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Simultaneous Identification of the Diffusion Coefficient and the Potential for the Schrödinger Operator with only one Observation

This article is devoted to prove a stability result for two independent coefficients for a Schrödinger operator in an unbounded strip. The result is obtained with only one observation on an unbounded subset of the boundary and the data of the solution at a fixed time on the whole domain.

Introduction

Let Ω = R×(d, 2d) be an unbounded strip of R 2 with a fixed width d > 0. Let ν be the outward unit normal to Ω on Γ = ∂Ω. We denote x = (x 1 , x 2 ) and Γ = Γ + ∪ Γ -, where Γ + = {x ∈ Γ; x 2 = 2d} and Γ -= {x ∈ Γ; x 2 = d}. We consider the following Schrödinger equation    Hq := i∂ t q + a∆q + bq = 0 in Ω × (0, T ), q(x, t) = F (x, t) on ∂Ω × (0, T ), q(x, 0) = q 0 (x) in Ω,

(1.1)
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where a and b are real-valued functions such that a ∈ C 3 (Ω), b ∈ C 2 (Ω) and a(x) ≥ a min > 0. Moreover, we assume that a is bounded and b and all its derivatives up to order two are bounded. If we assume that q 0 belongs to H 4 (Ω) and F ∈ H 2 (0, T, H 2 (∂Ω)) ∩ H 1 (0, T, H 4 (∂Ω)) ∩ H 3 (0, T, L 2 (∂Ω)), then (1.1) admits a solution in H 1 (0, T, H 2 (Ω)) ∩ H 2 (0, T, L 2 (Ω)).

Our problem can be stated as follows: Is it possible to determine the coefficients a and b from the measurement of ∂ ν (∂ 2 t q) on Γ + ? Let q (resp. q) be a solution of (1.1) associated with (a, b, F , q 0 ) (resp. ( a, b, F , q 0 )). We assume that q 0 is a real valued function.

Our main result is

a -a 2 L 2 (Ω) + b -b 2 L 2 (Ω) ≤ C ∂ ν (∂ 2 t q) -∂ ν (∂ 2 t q) 2 L 2 ((-T,T )×Γ + ) + C 2 i=0 ∂ i t (q -q)(•, 0) 2 H 2 (Ω) ,
where C is a positive constant which depends on (Ω, Γ, T ) and where the above norms are weighted Sobolev norms. This paper is an improvement of the work [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded[END_REF] in the sense that we simultaneously determine with only one observation, two independent coefficients, the diffusion coefficient and the potential. We use for that two important tools: Carleman estimate (2.5) and Lemma 2.4. Carleman inequalities constitute a very efficient tool to derive observability estimates. The method of Carleman estimates has been introduced in the field of inverse problems by Bukhgeim and Klibanov (see [START_REF] Bukhgeim | Volterra Equations and Inverse Problems, Inverse and Ill-Posed Problems Series[END_REF], [START_REF] Bukhgeim | Uniqueness in the large of a class of multidimensional inverse problems[END_REF], [START_REF] Klibanov | Inverse problems in the large and Carleman bounds[END_REF], [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF]). Carleman estimates techniques are presented in [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF] for standard coefficients inverse problems for both linear and non-linear partial differential equations. These methods give a local Lipschitz stability around a single known solution.

A lot of works using the same strategy concern the wave equation (see [START_REF] Lasiecka | Inverse/observability estimates for second order hyperbolic equations with variable coefficients[END_REF], [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second order hyperbolic equation with variable coefficient[END_REF], [START_REF] Baudouin | A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem[END_REF]) and the heat equation (see [START_REF] Puel | Generic well-posedness in a multidimensional hyperbolic inverse problem[END_REF], [START_REF] Yu | Global uniqueness and stability in determining coefficients of wave equations[END_REF], [START_REF] Benabdallah | Stability of discontinuous diffusion coefficients and initial conditions in an inverse problem for the heat equation[END_REF]). For the determination of a time-independent potential in Schrödinger evolution equation, we can refer to [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF] for bounded domains and [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded[END_REF] for unbounded domains. We can also cite [START_REF] Mercado | Inverse problems for the Schrödinger equations via Carleman inequalities with degenerate weights[END_REF] where the authors use weight functions satisfying a relaxed pseudoconvexity condition which allows to prove Carleman inequalities with less restrictive boundary observations. Up to our knowledge, there are few results concerning the simultaneous identification of two coefficients with only one observation. In [START_REF] Cardoulis | Identification of two independent coefficients with one observation for the Schrödinger operator in an unbounded strip[END_REF] a stability result is given for the particular case where each coefficient only depends on one variable (a = a(x 2 ) and b = b(x 1 )) for the operator i∂ t q +∇•(a∇q)+bq in an unbounded strip of R 2 . The authors give a stability result for the diffusion coefficient a and the potential b with only one observation in an unbounded part of the boundary.

A physical background could be the reconstruction of the diffusion coefficient and the potential in a strip in geophysics. There are also applications in quantum mechanics: inverse problems associated with curved quantum guides (see [START_REF] Chenaud | Geometrically induced discrete spectrum in curved tubes[END_REF], [START_REF] Duclos | Curvature-Induced Bound States in Quantum Waveguides in Two and Three Dimensions[END_REF], [START_REF] Duclos | Bound States in Curved Quantum Layers[END_REF]). This paper is organized as follows. Section 2 is devoted to some usefull estimates. We first give an adapted global Carleman estimate for the operator H. We then recall the crucial Lemma given in [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF]. In Section 3 we state and prove our main result.

2 Some Usefull Estimates

Global Carleman Inequality

Let a be a real-valued function in C 3 (Ω) and b be a real-valued function in C 2 (Ω) such that Assumption 2.1.

• a ≥ a min > 0, a and all its derivatives up to order three are bounded,

• b and its derivatives up to order two are bounded.

Let q(x, t) be a function equals to zero on ∂Ω × (-T, T ) and solution of the Schrödinger equation

i∂ t q + a∆q + bq = f.
We prove here a global Carleman-type estimate for q with a single observation acting on a part Γ + of the boundary Γ in the right-hand side of the estimate. Note that this estimate is quite similar to the one obtained in [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded[END_REF], but the computations are different. Indeed, the weigth function β does not satisfy the same pseudo-convexity assumptions (see Assumption 2.2) and the decomposition of the operator H is different (see (2.3)). Let β be a C 4 (Ω) positive function such that there exists positive constants C 0 , C pc which satisfy Assumption 2.2.

• |∇ β| ≥ C 0 > 0 in Ω, ∂ ν β ≤ 0 on Γ -,
• β and all its derivatives up to order four are bounded in Ω,

• 2ℜ(D 2 β(ζ, ζ)) -∇a • ∇ β|ζ| 2 + 2a 2 |∇ β • ζ| 2 ≥ C pc |ζ| 2 , for all ζ ∈ C
where

D 2 β = ∂ x 1 (a 2 ∂ x 1 β) ∂ x 1 (a 2 ∂ x 2 β) ∂ x 2 (a 2 ∂ x 1 β) ∂ x 2 (a 2 ∂ x 2 β) .
Note that the last assertion of Assumption 2.2 expresses the pseudo-convexity condition for the function β. This Assumption imposes restrictive conditions for the choice of the diffusion coefficient a in connection with the function β as in [START_REF] Cardoulis | Inverse problem for the Schrödinger operator in an unbounded[END_REF].

Note that there exist functions satisfying such assumptions. Indeed if we assume that β(x) := β(x 2 ), these conditions can be written in the following form:

A = 2∂ x 2 (a 2 ∂ x 2 β) -∂ x 2 a ∂ x 2 β + 2a 2 (∂ x 2 β) 2 ≥ cst > 0 and - (∂ x 1 (a 2 ∂ x 2 β)) 2 A -∂ x 2 a ∂ x 2 β ≥ cst > 0.
For example β(x) = e -x 2 with a(x) = 1 2 (x 2 2 +5) satisfy the previous conditions (with x 2 ∈ (d, 2d)). Then, we define β = β + K with K = m β ∞ and m > 1. For λ > 0 and t ∈ (-T, T ), we define the following weight functions

ϕ(x, t) = e λβ(x) (T + t)(T -t) , η(x, t) = e 2λK -e λβ(x) (T + t)(T -t) .
We set ψ = e -sη q, Mψ = e -sη H(e sη ψ) for s > 0. Let H be the operator defined by Hq := i∂ t q + a∆q + bq in Ω × (-T, T ).

(2.2)

Following [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF], we introduce the operators :

M 1 ψ := i∂ t ψ + a∆ψ + s 2 a|∇η| 2 ψ + (b -s∇η • ∇a)ψ, (2.3) M 2 ψ := is∂ t ηψ + 2as∇η • ∇ψ + s∇ • (a∇η)ψ. Then T -T Ω |Mψ| 2 dx dt = T -T Ω |M 1 ψ| 2 dx dt + T -T Ω |M 2 ψ| 2 dx dt + 2ℜ( T -T Ω M 1 ψ M 2 ψ dx dt),
where z is the conjugate of z, ℜ (z) its real part and ℑ (z) its imaginary part. Then the following result holds.

Theorem 2.3. Let H, M 1 , M 2 be the operators defined respectively by (2.2), (2.3). We assume that Assumptions 2.1 and 2.2 are satisfied. Then there exist λ 0 > 0, s 0 > 0 and a positive constant C = C(Ω, Γ, T ) such that, for any λ ≥ λ 0 and any s ≥ s 0 , the next inequality holds:

s 3 λ 4 T -T Ω e -2sη |q| 2 dx dt+sλ T -T Ω e -2sη |∇q| 2 dx dt+ M 1 (e -sη q) 2 L 2 (Ω×(-T,T )) + M 2 (e -sη q) 2 L 2 (Ω×(-T,T )) ≤ Csλ T -T Γ + e -2sη |∂ ν q| 2 ∂ ν β dσ dt (2.4) + T -T Ω e -2sη |Hq| 2 dx dt,
for all q satisfying q ∈ L 2 (-T, T ;

H 1 0 (Ω) ∩ H 2 (Ω)) ∩ H 1 (-T, T ; L 2 (Ω)), ∂ ν q ∈ L 2 (-T, T ; L 2 (Γ)). Moreover we have s 3 λ 4 T -T Ω e -2sη |q| 2 dx dt+sλ T -T Ω e -2sη |∇q| 2 dx dt+ M 1 (e -sη q) 2 L 2 (Ω×(-T,T )) + M 2 (e -sη q) 2 L 2 (Ω×(-T,T )) + s -1 λ -1 T -T Ω e -2sη |i∂ t q + a∆q| 2 dx dt (2.5) ≤ C sλ T -T Γ + e -2sη |∂ ν q| 2 ∂ ν β dσ dt + T -T Ω
e -2sη |Hq| 2 dx dt .

Proof:

We have to estimate the scalar product

ℜ T -T Ω M 1 ψ M 2 ψ dx dt = 4 i=1 3 j=1 I ij with I 11 = ℜ T -T Ω (i∂tψ)(-is∂tη ψ) dx dt , I 12 = ℜ T -T Ω (i∂tψ)(2as∇η • ∇ψ) dx dt , I 13 = ℜ T -T Ω (i∂tψ)(s∇ • (a∇η)ψ) dx dt , I 21 = ℜ T -T Ω (a∆ψ)(-is∂tη ψ) dx dt , I 22 = ℜ T -T Ω (a∆ψ)(2as∇η • ∇ψ) dx dt , I 23 = ℜ T -T Ω (a∆ψ)(s∇ • (a∇η) ψ) dx dt , I 31 = ℜ T -T Ω (s 2 a|∇η| 2 ψ)(-is∂tη ψ) dx dt , I 32 = ℜ T -T Ω (s 2 a|∇η| 2 ψ)(2as∇η • ∇ψ) dx dt , I 33 = ℜ T -T Ω (s 2 a|∇η| 2 ψ)(s∇ • (a∇η) ψ) dx dt , I 41 = ℜ T -T Ω ((b -s∇η • ∇a)ψ)(-is∂tη ψ) dx dt , I 42 = ℜ T -T Ω ((b -s∇η • ∇a)ψ)(2as∇η • ∇ψ) dx dt , I 43 = ℜ T -T Ω ((b -s∇η • ∇a)ψ)(s∇ • (a∇η) ψ) dx dt .
Following [START_REF] Baudouin | Uniqueness and stability in an inverse problem for the Schrödinger equation[END_REF], using integrations by part and Young estimates, we get (2.4). Moreover from (2.3) we have:

i∂ t q + a∆q = M 1 q -s 2 a|∇η| 2 q + (b -s∇η • ∇a)q.
So i∂ t q + a∆q = e sη M 1 (e -sη q) + is∂ t ηqae sη ∆(e -sη )q -2ae sη ∇(e -sη ) • ∇q s 2 a|∇η| 2 q + (b -s∇η • ∇a)q.

And we deduce (2.5) from (2.4).

The Crucial Lemma

We recall in this section the proof of a very important lemma proved by Klibanov and Timonov (see for example [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF], [START_REF] Klibanov | Carleman estimates for coefficient inverse problems and numerical applications[END_REF]).

Lemma 2.4. There exists a positive constant κ such that

T -T Ω t 0 q(x, ξ)dξ 2 e -2sη dxdt ≤ κ s T -T Ω |q(x, t)| 2 e -2sη dxdt,
for all s > 0.

Proof : By the Cauchy-Schwartz inequality, we have

T -T Ω t 0 q(x, ξ)dξ 2 e -2sη dxdt ≤ Ω T -T |t| t 0 |q(x, ξ)| 2 dξ e -2sη dxdt (2.6) ≤ Ω T 0 t t 0 |q(x, ξ)| 2 dξ e -2sη dxdt+ Ω 0 -T (-t) 0 t |q(x, ξ)| 2 dξ e -2sη dxdt.
Note that ∂ t (e -2sη(x,t) ) = -2s(e 2λKe λβ(x) ) 2t (T 2t 2 ) 2 e -2sη(x,t) .

So, if we denote by α(x) = e 2λKe λβ(x) , we have

te -2sη(x,t) = - (T 2 -t 2 ) 2 4sα(x) ∂ t (e -2sη(x,t) ).
For the first integral of the right hand side of (2.6), by integration by parts we have

Ω T 0 t t 0 |q(x, ξ)| 2 dξ e -2sη dxdt = Ω T 0 t 0 |q(x, ξ)| 2 dξ (T 2 -t 2 ) 2 -4sα(x) ∂ t (e -2sη )dt dx = Ω t 0 |q(x, ξ)| 2 dξ (T 2 -t 2 ) 2 -4sα(x) e -2sη t=T t=0 dx+ Ω T 0 |q(x, t)| 2 (T 2 -t 2 ) 2 4sα(x) e -2sη dt dx + Ω T 0 t 0 |q(x, ξ)| 2 dξ t(t 2 -T 2 ) sα(x) e -2sη dt dx.
Here we used α(x) > 0 for all x ∈ Ω and we obtain

Ω T 0 t 0 t |q(x, ξ)| 2 dξ e -2sη dxdt ≤ 1 4s sup x∈Ω 1 α(x) Ω T 0 |q(x, t)| 2 e -2sη (T 2 -t 2 ) 2 dxdt.
Similarly for the second integral of the right hand side of (2.6)

Ω 0 -T (-t) 0 t |q(x, ξ)| 2 dξ e -2sη dxdt ≤ 1 4s sup x∈Ω 1 α(x) Ω 0 -T |q(x, t)| 2 e -2sη (T 2 -t 2 ) 2 dxdt.
Thus the proof of Lemma 2.4 is completed.

Stability result

In this section, we establish a stability inequality for the diffusion coefficient a and the potential b.

Let q ∈ C 2 (Ω × (0, T )) be solution of    i∂ t q + a∆q + bq = 0 in Ω × (0, T ), q(x, t) = F (x, t) on ∂Ω × (0, T ), q(x, 0) = q 0 (x) in Ω,
and q ∈ C 2 (Ω × (0, T )) be solution of    i∂ t q + a∆ q + b q = 0 in Ω × (0, T ), q(x, t) = F (x, t) on ∂Ω × (0, T ), q(x, 0) = q 0 (x) in Ω, where (a, b) and ( a, b) both satisfy Assumption 2.1.

Assumption 3.1.

• All the time-derivatives up to order three and the space-derivatives up to order four for q exist and are bounded.

• There exists a positive constant

C > 0 such that |q| ≥ C, |∂ t ( ∆q q )| ≥ C, |∆q| ≥ C, |∂ t ( q ∆q )| ≥ C.
• q 0 is a real-valued function.

Since q 0 is a real-valued function, we can extend the function q (resp. q) on Ω×(-T, T ) by the formula q(x, t) = q(x, -t) for every (x, t) ∈ Ω×(-T, 0). Note that this extension satisfies the previous Carleman estimate. Our main stability result is Theorem 3.2. Let q and q be solutions of (1.1) in C 2 (Ω × (0, T )) such that qq ∈ H 2 ((-T, T ); H 2 (Ω)). We assume that Assumptions 2.1, 2.2, 3.1 are satisfied. Then there exists a positive constant C = C(Ω, Γ, T ) such that for s and λ large enough,

T -T Ω e -2sη (| a-a| 2 +| b-b| 2 ) dx dt ≤ Csλ 2 T -T Γ + ϕ e -2sη ∂ ν β |∂ ν (∂ 2 t q-∂ 2 t q)| 2 dσ dt +Cλ T -T Ω e -2sη 2 i=0 |∂ i t (q -q)(., 0)| 2 + ∇(q -q)(., 0)| 2 +|∂ t ∇(q -q)(., 0)| 2 + |∂ t ∆(q -q)(., 0)| 2 dx dt. Therefore a -a 2 L 2 (Ω) + b -b 2 L 2 (Ω) ≤ C ∂ ν (∂ 2 t q) -∂ ν (∂ 2 t q) 2 L 2 ((-T,T )×Γ + ) + C 2 i=0 ∂ i t (q -q)(•, 0) 2 H 2 (Ω) ,
where the previous norms are weighted Sobolev norms.

Proof: We denote by u = qq, α = ãa and γ = bb, so we get:

   i∂ t u + a∆u + bu = α∆q + γ q in Ω × (-T, T ), u(x, t) = 0 on ∂Ω × (-T, T ), u(x, 0) = 0 in Ω. (3.7) 
The proof will be done in two steps: in a first step we prove an estimation for α and in a second step for γ.

First step: We set u 1 = u q . Then from (3.7) u 1 is solution of    i∂ t u 1 + a∆u 1 + bu 1 + A 11 u 1 + B 11 • ∇u 1 = α ∆q q + γ in Ω × (-T, T ), u 1 (x, t) = 0 on ∂Ω × (-T, T )
where A 11 = i ∂ t q q + a ∆q q and B 11 = 2a q ∇q. Then defining u 2 = ∂ t u 1 we get that u 2 satisfies  

 i∂ t u 2 + a∆u 2 + bu 2 + 2 i=1 A i2 u i + 2 i=1 B i2 • ∇u i = α∂ t ( ∆q q ) in Ω × (-T, T ), u 2 (x, t) = 0 on ∂Ω × (-T, T )
where

A 12 = ∂ t A 11 , A 22 = A 11 , B 12 = ∂ t B 11 , B 12 = B 11 . Now let u 3 = u 2 ∂ t ( ∆q q )
, then u 3 is solution of Applying the Carleman inequality (2.5) for u 4 we obtain (for s and λ sufficiently large):

i∂ t u 3 + a∆u 3 + bu 3 + 3 i=1 A i3 u i + 3 i=1 B i3 • ∇u i = α in Ω × (-T, T ), u 3 (x, t) = 0 on ∂Ω × (-T, T ) (3.
s 3 λ 4 T -T Ω e -2sη |u 4 | 2 dx dt + sλ T -T Ω e -2sη |∇u 4 | 2 dx dt (3.9) +s -1 λ -1 T -T Ω e -2sη |i∂ t u 4 + a∆u 4 | 2 dx dt ≤ C sλ T -T Γ + e -2sη |∂ ν u 4 | 2 ∂ ν β dσ dt + 3 i=1 T -T Ω e -2sη (|u i | 2 + |∇u i | 2 ) dx dt . 10 Note that T -T Ω e -2sη |u 1 | 2 dx dt = T -T Ω e -2sη | t 0 ∂ t u 1 | 2 dx dt, so from Lemma 2.4 we get T -T Ω e -2sη |u 1 | 2 dx dt ≤ C s T -T Ω e -2sη |u 3 | 2 dx dt ≤ C s 2 T -T Ω e -2sη |u 4 | 2 dx dt + C s T -T Ω e -2sη |u 3 (., 0)| 2 dx dt.
By the same way, we have

T -T Ω e -2sη |∇u 1 | 2 dx dt ≤ C s 2 T -T Ω e -2sη |∇u 4 | 2 dx dt + C s T -T Ω e -2sη |∇u 3 (., 0)| 2 dx dt + C T -T Ω e -2sη |∇u 1 (., 0)| 2 dx dt.
So (3.9) becomes

s 3 λ 4 T -T Ω e -2sη |u 4 | 2 dx dt + sλ T -T Ω e -2sη |∇u 4 | 2 dx dt (3.10) +s -1 λ -1 T -T Ω e -2sη |i∂ t u 4 +a∆u 4 | 2 dx dt ≤ Csλ T -T Γ + e -2sη |∂ ν u 4 | 2 ∂ ν β dσ dt +C T -T Ω e -2sη (|u 3 (., 0)| 2 + |∇u 3 (., 0)| 2 + ∇u 1 (., 0)| 2 ) dx dt.
Furthermore from (3.8) we have (with C a positive constant)

|α| 2 ≤ C |i∂ t u 3 + a∆u 3 | 2 + 3 i=1 (|u i | 2 + |∇u i | 2 ) .
Therefore for s sufficiently large, from Lemma 2.4 Second step: By the same way we obtain an estimation of γ. We set

T -T Ω e -2sη |α| 2 dx dt ≤ C s T -T Ω e -2sη |i∂ t u 4 + a∆u 4 | 2 + |u 4 | 2 + |∇u 4 | 2 dx dt +C T -T Ω e -2sη |(i∂ t u 3 + a∆u 3 )(0)| 2 dx dt + C T -T Ω e -2sη
v 1 = u ∆q , v 2 = ∂ t v 1 , v 3 = v 2 ∂ t ( q ∆q )
.

Following the same methodology as in the first step, we obtain: 2. This method works for the Schrödinger operator in the divergential form: i∂ t q + ∇ • (a∇q) + bq.

We still obtain a similar stability result but with more restrictive hypotheses on the regularity of the function q.

ee

  |∇u 1 (., 0)| 2 dx dt +C T -T Ω e -2sη (|u 3 (., 0)| 2 + |∇u 3 (., 0)| 2 ) dx dt. -2sη |α| 2 dx dt ≤ Csλ T -T Γ + e -2sη |∂ ν u 4 | 2 ∂ ν β dσ dt + C λ T -T Ω e -2sη |(i∂ t u 3 + a∆u 3 )(., 0)| 2 dx dt + C T -T Ω e -2sη |∇u 1 (., 0)| 2 dx dt + C T -T Ω e -2sη (|u 3 (., 0)| 2 + |∇u 3 (., 0)| 2 ) dx dt -2sη |α| 2 dx dt ≤ Csλ T -T Γ + e -2sη |∂ ν u 4 | 2 ∂ ν β dσ dt (., 0)| 2 + |∇u(., 0)| 2 +|∂ t ∇u(., 0)| 2 + |∂ t ∆u(., 0)| 2 dx dt.

e

  -2sη |γ| 2 dx dt ≤ Csλ T -T Γ + e -2sη |∂ ν u 4 | 2 ∂ ν β dσ dt (3., 0)| 2 + |∇u(., 0)| 2 + |∂ t ∇u(., 0)| 2 + |∂ t ∆u(., 0)| 2 dx dt.From (3.11) and (3.12) we can conclude.Remark 3.3.1. Note that the following function q(x, t) = e -it + x 2

  [START_REF] Duclos | Curvature-Induced Bound States in Quantum Waveguides in Two and Three Dimensions[END_REF] where A i3 and B i3 are bounded functions.At last we define u 4 = ∂ t u 3 and u 4 satisfiesi∂ t u 4 + a∆u 4 + bu 4 + 4 i=1 A i4 u i + 4 i=1 B i4 • ∇u i = 0 in Ω × (-T, T ), u 4 (x, t) = 0 on ∂Ω × (-T, T )where A i4 and B i4 are still bounded functions. Note thatA 14 = ∂ t A 13 , A 24 = ∂ t A 23 + A 13 , A 34 = ∂ t A 33 + A 23 ∂ t g + B 23 • ∇(∂ t g), A 44 = A 23 g + A 33 + B 23 • ∇g, B 14 = ∂ t B13 , B 24 = ∂ t B 23 +B 13 , B 34 = ∂ t B 33 +∂ t gB 23 , B 44 = B 33 +gB 23 .

	If we denote by g = ∂ t (	∆q q ), then							
	A 13 =	1 g	A 12 , A 23 =	1 g	A 22 , A 33 =	1 g	(i∂ t g + ∆g), B 13 =	1 g	B 12 , B 23 =	1 g	B 22 , B 33 =	2a g	∇g.
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