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The interaction of localized states in an open 1D random system is studied experimentally and the-
oretically by manipulating their frequencies with changes in the internal structure of the sample. As
the frequencies of two states come close, they are transformed into multiply-peaked quasi-extended
modes. Level repulsion is observed experimentally and explained in terms of a model of coupled
resonators. The spectral and spacial evolution of the coupled modes is described in terms of the
coupling coefficient and Q-factors of resonators.

PACS numbers: 42.25.Dd, 78.70.Gq, 78.90.+t

Transport in open disordered media can be diffusive
or localized, depending on the nature of the underlying
quasimodes, which are, respectively, spread throughout
the sample or exponentially peaked at random points,
with a typical size given by the localization length [1–3].
The spatial overlap of localized modes which are close in
frequency, couples these states and leads to the forma-
tion of a series of exponential peaks known as necklace
states [4–8]. These states are short-lived with broadened
spectral lines [7, 9] and contribute substantially to the
overall transmission in samples much thicker than the lo-
calization length, L À lloc [6, 8]. Though such hybridized
states are critically important in transport and may play
an important role in the localization transition, their for-
mation and the correlation between spatial and spectral
properties has not been explored.

In this Letter, we study the transformation of localized
states in a random sample as its configuration is altered
and the coupling and hybridization of modes take place.
Although level repulsion is ordinarily attributed to the
diffusive regime [10, 11], the energy level correlation and
repulsion in electron 1D localized systems has been found
theoretically and numerically [12, 13]. Here we present
the first experimental evidence of the level repulsion of
the localized electromagnetic excitations. A simple the-
oretical model is introduced which explains the spectral
and spatial characteristics of coupled modes in terms of
the loss and the coupling strength.

The experiment involves a rectangular microwave
waveguide opened at both ends, which supports only a
single transverse mode [8]. The waveguide is filled with
a sample comprised of five 4 mm-thick blocks each of
low and high indices of refraction randomly mixed with
31 randomly oriented 8 mm-thick binary blocks with low
and high index halves. The field inside the sample is

FIG. 1: (Color online.) Resonant frequencies of excited local-
ized modes vs. the driving parameter - the air gap inside the
sample. Five pair-interaction regions are circled.

weakly coupled to a cable which is translated along a 2-
mm-wide slot cut along the waveguide in 1 mm steps. A
sliding copper plate is pressed over the slot to eliminate
leakage through the top of the waveguide. Field spectra
are measured using a vector network analyzer.

Measurements are made in a sequence of configura-
tions in which the spacing between two segments of the
sample at a depth of 60 mm is increased in steps of 0.5
mm up to a maximum thickness of 14 mm. The spacing
increment is sufficiently small to allow the identification
of corresponding modes in configurations with different
spacings. The position at which the air gap is introduced
was chosen to correspond to the peak of a single local-
ized mode. This allowed us to manipulate the frequency
of the selected mode in the range from 14.5 to 16.5 GHz,
which covers most of the band gap in the associated peri-
odic sample. This is reminiscent of the tuning of a defect
states through a band gap in a periodic structure as the
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FIG. 2: (Color online.) Experimentally measured normalized
wave intensity vs. frequency and coordinate inside the sample
for two localized modes corresponding to region 2 in Fig. 1 at
different values of the driving parameter. Excitations corre-
sponding to the two effective resonators are circled.

defect width is increased up to a half-wavelength thick-
ness. The mode frequency shifts across the frequencies
of other localized states which makes it possible to study
the coupling of two modes. We have also verified numer-
ically that by changing the air spacing at other points in
the sample at which other modes are peaked, it is pos-
sible to couple several localized modes, thereby creating
necklace states extended throughout the sample.

The spectral positions of the localized states as func-
tions of the air gap introduced into the sample are plotted
in Fig. 1. The frequencies of modes may cross or exhibit
an anti-crossing. In the latter case (regions 1,2,4,5 of
Fig. 1), the coupling within the sample is accompanied
by an exchange of shape, as is seen in Fig. 2. When the
frequencies of the modes are closest, the two localized
states couple into double peaked quasi-extended modes
with the same spatial intensity distribution, Fig. 2b and
c. In contrast, region 3 in Fig. 1 shows a mode cross-
ing in which the shapes are not exchanged. This is seen
in Fig. 3 which shows the driven mode passing through
the broad mode closest to the input. The two modes
remain practically independent of each other, except for
the low-intensity zone (dark horizontal line in Fig. 3) at
the input mode which traces the destructive interference
with the driven state.

Resonant wave transmission through an isolated local-
ized state in a random sample can be described by a
simple model of a wave tunneling through a resonator

FIG. 3: (Color online.) The same as in Fig. 2 for interaction
region 3 in Fig. 1.

with semitransparent walls [2, 14, 15]. Dynamics of the
field in the resonator obeys the oscillator equation with
an external force and damping, which accounts for the
incident wave and the finite Q-factor of the resonator,
respectively [15, 16]. Extending this model to the case of
N localized states which are close in frequency, we arrive
at a system of N coupled oscillators with the external
force acting on the first of these:




ψ′′1 + Q−1
1 ψ′1 + (1−∆1)

2
ψ1 = q1 2ψ2 + f0e

−iντ ,
...

ψ′′l + Q−1
l ψ′l + (1−∆l)

2
ψl = ql l+1ψl+1 + ql l−1ψl−1 ,

...

ψ′′N + Q−1
N ψ′N + (1−∆N )2 ψN = qN N−1ψN−1 .

(1)
Here ψi (τ) is the field in the ith resonator, τ = ω0t
is the dimensionless time (ω0 is a characteristic central
frequency of the problem), 1 − ∆i (|∆i| ¿ 1) is the di-
mensionless eigenfrequency of ith resonator, Qi À 1 is
the Q-factor describing the losses of the energy in the ith
resonator, qi i+1 = qi+1 i ¿ 1 is the coupling coefficient
of ith and (i + 1)th resonators due to the spatial overlap
of their modes; f0 and ν, (|ν − 1| ¿ 1) are the ampli-
tude and frequency of the external field exciting the first
resonator. The Q-factors can be written as [16]:

Q−1
i = Γi (1 < i < N) , Q−1

1,N = Γ1,N +
vgTin,out

2lω0
, (2)

where Γi is the dissipation rate in the ith resonator,
Tin,out are the transmission coefficient of the input and
output of the system, vg is the wave group velocity inside
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FIG. 4: (Color online.) Field amplitudes |A1,2|2 (6) in the two
resonators as functions of the incident field frequency ν and
detuning ∆ between the resonators. The underlying frequen-
cies δν±res (7) are depicted by the dashed lines. Parameters
are: f0 = 1, q = 0.2, and Q−1 = 0.1 (Q−1 < q regime).

the resonator cavity, and l is the cavity length. The last
term in Eqs. (2) accounts for the energy leakage through
the outermost resonators [15, 16].

To establish the correspondence between the model (1)
and localized states in a random sample, we assume, fol-
lowing [14, 15], that ψi represents the peak field of ith
localized state, qi i+1ψi is the amplitude of the field pen-
etrating into the adjacent cavity, and f0 is the amplitude
of the incident wave, ψ0, penetrating into the first local-
ization cavity. Since the localization length is the only
disorder-induced spatial scale in the problem, we have

qi i+1 ' exp (−di i+1/lloc) , f0 ' ψ0 exp (−din/lloc) ,

Tin,out ' exp (−2din,out/lloc) , l ∼ lloc . (3)

Here di i+1 = |Xi+1 −Xi| is the distance between adja-
cent states at coordinates Xi+1 and Xi, whereas din =
X1 and dout = L −XN are the distances from the edge
localized states to the corresponding ends of the sam-
ple. Deterministic equations (1)–(3) provide an effective
description of coupled modes in 1D random system.

Substituting ψi = Ai exp ( −iντ), the set of equations
(1) is reduced to an algebraic equation Ĥ ~Ψ = ~F with

Ĥ =




C1 −q1,2 ... 0 0
−q1,2 ... −ql−1,l 0 0

... −ql−1,l Cl −ql,l+1 ...
0 0 −ql,l+1 ... −qN−1,N

0 0 ... −qN−1,N CN




,

(4)
~Ψ = (A1, ..., AN )T , and ~F = f0 (1, 0, ..., 0)T , where
Ci = (1−∆i)

2 − ν2 − iνQ−1
i ' 2 (1−∆i − ν) − iQ−1

i .
The homogeneous equation Ĥ ~Ψ = 0 determines a set
of independent eigenmodes of the system, with eigenfre-
quencies being the eigenvalues of the matrix (4).

For the sake of simplicity, we consider the case of two
interacting modes, N = 2, and assume that Q1 = Q2 ≡

FIG. 5: (Color online.) The same as in Fig. 4 for the param-
eters q = 0.2 and Q−1 = 0.25 (Q−1 > q regime).

Q and q1 2 ≡ q. Then, the complex eigenfrequencies ν± =
1 + δν± are given by

δν± = −∆1 + ∆2

2
− i

Q−1

2
± 1

2

√
(∆1 −∆2)2 + q2, (5)

This equation describes anti-crossing of levels (level re-
pulsion) which occurs at finite q 6= 0, when the modes
of isolated resonators couple into collective eigenmodes.
The minimal frequency gap q is achieved at resonance,
∆1 = ∆2. Away from the resonance, |∆1 −∆2| À q, the
eigenmodes tend to the modes of isolated resonators, ex-
changing when passing through the resonance, i.e., + (−)
eigenmode corresponds to the first (second) resonator at
∆1 ¿ ∆2 and to the second (first) one when ∆1 À ∆2.
It is important to note that the level repulsion of elec-
tromagnetic modes takes place in the regime of strong
localization, cf. [13].

If the system is excited by an incident monochromatic
wave with the real frequency ν = 1 + δν, as it is in the
experiment, the complex amplitudes A1,2 in the two res-
onators can be obtained from Ĥ ~Ψ = ~F , which yields

A1 = −
[
2 (∆2 + δν) + iQ−1

2

]
f0

D
, A2 =

qf0

D
, (6)

D =
[
2 (∆1 + δν) + iQ−1

1

] [
2 (∆2 + δν) + iQ−1

2

]− q2

Behavior of |A1,2|2 is essentially determined by the de-
nominator |D|2, which is minimal at frequencies

δν±res = − (∆1 + ∆2)
2

± 1
2
Re

√
(∆1 −∆2)2 + q2 −Q−2.

(7)
The amplitudes A1,2 and frequencies δν±res characterize
resonant excitation of the system by an external source.
Note that Eq. (7) coincide with Eq. (5) only in the
lossless case Q−1 = 0. Otherwise, there are two dif-
ferent regimes of the excitation of coupled resonators,
determined by the ratio between losses Q−1 and cou-
pling q. If losses are small, Q−1 < q, two branches δν±res
demonstrate anti-crossing with the minimal frequency
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FIG. 6: (Color online.) Experimentally measured and theo-

retically calculated (Re
√

q2 −Q−2) minimal frequency gaps
for pairs of interacting modes 1,2,4,5 presented in Fig. 1.

gap
√

q2 −Q−2, Fig. 4. If losses prevail over the cou-
pling, so that Q−1 > q, the frequencies δν± merge in the
interaction region (∆1 −∆2)2 ≤ |q2 −Q−2|, Fig. 5.

The amplitudes (6) as functions of the frequency ν and
detuning (∆1 −∆2) are shown at Q−1 < q and Q−1 > q
in Figs. 4 and 5, in which the main features observed ex-
perimentally are seen (different values of ∆ correspond
to different frames of Figs. 2 and 3). To facilitate com-
parison with the experimental Figs. 2 and 3, the second,
output resonator is driven in Fig. 4 (∆1 ≡ 0, ∆2 ≡ ∆),
while the first resonator is driven in Fig. 5 (∆1 ≡ ∆,
∆2 ≡ 0)). In the regime Q−1 < q, it is seen in Figs. 2 and
4 that in the interaction region (Figs 2b and c) fields in
both resonators exhibit double-peaked spectra (level re-
puslion). Collective excitation of two resonators signifies
formation of a quasi-extended necklace state there. Re-
markably, away from the resonance (Figs. 2a and d) the
first resonator is effectively excited at one of the resonant
frequencies, close to δν = −∆1, Fig. 4a) while the second
resonator is equally excited at both the resonant frequen-
cies δν±res ' ∆1,2 (Fig. 4b). In the regime Q−1 > q, both
Figs. 3 and 5 show that the second resonator is excited
with a single-peak spectrum (Fig. 5b), while the first one
exhibits two peaks separated by a dark area driven with
the frequency of the second resonator (Fig. 5a) [17].

The measured and calculated values of the frequency
gap between coupled modes are presented in Fig. 6. The
parameters of the system are:

ω0

2π
' 15.5GHz, lloc ' 12mm, ω0Γ ' 7× 107s−1, (8)

and vg ' c/2.4, whereas positions of the localized modes
interacting in the regions 1–5 (Fig. 1) equal, respectively:

X1 ' 64 : 64 : 7 : 64 : 64 mm ,

X2 ' 117 : 192 : 64 : 128 : 235 mm . (9)

Substituting values (8) and (9) into Eqs. (2) and (3)
yields Q−1

1,2 and q. We calculated minimal frequency gap

for interacting pairs 1,2,4,5 (for which Q−1
1 ∼ Q−1

2 [17])
as Re

√
q2 −Q−2 with Q−1 = (Q−1

1 + Q−1
2 )/2, and com-

pared with the measured gap from Fig. 1. Fig. 6 shows
good agreement between the experiment and model.

In conclusion, we have observed level repulsion in the
localization regime and have shown that it reflects the
coupling of localization centers. The occurrence of anti-
crossing or crossing of quasimodes as a sample configu-
ration changes depends upon the ratio of the coupling
strength between localized states and loss. These factors
determine the statistics of nearest neighbor spacings and
correlation in the widths of neighboring modes and thus
the nature of wave propagation.
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