ d 2 (x k , M µ ) + t k (C(ρ, δ)t k -2η)
Since lim k→∞ t k = 0, we can suppose that C(ρ, δ)t k < η for every k ≥ N 1 and then

d 2 (x k+1 , M µ ) ≤ d 2 (x k , M µ ) -ηt k
by summing the above inequalities we get

η k i=N 1 t i ≤ d 2 (x N 1 , M µ ) -d 2 (x k+1 , M µ ) ≤ d 2 (x N 1 , M µ )
which contradicts with ∞ k=0 t k = +∞, this proves the assertion. Now for fixed ε > 0, there exists N 2 ∈ N such that C(ρ, δ)t k < 2ε for every k ≥ N 2 . We consider the following two cases: If f (x k ) > f * + ε, then by Lemma 8 we obtain that

d 2 (x k+1 , M µ ) ≤ d 2 (x k , M µ ) + C(ρ, δ)t 2 k + 2t k (f * -f (x k )) < d 2 (x k , M µ ) + (C(ρ, δ)t k -2ε)t k < d 2 (x k , M µ ) If f (x k ) ≤ f * + ε then x k ∈ L ε = {x ∈ B(a, ρ) : f (x) ≤ f * + ε} and if we write l ε = sup{d( y, M µ ) : y ∈ L ε }, hence in this case we have d(x k+1 , M µ ) ≤ d(x k+1 , x k ) + d(x k , M µ ) ≤ t k + l ε
In conclusion, we always have that for k ≥ N 2 , d(x k+1 , M µ ) ≤ max{d(x k , M µ ), t k + l ε } By induction we get for every n ≥ k, Now we show that l ε → 0 when ε → 0. By monotonicity of l ε , it suffices to show this along some sequence. In fact, observe that L ε is compact, thus for every ε > 0, there exists y ε ∈ L ε such that l ε = d(y ε , M µ ). Since B(a, ρ) is compact, there exist a sequence ε k → 0 and y ∈ B(a, ρ) such that y ε k → y. Since f (y ε k ) ≤ f * + ε k , we have f (y) ≤ f * and hence y ∈ M µ . Consequently l ε k → 0. Thus we get d(x k , M µ ) → 0 and this yields f (x k ) → f * . If ∞ k=0 t 2 k < +∞, the compactness of B(a, ρ) and f (x k ) → f * imply that the sequence (x k ) k has some cluster point m ∈ M µ , hence Lemma 8 yields

d(x n+1 , M µ ) ≤ max{d(x k , M µ ), max{t k , t k+1 , . . . , t n } + l ε } ≤ max{d(x k , M µ ), sup{t i : i ≥ k} + l ε } thus we get lim sup n→∞ d(x n , M µ ) ≤ max{d(x k , M µ ), sup{t i : i ≥ k} + l ε } lim inf k→∞ f (x k ) = f * yields that lim inf k→∞ d(x k , M µ ) = 0,
d 2 (x k+1 , m) ≤ d 2 (x k , m) + C(ρ, δ)t 2 k
for every n ≥ k, by summing the above inequalities we get

d 2 (x n+1 , m) ≤ d 2 (x k , m) + C(ρ, δ) n i=k t 2 i and by letting n → ∞ we obtain lim sup n→∞ d 2 (x n , m) ≤ d 2 (x k , m) + C(ρ, δ) ∞ i=k t 2
i the proof will be completed by observing that the right hand side of the above inequality posseses a subsequence that converges to 0. Now we have to consider the choice of stepsize. In fact, we can choose (t k ) k that verifies the conditions of the preceding theorem thus yields the desired convergence of our algorithm and this is justified by the following lemma.

Lemma 9. inf{r

x : x ∈ B(a, ρ)} > 0 Proof. Since the support of µ is contained in B(a, ρ), if x ∈ ∂ B(a, ρ), H(x)
is transverse to ∂ B(a, ρ) and hence r x > 0 for every x ∈ B(a, ρ). Moreover, there exists ε > 0 such that supp(µ) ⊂ B(a, ρε), then for x ∈ B(a, ρε), we have r x ≥ ρd(x, a) > ε. On the other hand, H is continuous on B(a, ρ)\B(a, ρ-ε) which is compact, thus there exists a point

x 0 ∈ B(a, ρ)\ B(a, ρ -ε) such that inf{r x : x ∈ B(a, ρ) \ B(a, ρ -ε)} = r x 0 > 0. Hence we get inf{r x : x ∈ B(a, ρ)} ≥ min{ε, r x 0 } > 0.
According to this lemma, we may take for example the stepsize t k = r x k /(k + 1) for every k ≥ 0, then by Theorem 4 the convergence holds. But the drawback is that we do not know r x k . However, with further analysis we can give an explicit uniform lower bound of them. In the following, let σ = sup{d(p, a) : p ∈ supp µ} and observe that supp(µ) ⊂ B(a, ρ) yields σ < ρ. Lemma 10. For every x ∈ B(a, ρ) \ B(a, σ) we have

r x ≥ 2d(x, a)S ∆ (d(x, a) -σ) C(ρ, δ)S ∆ (d(x, a) + σ) Proof. Since the diameter of B(a, ρ) is 2ρ, then γ x (r x ) ∈ ∂ B(a, ρ)
. By Taylor's formula and the second estimation in Lemma 1, there exists ξ ∈ (0, r x ) such that 1 2

ρ 2 = 1 2 d 2 (γ x (r x ), a) = 1 2 d 2 (x, a) + d dt 1 2 d 2 (γ x (t), a) t=0 r x + 1 2 d 2 dt 2 1 2 d 2 (γ x (t), a) t=ξ r 2 x = 1 2 d 2 (x, a) + γx (0), grad 1 2 d 2 a (x) r x + 1 2 Hess 1 2 d 2 a ( γ(ξ), γ(ξ)) r 2 x ≤ 1 2 d 2 (x, a) + H(x), exp -1 x a |H(x)| r x + C(ρ, δ) 2 r 2 
x Gauss Lemma yields that exp -1 x p, exp -1 x a > 0 for p ∈ supp µ, hence

H(x), exp -1 x a = - supp µ exp -1 x p, exp -1 x a d(x, p) µ(dp) < 0
Combine this with d(x, a) ≤ ρ, C(ρ, δ) > 0 and r x > 0, we obtain that

r x ≥ 1 C(ρ, δ) - H(x), exp -1 x a |H(x)| + H(x), exp -1 x a 2 |H(x)| 2 + C(ρ, δ)(ρ 2 -d 2 (x, a)) ≥ 1 C(ρ, δ) - H(x), exp -1 x a |H(x)| + | H(x), exp -1 x a | |H(x)| = -2 C(ρ, δ) H(x), exp -1 x a |H(x)| ≥ -2 C(ρ, δ) H(x), exp -1 x a = 2 C(ρ, δ) supp µ exp -1 x p, exp -1 x a d(x, p) µ(dp) = 2d(x, a) C(ρ, δ) supp µ cos ∠ pxa µ(dp)
For every p ∈ supp(µ) we consider the triangle △pxa and its comparison triangle △pxā in M 2 ∆ . Since K ≤ ∆ in B(a, ρ), then Alexandrov's Theorem implies that ∠ pxa ≤ ∠ pxā and hence cos ∠ pxa ≥ cos ∠ pxā. Now it suffices to estimate the lower bound of cos ∠ pxā according to the sign of ∆. In fact, we have for every ∆ ∈ R, 

  0,b) with λ| (0,b) and (µ•γ)| (0,b) denoting the restrictions of Lebesgue measure and the measure µ • γ on (0, b) respectively.

Theorem 3 .

 3 If condition * holds, then for every geodesic γ: [ 0, b ] → B(a, ρ), we have the following inequality

Theorem 4 .

 4 If the stepsize (t k ) k verifies lim k→∞ t k = 0 and ∞ k=0 t k = +∞ then we have lim k→∞ d(x k , M µ ) = 0 and lim k→∞

  by taking the inferior limit on the right hand side we obtain lim sup n→∞ d(x n , M µ ) ≤ l ε
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 1541122 cos ∠ pxā ≥ S ∆ (d(x, a)σ) S ∆ (d(x, a) + σ)We show this for the case when ∆ > 0, the proof for cases when ∆ ≤ 0 is similar. For this, let us observe that d(a, p) ≤ σ and that d(x, a)σ ≤ d(x, p) ≤ d(x, a) + σ, then we obtaincos ∠ pxā = cos( √ ∆d(a, p))cos( √ ∆d(x, a)) cos( √ ∆d(x, p)) sin( √ ∆d(x, a)) sin( √ ∆d(x, p)) ≥ cos( √ ∆σ)cos( √ ∆d(x, a)) cos( √ ∆(d(x, a)σ)) sin( √ ∆d(x, a)) sin( √ ∆(d(x, a) + σ)) = sin( √ ∆(d(x, a)σ)) sin( √ ∆(d(x, a) + σ)) = S ∆ (d(x, a)σ) S ∆ (d(x, a) + σ)hence the claimed inequality is proved and consequently,r x ≥ 2d(x, a) C(ρ, δ) supp µ S ∆ (d(x, a)σ) S ∆ (d(x, a) + σ) µ(dp) = 2d(x, a)S ∆ (d(x, a)σ) C(ρ, δ)S ∆ (d(x, a) + σ)Now we can give the desired lower bound.Lemma 11. For every x ∈ B(a, ρ) we haver x ≥ ρσ C(ρ, δ) cosh(2ρ |∆|) + Let (a k ) k be a sequence in (0, 1] such that lim k→∞ a k = 0 and ∞ k=0 a k = +∞and let t k = βa k in the algorithm with0 < β ≤ ρσ C(ρ, δ) cosh(2ρ |∆|) + 1then we havelim k→∞ d(x k , M µ ) = 0 and lim k→∞ f (x k ) = f * Moreover, if (a k ) k verifies also that ∞ k=0 a 2 k < +∞ then there existes some m ∈ M µ such that x k → m, when k → ∞.Proof. This is a simple corollary to Theorem 4 and Lemma 11. Now we turn to the problem of error estimates of the subgradient algorithm under condition * . Let condition * hold and the stepsize (t k ) k satisfy lim k→∞ t k = 0 and ∞ k=0 t k = +∞ Then there exists N ∈ N, such that for every k ≥ N , d 2 (x k , m) ≤ b k where m is the unique median of µ and the sequence (b k ) k≥N is defined by bN = (ρ + σ) 2 and b k+1 = (1 -2τ t k )b k + C(ρ, δ)t 2 k , k ≥ N which converges to 0 when k → ∞. More explicitely, for every k ≥ N , b k+1 = (ρ + σ) 2 k i=N 2τ t i ) + C(ρ, δ) 2τ t i ) + tProof. Since t k → 0, there exists N ∈ N, such that for every k ≥ N , we have 2τ t k < 1. For every of these k, we choose a geodesic γ: [0, 1] → B(a, ρ) with γ(0) = m and γ(1) = x k . Then by Theorem 3,f (x k )f * ≥ d ds f (γ(s)) s=0+ + τ d 2 (x k , m) ≥ τ d 2 (x k , m)combining this and Lemma 8 we getd 2 (x k+1 , m) ≤ (1 -2τ t k )d 2 (x k , m) + C(ρ, δ)tProposition 2 yields that d 2 (x N , m) ≤ (ρ + σ) 2 = b N and then by induction it is easily seen that d 2 (x k , m) ≤ b k for every k ≥ N . The same method as in the proof of Theorem 4 can show that b k → 0. In fact, we first show that lim inf k→∞ b k = 0

  By the law of cosines in M 2 ∠C 2 is nondecreasing with respect to a 2 when a 2 ≥ a 1 , thus we get cos ∠C 2 ≥ cos ∠C 1 , i.e. ∠C 2 ≤ ∠C 1 .

		κ , we get	
	d da 2	cos ∠C 2 = cos( = d da 2 √ κ sin( √ κa 1 ) sin( √ κc) sin( √ κb) sin 2 ( √ κa 2 )	cos ∠B 1 ≥ 0
	so that cos		

Lemma 6

. Let △ABC be a geodesic triangle in B(a, ρ) such that ∠A = π/2 then we have

sin ∠C ≥ L(ρ, δ)d(A, B)

where the constant

Proof. Firstly, assume that x ∈ B(a, ρ) \ B(a, σ) then by the preceding lemma, if ∆ > 0 we have observe that 0 < √ ∆(d(x, a) + σ)) < 2ρ √ ∆ ≤ π/2 and that for 0 < u ≤ v ≤ π/2, we have (sin u/ sin v) ≥ (u/v), then we obtain

On the other hand, we always have r x ≥ ρd(x, a) and hence

+ σ the same proof as above yields the same result. If ∆ < 0 then we have

Observe that for u > 0, sinh u et cosh u are nondecreasing and that u ≤ sinh u ≤ u cosh u, then we obtain

the same method as in the case ∆ > 0 yields

In conclusion, since cosh(2ρ |∆|) ≥ 1, we have always

hence the desired result holds.

Thanks to the above estimation, we get a practically useful version of Theorem 4.

If this is not true, then there exist N 1 ≥ N and η > 0 such that for every k ≥ N 1 we have b k > η. Since lim k→∞ t k = 0, we can suppose that C(ρ, δ)t k < τ η for every k ≥ N 1 and then

by summing the above inequalities we get

which contradicts with ∞ k=0 t k = +∞, this proves the assertion. Then for every k ≥ N , we consider the following two cases: In order to get b k → 0, it suffices to take the inferior limite on the right hand side. Finally, the explicit expression of (b k ) k follows from induction.

We proceed to show that if the stepsize (t k ) k is chosen to be the harmonic series, then the rate of convergence of our algorithm is sublinear. To do this, we use the following Lemma in Nedic and Bertsekas [START_REF] Nedic | Convergence Rate of Incremental Subgradient Algorithms[END_REF]. Lemma 12. Let (u k ) k be a sequence of nonnegative real numbers satisfying

where α and ζ are positive constants. Then

LE YANG Proposition 5. Let condition * hold and we choose t k = r/(k + 1) for every k ≥ 0 with some constant r > 0, then we have

where m is the unique median of µ and α = 2τ r Proof. As in the proof of Proposition 4, we get that for every k ≥ 0,

then it suffices to use the preceding lemma with α = 2τ r and ζ = r 2 C(ρ, δ).

Observe also that d(x 0 , m) ≤ ρ + σ by Proposition 2.