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Simultaneous Identification of the Diffusion
Coefficient and the Potential for the
Schrodinger Operator with only one

Observation

Laure Cardoulis *and Patricia Gaitan |

February 1, 2010

Abstract
This article is devoted to prove a stability result for two indepen-
dent coefficients for a Schrédinger operator in an unbounded strip.
The result is obtained with only one observation on an unbounded
subset of the boundary and the data of the solution at a fixed time on
the whole domain.

1 Introduction

Let = Rx (d, 2d) be an unbounded strip of R? with a fixed width d > 0.
Let v be the outward unit normal to © on I' = 92. We denote x = (21, x2)
and D =THtUT", where I'" ={z €T; 2o =2d} and " = {z € T; xy = d}.
We consider the following Schrodinger equation

Hq:=1i0,q+alAq+bg=0 in Qx(0,7),
q(z,t) = F(x,t) on 002 x (0,T), (1.1)
q(z,0) = go(x) in Q,
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where a and b are real-valued functions such that a € C*(Q2), b € C*(Q) and
a(x) > apmin > 0. Moreover, we assume that a is bounded and b and all
its derivatives up to order two are bounded. If we assume that ¢y belongs
to H4(Q) and F € H?(0,T, H*(0Q2)) N HY(0, T, H*(0)) N H3(0, T, L*(09Q)),
then (1.1) admits a solution in H'(0, T, H*(Q)) N H(0, T, L*()).

Our problem can be stated as follows:

Is it possible to determine the coefficients a and b from the measurement of

0,(0%q) on T7?

Let g (resp. ¢) be a solution of (1.1) associated with (a, b, F, qy) (resp.

(a, b, F, qp)). We assume that ¢ is a real valued function.
Our main result is

la—@l20) + 10— bli2 < ClOL079) — Ou(O;DIN7o(rryers

2
+ CY 10ia = D072y,
i=0

where C' is a positive constant which depends on (2,I',7) and where the
above norms are weighted Sobolev norms.

This paper is an improvement of the work [10] in the sense that we simulta-
neously determine with only one observation, two independent coefficients,
the diffusion coefficient and the potential. We use for that two important
tools: Carleman estimate (2.5) and Lemma 2.4.

Carleman inequalities constitute a very efficient tool to derive observability
estimates. The method of Carleman estimates has been introduced in the
field of inverse problems by Bukhgeim and Klibanov (see [5], [6], [13], [14]).
Carleman estimates techniques are presented in [15] for standard coefficients
inverse problems for both linear and non-linear partial differential equations.
These methods give a local Lipschitz stability around a single known solu-
tion.

A lot of works using the same strategy concern the wave equation (see [16],
3], [2]) and the heat equation (see [18], [12], [4]). For the determination of a
time-independent potential in Schrodinger evolution equation, we can refer
to [1] for bounded domains and [10] for unbounded domains. We can also
cite [17] where the authors use weight functions satisfying a relaxed pseudo-
convexity condition which allows to prove Carleman inequalities with less
restrictive boundary observations.



Up to our knowledge, there are few results concerning the simultaneous iden-
tification of two coefficients with only one observation. In [11] a stability
result is given for the particular case where each coefficient only depends on
one variable (a = a(zy) and b = b(x1)) for the operator i0,q+V - (aVq)+bq in
an unbounded strip of R2. The authors give a stability result for the diffusion
coefficient a and the potential b with only one observation in an unbounded
part of the boundary.

A physical background could be the reconstruction of the diffusion coeffi-
cient and the potential in a strip in geophysics. There are also applications
in quantum mechanics: inverse problems associated with curved quantum
guides (see [7], [8], [9]).

This paper is organized as follows. Section 2 is devoted to some usefull esti-
mates. We first give an adapted global Carleman estimate for the operator
H. We then recall the crucial Lemma given in [15]. In Section 3 we state
and prove our main result.

2 Some Usefull Estimates

2.1 Global Carleman Inequality

Let a be a real-valued function in C*(f2) and b be a real-valued function in

C2(Q) such that

Assumption 2.1. ® 4> apin > 0, a and all its derivatives up to order
three are bounded,

e b and its derivatives up to order two are bounded.

Let g(x,t) be a function equals to zero on 92 x (=T, T) and solution of
the Schrodinger equation

10q + alAq + bg = f.

We prove here a global Carleman-type estimate for ¢ with a single obser-
vation acting on a part I'" of the boundary I' in the right-hand side of the
estimate.

Note that this estimate is quite similar to the one obtained in [10], but the
computations are different. Indeed, the weigth function § does not satisfy



the same pseudo-convexity assumptions (see Assumption 2.2) and the de-
composition of the operator H is different (see (2.3)).

Let 3 be a C*(Q) positive function such that there exists positive constants
Co, Cpe which satisfy

Assumption 2.2. . \V§| >Cy>0 in &,ES 0 on I'",
° 5 and all its derivatives up to order four are bounded in ,
o 2R(D*B((,C)) = Va- VBICP +2a°| V5 - (2 > Cpel(?, for all ¢ € C

where

Or, (a28x1 B) O, (a28x2 B)

Note that the last assertion of Assumption 2.2 expresses the pseudo-convexity
condition for the function 3. This Assumption imposes restrictive conditions
for the choice of the diffusion coefficient a in connection with the function £
as in [10].

Note that there exist functions satisfying such assumptions. Indeed if we
assume that 3(z) := ((x,), these conditions can be written in the following
form:

D2§: ( 82131 (azalvlg) 82131 (azalmg) ) )

A =208,,(a%0,,5) — Opya 0y, 3 + 2a%(9,,5) > cst > 0

and o Ay
O, (%0, ~
! 1(aA S Or,@ Oy, B > cst > 0.
For example 3(z) = e~ with a(z) = 1(3+5) satisfy the previous conditions
(with z € (d, 2d)).
Then, we define § = f + K with K = m||§||oc and m > 1. For A > 0 and
t € (=T,T), we define the following weight functions

6)\6(:1:) e2AK _ 6)\[3(1)

Troa—n "= Tram—p

p(z,t) = (

We set ¢ = e %1q, My = e *"H(e*"p) for s > 0. Let H be the operator
defined by
Hq:=10,q+ alAq+bg in Qx (=T,T). (2.2)



Following [1], we introduce the operators :

My = i0pp + alip + s2a|Vn|*y + (b — sVn - Va)i, (2.3)
My = isOmy + 2asVn - Vb + sV - (aVn).
Then

T T T
/ /|M¢\2d:¢ it — / /\M1w|2dx dt+/ /\M2¢\2dx dt
T JQ T JQ -7 JQ

T
+ 2%(/T/QM1¢M—2¢dxdt),

where Z is the conjugate of z, R (z) its real part and & (z) its imaginary
part. Then the following result holds.

Theorem 2.3. Let H, My, My be the operators defined respectively by (2.2),
(2.3). We assume that Assumptions 2.1 and 2.2 are satisfied. Then there
exist A\g > 0, so > 0 and a positive constant C' = C(2, T, T) such that, for
any A > Ao and any s > sq, the next inequality holds:

T T
[ e avaresy [ [ e n9g do der |0y
T JQ T JQ

T
_'_”M2<eian>H%?(QX(—T,T)) < CS)\/ /+ 672sn|8VQ|2 0, do dt (2'4)
r

/ / “20 | Hal* de dt,

for all q satisfying q € L*(—T,T; HY(Q)NH*(Q))NHY(-T,T; L*(Q)), d,q €
L*(=T,T; L*(T)). Moreover we have

T T
N[ e dvdresy [ 296 de des |0y
—-TJOQ T JQ

T
+HM2<eian)”%2(ﬂ><(—T,T)) + 31)\1/ /€2S"|iatq + QAQ|2 dx dt (25)
T JQ

T T
<C {s)\/ / e 20,q|* 0,8 do dt+/ /6_25” |Hq|? dz dt| .
—7 Jr+ T JQ



Proof:
We have to estimate the scalar product

T 4 3

with

(/T / (i0¢)) (—isdn b) dx dt) Iio =R (/jﬂT/Q(i@tw)(QasVn V) dx dt) ,

I3 = (/ / (i0:) (sV - (aVn)Y) dx: dt) Iy =% (/_TT/Q(aAw)(—isam P) dx dt) ,
Ino =R (/_T /Q(aAw)(2asVn V) dx dt) , T3 =% (/_TT /Q(aAw)(sV - (aVn) ) dx dt) ,
Is1 =R (/‘_Z/Q(SQa|Vn|21/J)(fisam ) dx dt) , Isa =R (/_TT/Q(S2a\Vn\2w)(2asVn V) dx dt) ,
Iz =R (/; /9(52a|vn|2w)(sv -(aVn) ¥) dx dt) , Iy =% (/jT /Q((b — sV - Va))(—isdn ¢) d dt) ,

Igp =R (/; /Q((b — sVn - Va))(2asVn - V) dx dt) , Iiz =R (/; /Q((b —sVn-Va))(sV - (aVn) ¥) dx dt) .

Following [1], using integrations by part and Young estimates, we get (2.4).
Moreover from (2.3) we have:

i0,q + alAq = Myq — s*a|Vn|*q¢ + (b — sVn - Va)q.
So

10iq + alAq = €"My(e *"q) + isOmq — ae®"A(e™*")q — 2ae*"V (e *") - Vq
s*a|Vn*q + (b — sVn - Va)g.

And we deduce (2.5) from (2.4).



2.2 The Crucial Lemma

We recall in this section the proof of a very important lemma proved by
Klibanov and Timonov (see for example [14], [15]).

Lemma 2.4. There exists a positive constant k such that

e~ Ndydt < — / / lq(z, ) |Pe”*"dxdt,

for all s > 0.

Proof :
By the Cauchy-Schwartz inequality, we have
e~ 2 dxdt

*QS"dxdt< / /
(2.6)
< /Q /0 Tt( /0 t|q(:c,£)|2d§) e 2yt 4 /Q /_ OT(—t) ( /t O\Q(x,f)\Qdé) 2t

Note that
8( f2sn(m,t)) - _9 ( 20K Aﬁ(m)) 2t —2sn(x,t)
i (e = —2s(e e 7(7@ — t2)2€ .
So, if we denote by a(z) = e — M@ we have
T% —1?)
t —2sn(z,t) _ _(78 —2sn(x,t) )
‘ 4sa(x) (e )

For the first integral of the right hand side of (2.6), by integration by parts
we have

// (/ le(=.£) Qdé) ¢t = // (/ la(z, ) 2d§)< 45_04?)) (e~ ) dt da

+/Q/OT (/Ot |Q(:E,§)|2d§) 7“?&_@?2)6_25%75 dz.
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Here we used a(x) > 0 for all € Q and we obtain

[ [ ([ o) e < g (<) [ [ o #ncziortpasar

Similarly for the second integral of the right hand side of (2.6)

[ [0 ([ ttepac) i < L () [ [ty

Thus the proof of Lemma 2.4 is completed.

3 Stability result

In this section, we establish a stability inequality for the diffusion coefficient
a and the potential b.
Let g € C3(2 x (0,T)) be solution of

10iq +alAq+bg =0 in Q x (0,7),
q(z,t) = F(x,t) on 002 x (0,7,
q(z,0) = qgo(x) in Q,

and ¢ € C*(Q x (0,T)) be solution of

i+ aAG+bG=0 in Qx (0,7T),
G(z,t) = F(x,t) on 99 x (0,7,
20e.0) = go(a) i O

where (a,b) and (@, b) both satisfy Assumption 2.1.

Assumption 3.1. o All the time-derivatives up to order three and the
space-derivatives up to order four for ¢ exist and are bounded.

Ag
o There exists a positive constant C' > 0 such that |G| > C, |8t( )\ > C,
~ q
Ag| > —)| >C.
1801 2 €. o) =

® qo is a real-valued function.



Since g is a real-valued function, we can extend the function ¢ (resp. q)
on Qx (=T,T) by the formula g(z,t) = q(x, —t) for every (z,t) € Qx(=T,0).
Note that this extension satisfies the previous Carleman estimate. Our main
stability result is

Theorem 3.2. Let q and q be solutions of (1.1) in C*(2 x (0,T)) such that
q—q € H*((-T,T); H*(Q)). We assume that Assumptions 2.1, 2.2, 3.1 are
satisfied. Then there exists a positive constant C' = C'(2, T, T) such that for
s and X\ large enough,

T _ T
/ / e 2 ([a—al*+|b—b|?) da dt < CsA? / / p e 219, 0,(9;q—0;q)|* do dt
_rJa -T JI+

L / / em(g\az(q—q~><.,o>\2+v<q—q><.,o>|2

O (q - D)0 + A — q><.,o>|2) de dt.
Therefore

la —all2) + 10 =072y < ClOu(879) — D (D2 11y 0+
2
+ O3 118~ DO By,
=0

where the previous norms are weighted Sobolev norms.

Proof: .
We denote by u =q¢ — ¢, « =a —a and v = b — b, so we get:

10w 4+ aAu + bu = aAG+vq in Qx (=T,T),
u(z,t) =0 on 90 x (=T,T), (3.7)
u(z,0) =0 in Q.

The proof will be done in two steps: in a first step we prove an estimation
for o and in a second step for ~.

First step: We set u; = 2 Then from (3.7) uy is solution of
q

Ag

10u1 + aAuy + buy + Ajqug + B - Vuy = aTq +v in Qx (=T,T),
q

ui(z,t) =0 on 00 x (=T,T)



0vq Aq 2
where A;; = z%q + a—Nq and By = —?V(j.
q

Then defining uy = Oyu; we get that uy satisfies

A
i@tug + G,AUQ + bUQ + Z?:l Aigui + Z?:l Big . VUZ = a@t(?q) in Qx (—T, T),
us(z,t) =0 on 00 x (=T1,T)

where Ay = aﬂ%ﬁlla Ay = A11, By = atBu, By = Byy.
Now let us = 2
a,(39)

’iatU3 + CLA’Ug + bU3 + Z?:l Aigui + Z?:l Big . VUZ =a in QX (—T, T),
ug(z,t) =0 on 00 x (=T,T)

, then wus3 is solution of

(3.8)

where A;3 and By are bounded functions.

A
q), then

If we denote by g = 9y(

1 1 1, . 1 1 2a
Az = —Arg, Apz = —Agy, Azz = —(i0,g + Ag), Biz = —Bia, B3 = —By, B33 = —Vg.
g g g g g g
At last we define uy = O,us and w4 satisfies

i@tu4 -+ CLAU4 -+ bU4 -+ Z?:l AMUZ‘ —+ Z?:l Bi4 . Vul =0 in QX (—T, T),
{ ug(z,t) =0 on 00 x (=T,T)

where A;; and By, are still bounded functions. Note that A4 = 0;A13, Ay =
OpAgs + Ars, Agy = 0y Asg + Ap30,g + Bas - V(0rg), Aus = Agzg + Asz + Bos -
Vg, Biy = 0,Bi3, Boy = 0,83+ B3, B3y = 0;B33+0,9B23, Bay = B3+gDBos.
Applying the Carleman inequality (2.5) for uy we obtain (for s and A suffi-
ciently large):

T T
3\ / / e %M uy|? do dt + sA / / e 2 Vuy|? dr dt (3.9)
_TJaQ T JQ

T
+3_1)\_1/ / e~ 2Mi0yuy + alAuy|* dx dt
-1 Jo

T 3 T
s)\/ / e 210,us)? 0,8 do dt + Z/ /625" (Jui)® + |Vwi|?) dz dt| .
—rJr+ = J-rJa

10
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Note that ffT Jo e *MNui|? do dt = fTT Jo €2 [ Oua|? da dt, so from
Lemma 2.4 we get

T C T
/ /ern\ul\Q dx dt < —/ /ern\ug\Q dx dt
—-TJO S J-rJa
< / / e~ M uy|? d dt + —/ / 2 ug(., 0)|? da dt.

By the same way, we have

T T
/ /623"|Vu1\2 dx dt < 92/ /ern\Vu4\2 dx dt
—-TJQ S T JQ
T
—/ / e 21| Vus(.,0)|* dr dt + C/ / e M Vuy(.,0)|* dx dt.
~rJa

So (3.9) becomes

T T
3)\4/ / e~ %M uy|? dx dt + s)\/ / e 2| Vuy|? do dt (3.10)
—T7JQ -TJQ

T T
—l—sl)\l/ / e~ Miduyt+alugy)?® dr dt < Cs)\/ / e 2 0,uyl? 0,8 do dt
T JT+

+C/ / 2 (Jug(., 0) 2 + |Vus(., 0)]* + Vu (., 0)|%) dz dt.

Furthermore from (3.8) we have (with C' a positive constant)

3
a2 < C (\iam +alusl® + ) (Juil* + \Vuz-|2)> :

=1

Therefore for s sufficiently large, from Lemma 2.4

T T
/ /6_28"|0z|2 dx dt < g/ /6_28" (|i0sus + alus|® + |ua]® + |Vua|*) dz dt
—TJQ s JotJa
T T
e / / 2| (ihug + alug)(0)2 d dt + C / / 2V (., 0)| da dt
-TJO T JQ

11



+C/ / 25 (Jug (., 0) > 4+ |Vus(.,0)[) dx dt.

Using (3.10) we get

T
/ / e MNal* dr dt < C’s)\/ / e 20, uyl? 0,8 do dt
T JIt

C g —2s : 2
+ - e "(i0ug + aAusz)(.,0)|* dx dt

+ / / e 2| Vuy(.,0)|? do dt
+ / / 2 (Jug(., 0)* 4 |Vus(., 0)?) dx dt

and then

v T
—/ / e ?al? dr dt < C’s)\/ / e 2MQ,uyl* 0,8 do dt  (3.11)
AJorJa —r Jr+

+C/ / 23"<Z|3Z 0)* + V(. )|2+|3tVu(.,O)|2+|8tAu(.,O)|2> d di.

Second step: By the same way we obtain an estimation of v. We set

U V2
Vg = &fvl, U3 =

Aq’ 0z

V1 =

Following the same methodology as in the first step, we obtain:

1 [T T
—/ / e 2y ? dr dt < CS)\/ / e ,uy* 0,8 do dt  (3.12)
AJorJa —r Jr+

+C/ / o (Z |0u(, 0)” + [Vu(., 0)|* + [, Vu(., 0)]* + |8tAu(.,O)|2> dx dt.

From (3.11) and (3.12) we can conclude.
Remark 3.3. 1. Note that the following function G(z,t) = e " + z3 + 5

2
5 -
with a(x) = T2 ¥ , b(x) = —1 satisfies Assumption 3.1.

12



2. This method works for the Schrodinger operator in the divergential

form:
i0iq + V - (aVq) + bq.

We still obtain a similar stability result but with more restrictive hy-
potheses on the reqularity of the function q.

Acknowledgment: We dedicate this paper to the memory of our friend and
colleague Pierre Duclos, Professor at the University of Toulon in France.
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