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Recent Advances in the Study of Micro/Nano Robotics in France

Hui Xie, Michaél Gauthier, Philippe Lutz, Stéphane Régnier, Nicolas Chaillet

Abstract—1In France, during the last decade, significant
research activities have been performed in the field of micro and
nano robotics. Generally speaking the microrobotic field deals
with the design, the fabrication and the control of microrobots
and microrobotic cells. These microrobots are intended to
perform various tasks in the so-called Microworld. The scale
effects from macroworld to microworld deeply affect robots
in the sense that new hard constraints appear as well as new
manufacturing facilities. Concerning the nanorobotics, in order
to achieve high-efficiency and three-dimensional nanomanipula-
tion and nanoassembly, parallel imaging/manipulation force mi-
croscopy and three-dimensional manipulation force microscope,
as well as nanmanipulation in the scanning electron microscope,
have been developed. Manipulation of nanocomponents, such as
nanoparticles, nanowires and nanotubes, have been addressed
to build two-dimensional nano patterns and three-dimensional
nano structure.

I. INTRODUCTION

In France, micro/nanorobticis research are mainly ad-
dressed at two institutes: (i) Automated Systems for Micro-
manipulation and Microassembly (SAMMI) group of AS2M
Department of FEMTO-ST in Besangon, France. (ii) Institut
des Systemes Intelligents et Robotique (ISIR), Université
Pierre et Marie Curie-Paris VI/CNRS, 4 Place Jussieu, 75005
Paris, France.

At FEMTO-ST, significant activities have been performed
in micro/nanorobotics:

1) Design, fabrication and the control of microrobots and

microrobotic cells.

2) Research on micro scale effects.

3) Micro force sensing and control.

4) Techniques on micro/nano positioning.

5) Design and fabrication micro-grippers.

At ISIR, research activities on micro/nanorobotics are
mainly focused on:

1) Design, fabrication and the control of microrobots.

2) Develop haptic devices for macro-micro/nano cou-

pling.

3) Micro/nano physics phenomena.

4) High-efficiency and three-dimensional

nanomanipulation and nanoassembly.

5) Nanomanipulation and nanoassembly in scanning elec-

tron microscope.
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This paper is organized as follows: research on micro-
robots at FEMTO-ST and ISIR will be introduced in section
II. In section III, nanomanipulation and nanoassembly at
ISIR will be discussed and section IV concluded the paper.

II. MICROROBOTS RESEARCH AT FEMTO-ST AND ISIR

A. Micromanipulation and Microasembly at FEMTO-ST

In this framework, most of the research of the
SAMMI (Automated Systems for Micromanipulation and
Microassembly) group of AS2M Department of FEMTO-ST
in Besancon, France, deals with the micromanipulation and
micro assembly issues. More precisely, FEMTO-ST deals
with robotic motions, perception, control and manipulation
at the microscale and also new activities at the nanoscale.

It corresponds to various and multidisciplinary scientific
issues:

1) Microrobotic and adaptronic systems: systems for
feeding, carrying, gripping, micrometer size and mi-
crofabricated robotics, strategies for microassembly.

2) Advanced control of dynamic and complex systems:
modelling and control of microactuators microsys-
tems, and smart materials, of discrete or continuous
distributed systems, control by exteroceptive sensors
notably by vision.

3) Micromanipulation and microassembly: characteriza-
tion of the interactions in the microworld, strategies for
microhandling based on physical principles relevant at
this scale.

4) Perception and measurement: measure of microforces
and artificial vision.

An overview of the femto-st activities in micro and
nanorobotics is given below, included the main references.

1) Modelling and Simulation: The characterisation (mod-
elling or measurement) of the specific forces of microscale is
necessary to design robotic systems for micromanipulation.
The study of micromanipulation strategies is usually limited
by two major problems: (i) the lack of microforce models
usable by the robotic community, (ii) the shortage of force
sensors really suitable to measure these effects. Current
works in FEMTO-ST and ISIR institutes deal with the devel-
opment of scientific platforms to address these issues. We are
focusing on: (i) simulation of the behavior of micro-objects
to improve the design of new microrobotic methods and, (ii)
the measure of the forces to validate the simulations (see in
figure 1). These works enables to increase the knowledge of
the microworld phenomena necessary to the development of
microrobotic scientific activities [1-4, 21].
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Fig. 1. Examples of a distance-force curves measured with an AFM in

order to characterized the interaction forces between microgrippers and
micro-objects : This curves show the impact of the Ph of a solution on
the interaction between functionnalised surfaces, the behaviour is attractive
at natural pH and repulsive in case of basic solution [23,24].

2) Robotic Microhandling Methods: The development
of new robotic microhandling methods is a key point to
fabricate hybrid micro-systems as well as micromechatronic
products. At present, the release task is the most critical
and unreliable phase because of the impact of the surface
forces and adhesion forces. Theoretical and experimental
comparative analysis between the water medium and the air
show that both types of medium show the potential interest
of the liquid in micromanipulation applications [3, 4]. In fact,
surface and adhesion forces decrease significantly in water
while the hydrodynamic force increases. Both phenomena
are able to reduce respectively the electrostatic and adhesion
perturbations and the loss of micro-objects. Manipulation
of artificial objects in water is consequently a promise to
obtain reliable handling. Some submerged microhandling
strategies have been studied in FEMTO-ST (see in figure
2). Negative dielectrophoresis can be used to control the
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Fig. 2. Microhandling strategies. (a) Handling by submerged ice [25]. (b)
Dielectrophresesis release [22]. (c¢) Manipulation with tweezer [29]
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Fig. 3. Assembly of an optical microbenches at FEMTO-ST. (a) Mi-
croassembly system configuration. (b) Micromachined rail. (c) Manipulation
result.

release of an object grasped with a two-fingered gripper
[22]. Submerged freeze gripping enables the grasping with
high blocking force and the release of micro-objects without
adhesion perturbations [25]. At least, chemical properties
of the medium (e.g. pH) can be used to directly control
the surface behavior of functionalized objects and gripper.
This chemical control is able to switch interactions between
gripper and object from attraction to repulsion [23, 24].

3) Microrobotic and Adaptronic Systems: About micro-
robotic systems, we design and realize microrobots based
on the used of actuators adapted to the small size. Notably,
we propose modelling and control of smart materials like
piezoelectric materials, shape memory alloys and magnetic
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Fig. 4.  Example of a microassembly done with a robotic platform
of FEMTO-ST. (a) Micro-object on the substrate. (b) Assembly of 2
microojects. (c¢) Assembled microobjects.
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(a) A photo of the 3DMS. (b) System configuration of the 3DMS. (c) A microscopic image captured during the pickup operation of a microsphere

using the nanotip gripper. The bottom insert shows the pick-and-place manipulation scheme with a nanotip gripper. The scale bar represents 20 pm. (d)
A zoomed figure shows the scheme of grasping operation with a nanotip gripper [31].
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Fig. 6. Assembly results. (a)C(c) show three images intercepted from
assembly process of the first layer of the micropyramids. (d)C(f) depict
assembly process of the second layer of the micropyramids. The images
(a)C(f) are captured under magnification of 20 pm. (g) The 3D microassem-
bly results under magnification of 100x, in which the scale bar represents
5 pm [31].

shape memory alloys [5-9, 16, 17]. The smart actuators
are redesigned to integrate new microrobotics structures that
give interesting repeatability, precision and dynamics. These
structures can be included in air or liquid media [10-15].
The control of MEMS and particularly of nanotwezeers is
also a research activity in femto-st. The aim is to develop
control techniques that enable to reach very high precision,
under the nanometer when comb drive actuators are used or
piezo actuators. A last explored domain is the proposal of
advanced control for smart surfaces.

In order to test our original strategies, some microassembly
platforms have been built and integrated several elementary
works presented above. We focus our works on the study
of the packaging and the assembly of silicon microparts in
order to produce microscopic assembly systems [27, 28]. An
original hybrid method between adhesion manipulation and
standard gripping has been proposed [29]. A complete tele-
operated robotic structure included micropositioning stages,
vision capabilities, piezogripper with silicon end-effectors,
has been built. Our micro-assembly demonstrators are able
to perform (i) teleoperated assembly of micro-objects in 30
seconds; (ii) automatic pick-and-places along two degrees of
freedom in an open loop with a time cycle of 1.8 seconds;
(iii) automatic pick-and-places along four degrees of freedom
using visual servoing in 90 seconds (see in figure 2) Note
that an application field for microassembly is the realization
of microoptical benches. We have designed holders and
supports with rails to obtain reconfigurable and adjustable
benches (see in figure 3). In the point of view of the control,
we have proposed hybrid force/position control to guide



optical holders in the rails.

B. Micromanipulation and Microasembly at ISIR

Three-dimensional (3-D) automated micromanipulation at
the scale of several micrometers using three-dimensional
micromanipulation system (3DMS) with a nanotip gripper
has been developed at ISIR [31]. The gripper is constructed
from protrudent tips of two individually actuated atomic
force microscope cantilevers (seen in Fig. 5); each cantilever
is equipped with an optical lever. A manipulation protocol
allows these two cantilevers to form a gripper to pick-
and-place microobjects without adhesive-force obstacles in
air. For grasping, amplitude feedback from the dithering
cantilever with its normal resonant frequency is used to
search a grasping point by laterally scanning the side of
the microspheres. Real-time force sensing is available for
monitoring the whole pick-and-place process with pickup,
transport and release steps. For trajectory planning, an
algorithm based on the shortest path solution is used to
obtained 3-D micropatterns with high levels of efficiency. In
experiments, twenty microspheres with diameters from 3 pm
to 4 um were manipulated and five 3-D micropyramids with
two layers were built (seen in Fig. 6). 3-D micromanipulation
and microassembly at the scale of several microns to the
submicron scale could become feasible through the newly
developed 3-D micromanipulation system with a nanotip

gripper.
III. NANOROBOTICS RESEARCH AT ISIR
A. Two-Tip Atomic Force Microscope

The Two-Tip Atomic Force Microscope is equipped with
an optical microscope (Olympus BXS50WI) and two sets
of devices commonly used in a conventional AFM, mainly
including two cantilevers with two sets of nanopositioning
devices and optical levers. As shown in Fig. 1 (a), one XYZ
piezoelectric actuated nanostage (MCL Nano-Bio2M) with
a maximum scan range of 50 pym x 50 pym x 50 pm and
a XYZ piezotube (PI P-153.10H) with a scan range of 10
pm X 10 ym x 10 pm are used. Note that hysteresis of
the piezotube are well compensated by PI operator [32]. The
AFM cantilevers with protrudent tips (ATEC-FM), as shown
in right inset of Fig. 1 (a), are employed as end-effectors for
image scanning and manipulation. Two sets of optical levers,
typically composed of a laser and a quadrant photodiode,
are arranged on two vertical planes and used to detect
actions of cantilevers during the manipulation, as shown in
Fig. 1. This system can be used for high-efficiency parallel
nanomanipulation and three-dimensional nanomanipulation.

B. PFarallel Manipulation Force Microscopy

The atomic force microscope (AFM) has been widely
used to manipulate nanoparticles, nanowires and nanotubes
for applications, such as, nano-structure building, nano-
characterization and bio-manipulation. However, conven-
tional AFM-based nanomanipulation is inefficient because
of the serial scan-manipulation-scan process involved. In this
paper, high-efficiency automated nanomanipulation with the
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System configuration of the Two-Tip Atomic Force Microscope

developed parallel imaging/manipulation force microscope
(PIMM) is presented. With the PIMM, image scan and
nanomanipulation can be performed in parallel through the
collaboration between two cantilevers: one cantilever acts as
an imaging sensor and the other is used as a manipulating
tool. Two automated manipulation schemes were introduced
for normal- and high-speed image scanning, respectively.
An automated parallel manipulation task is managed by
system control software with multi-thread through a pro-
cedure of dynamic image processing, task planning, two-
tip collaboration, and a controlled nanoparticle pushing with
the force or amplitude feedback from both the cantilevers.
The efficiency of automated parallel nanomanipulation with
normal-speed image scanning was validated by building
nanoparticle patterns [33].

A parallel manipulation results is shown in Fig. 8. High-
speed image scan is not yet available on the current system.

Manipulation 100 nm

tip

(a) (b)

Fig. 8. A parallel imaging/manipulation result with a normal-speed image
scan of tip I. (a) Emergences of four particles (with a diameter of 74nm
- 82nm) on four different dynamic displays, namely, image I to IV. Once
one particle has been fully scanned, a corresponding manipulation task will
be activated to push it to its destination. (b) A manipulation result. Four
nanoparticles were pushed along a line within the frame period of the image
scan. The total manipulation time for these four particles was less than one
minute, which is much less than the entire imaging time of ten minutes
[33].



However, a parallel image/manipulation task was performed
with a normal-speed image scan on the PIMM we developed.
Manipulation results are shown in Fig. 3, in which four Ag
nanoparticles with a diameter of 74 nm-82 nm, emerged on
dynamic image I to IV in sequence, were pushed onto the
image midline during the image scan. In the experiment, the
frame period was about ten minutes. In contrast, the total
manipulation time of these four nanoparticles was less than
one minute with a pushing velocity of about 300 nm/s. These
results indicate that we can complete a more complex ma-
nipulation task during the image scanning thread to greatly
increase the efficiency of the AFM-based nanomanipulation
and making mass production feasible.

C. 3-D Nanomanipulation and Nanoassembly

Applications of the conventional atomic force microscope
(AFM) succeeded in manipulating nanoparticles, nanowires
or nanotubes by widely used pushing or pulling operations on
a single plane. However, pick-and-place nanomanipulation is
still a challenge in the air. In this paper, a modified two-
tip AFM (seen in Fig. 7), called three-dimensional (3D)
manipulation force microscope (3DMFM) was developed,
aiming to achieve the pick-and-place in the air. This sys-
tem mainly consists of two microcantilevers and each is
quipped with a nanopositioning device and an optical lever,
constructing a nanotweezer with capabilities of picking and
releasing nanoobjects with force sensing. Before the 3D
manipulation, one of the cantilevers is employed to position
nanoobjects and locate the tip of another cantilever by
image scanning, then these two cantilevers fit together as
a nanotweezer to grasp, transport and place the nanoobjects
with real-time force sensing. In pick-and-place experiments,
silicon nanowires (SiNMs) with different diameters were
manipulated and 3D nanowire crosses were achieved [34].
3D nanomanipulation and nanoassembly in the air could
become feasible through the newly developed 3DMFM.

Figures 9 exhibits the 3D manipulation of the SINWs with
a diameter of 25 nm (top) ~ 200 nm (root). A scanned image
9 pum x 9 pm is shown in Fig. 9 (a), which includes the
topographic image of several nanowires, and of course also
involves the local image of Tip II (see the insert). A Grasping
location of the nanowire are marked with a short green line
A—A, where the nanowire has a height of 166 nm, as seen
in the top insert. Fig. 9(c) shows the re-scanning image
after pick-and-place manipulation. It can be found that the
nanowire has been successfully transported and placed onto
another nanowire to build a nanocross. A full force curve
was recorded from the force response on Tip II, as shown
in Fig. 9 (b). The force curve exhibits four steps, including
grasping, picking up, transporting and placing.

Another type of cone-shaped SiNWs with diameters of
15 nm (top)~ 70 nm (root) were manipulated as seen in
Fig. 10. After image scan shown in Fig. 10 (a), three silicon
nanowires were selected and the manipulation locations were
placed near the top, the root and on the middle part of the
SiNWs, marked by short green lines B-B, C—C and D-D,
respectively. The SiNWs heights on these locations are 46

nm, 66nm and 58 nm, respectively. In the first grasping on
the location B-B, after successful contact detection on Tip
II, as Tip I approach the nanowire to form a nanotweezer,
the “dig into” response did not occur, that meant the first
silicon nanowire could not be picked up but be pushed by
Tip I, which is verified on the Fig. 10 (b). On the second
manipulation location C—C, the 3DMFM succeeded in pick-
and-place manipulation and building a nanocross.

IV. CONCLUSION

Researches on micro/nanorobotics at two institutes
FEMTO-ST and ISIR, as French representatives in the field
of micro/nanorobotics, have been introduced. In the field
of microrobotics, concerning system design and building,
manipulation principle and strategies, force sensing and
control, and manipulation results, research activities at both
institutes have been presented. For nanomanipulation, present
work at ISIR, including parallel nanomanipulation and three-
dimensional nanomanipualtion and nanoassembly, have been
briefly presented.

REFERENCES

[1] K. Rabenorosoa, C. Clévy, P. Lutz, M. Gauthier, P. Rougeot, “Mea-
surement setup of pull-off force for planar contact at the microscale”,
Micro Nano Letters, Vol. 4, no. 3, p.148-154, 2009.

[2] S. Alvo, P. Lambert, M. Gauthier, S. Régnier, “Adhesion Model for
Micromanipulation based on van der Waals forces,” J. Adhesion Sci.
Technol. accepted, august 2009.

[3] M. Gauthier, S. Regnier, P. Rougeot et N. Chaillet, “Forces analysis for
micromanipulations in dry and liquid media,” Journal of Micromecha-
tronics, vol. 3, no. 3—4, pp. 389-413, 2006.

[4] M. Gauthier, S. Régnier, “Robotic micro-assembly,” IEEE Press, Wiley
Edition, 300 pages, ISBN:9780470484173, in press 2010.

[5] L. A. Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, “Quasistatic dis-
placement self-sensing method for cantilevered piezoelectric actua-
tors,” Review of Scientific Instruments , vol. 80, no. 6, 2009.

[6] I. A.Ivan, M. Rakotondrabe, P. Lutz, N. Chaillet, “Current integration
force and displacement self-sensing method for cantilevered piezo-
electric actuators,” Review of Scientific Instruments (RSI), accepted
(September 2009).

[7]1 Y. Haddab, Q. Chen, P. Lutz, “Improvement of Strain Gauges Micro-
forces Measurement using Kalman Optimal Filtering,” International
Journal of IFAC Mechatronics, Special Section on ‘Robotics and
Factory of the Future, New Trends and Challenges in Mechatronics,’
May 2009.

[8] M. Rakotondrabe, C. Clvy, P. Lutz, “Complete open loop control
of hysteretic, creeped and oscillating piezoelectric cantilevers,” IEEE
Transaction Automation Science and Engineering, to appear in IEEE
TASE, accepted (July 2009).

[9] M. Rakotondrabe, Y. Haddab, P. Lutz, “Quadrilateral modelling and
robust control of a nonlinear piezoelectric cantilever,” IEEE Transac-
tions on Control Systems Technology, vol 17, no. 3, May 2009, d.o.i.
: 10.1109/TCST.2008.2001151, 11 pages

[10] M. Rakotondrabe, Y. Haddab, P. Lutz : “Voltage/Frequency propor-
tional Control of Stick-Slip Microsystems,” IEEE Transactions on
Control Systems Technology, vol. 16, no. 6, Nov. 2008, 8 pages.

[11] M. Grossard, C. Rotinat-Libersa, N. Chaillet, M. Boukallel, “Mechan-
ical and control-oriented design of a monolithic microgripper using a
new topological optimization method,” IEEE/ASME Transactions on
Mechatronics, vol.14, no.1, pp 32-45, 2009.

[12] M. Rakotondrabe, Y. Haddab, P. Lutz, “Development, Mod-
elling and Control of Micro/Nano Positionning 2 DoF Stick-
Slip Device,” IEEE/ASME Transactions on Mechatronics, doi:
10.1109/TMECH.2009. 2011134, 13 pages.

[13] C. Clévy, A. Hubert, J. Agnus and N. Chaillet, “A Micromanipulation
Cell Including a Tool Changer,” Journal of Micromechanics and
Microengineering, vol. 15: pp. 292-301, Sept. 2005.



Fig. 9.

200 nm

150 nm

contact

]
=

&

100 nm pick P

voltage on tip 1l {V)

&
w

-]
W

0nm

(@)

transport

3
Time ($)

(b)

b

‘place’
40 5’U‘ 60

(©

Building a nanocross using SiNWs with diameters of 25 nm (top) ~ 200nm (root). (a) A pre-scanned image. (b) A full force curve on Tip II.

Inserts show the zoom topography of Tip II and height information at A-A. (c) A post-manipulation image shows that a nanocross has been built [34].

(c)

Fig. 10. Building a nanocross using SiNWs with diameters of 15 nm (top) ~ 70nm (root). (a)A pre-scanned image. (b)A post-manipulation image shows
manipulation results. (c) A zoom topography of the nanocrossbar [34].

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

C. Clévy, A. Hubert and N. Chaillet, “Flexible micro-assembly system
equiped with an automated tool changer,” Journal of MlIcro-Nano
Mechatronics. Special Issue on Automation in Micro and Nanohan-
dling, vol. 4, no. 1, pp. 59-72, 2008.

R. Perez, J. Agnus, C. Clévy, A. Hubert and N. Chaillet, “Modelling,
Fabrication and Validation of a High Performance 2 DOF Microgrip-
per,” IEEE/ASME Transactions on Mechatronics, vol.10, no. 2, April
2005.

J. Y. Gauthier, C. Lexcellent, A. Hubert, J. Abadie and N. Chaillet,
“Modeling Rearrangement Process of Martensite Platelets in a Mag-
netic Shape Memory Alloy Ni2 MnGa Single Crystal under Magnetic
Field and (or) Stress Action,” Journal of Intelligent Material Systems
and Structures, vol. 18, no. 3, pp. 289-299, 2007.

J. Y. Gauthier, A. Hubert, J. Abadie, N. Chaillet and C. Lexcellent,
“Nonlinear Hamiltonian modelling of magnetic shape memory alloy
based actuators,” Sensors and Actuators A : Physical, vol. 141, no. 2,
pp-536-547, 2008.

J. Bert, S. Dembele, N. Lefort-Piat, “Trifocal transfer based novel
view synthesis for micromanipulation,” Book Series: Lecture Notes in
Computer Science-Volume: 4291, Pages: 411-420, 2006

B. Tamadazte, S. Dembele, N. Lefort-Piat, “A Multiscale Calibration
of a Photon Video Microscope for Visual Servo Control: Application
to MEMS Micromanipulation and Microassembly,” Sensors & Trans-
ducers Journal, vol. 5, pp37-52, 2009

“Robotic Micromanipulation for Microassembly: Modelling by Se-
quencial Function Chart and Achievement by Multiple Scale Visual
Servoings,” to appear in journal Journal of Micro-Nano Mechatronic.
M. Gauthier, and M. Nourine, “Capillary Force Disturbances on a Par-
tially Submerged Cylindrical Micromanipulator,” IEEE Transactions
on Robotics, vol. 23, no 3, 600-604, 2007.

M. Gauthier, E. Gibeau et D. Hériban, “Submerged Robotic Micro-
manipulation and Dielectrophoretic Micro-object Release,” in proc. of
the JEEE ICARCYV conference, Singapour, dec. 2006.

J. Dejeu, M. Gauthier, P. Rougeot, W. Boireau, “Adhesion forces
controlled by chemical self-assembly and pH, application to robotic

(24]

(25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

microhandling,” ACS Applied Materials & Interfaces, in Press, 2009.
J. Dejeu, P. Rougeot, M. Gauthier, W. Boireau, “Reduction of micro-

object’s adhesion using chemical functionnalisation,” MicroNano Let-
ters, vol. 4, no. 2, pp. 74-79, 2009.

B. Lopez-Walle, M. Gauthier, and N. Chaillet, “Principle of a Sub-
merged Freeze Gripper for Micro-assembly,” IEEE Trans. on Robotics,
vol. 24, no. 4, pp. 897-902, 2008.

D. Gendreau, M. Gauthier, D. Hériban, P. Lutz, “Modular Architecture
of the Microfactories for automatic micro-assembly,” Robotics and
Computer Integrated Manufacturing, accepted, sept. 2009.

J. Agnus, D. Hériban, M. Gauthier, V. Pétrini, “Silicon End-Effectors
For Microgripping Tasks,” Precision Engineering, vol. 33, no. 4, pp.
542-548, October 2009.

D. Hériban, V. Pétrini, J. Agnus, M. Gauthier, “Mechanical de-
tethering technique for Silicon MEMS etched with DRIE process,”
Journal of Micromechanics and Microengineering, vol. 19, no. 5, pp.
055011, 2009.

D. Hériban, M. Gauthier, “Robotic Micro-assembly of Microparts
Using a Piezogripper,” in proc. of the IEEE/RSJ IROS Conference,
Nice, France, pp. 404247, 2008.

L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Reward function
and initial values : Better choices for accelerated goal-directed rein-
forcement learning,” In S.D. Kollias, A. Stafylopatis, W. Duch, and
E. Oja, editors, Artificial Neural Networks, volume 4131 of Lecture
Notes in Computer Science, pp. 840-849. Springer, 2006.

H. Xie, and S. Régnier, “Three-dimensional automated microma-
nipulation using a nanotip gripper with multi-feedback,” Journal of
Micromechanics and Microengineering, vol. 19, pp. 075009, 2009.
H. Xie, M. Rakotondrabe, and S. Régnier, “Characterization of the
piezoscanner with an optical lever and a reference nanopositioning
stage,” Review of Scientific Instruments, 80, 046102, 2009.

H. Xie, S. Haliyo, and S. Régnier, “Parallel imaging/manipulation
force microscopy,” Applied Physics Letters, 94, 153106, 2009.

H. Xie, S. Haliyo, and S. Régnier, “A versatile atomic force micro-
scope for 3D nanomanipulation,” Nanotechnology, 20, 215301, 2009.



