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Abstract

By using multiple Wiener-1td stochastic integrals, we study the cubic variation of a
class of selfsimilar stochastic processes with stationary increments (the Rosenblatt process
with selfsimilarity order H € (%, 1)). This study is motivated by statistical purposes. We
prove that this renormalized cubic variation satisfies a non-central limit theorem and its
limit is (in the L?(2) sense) still the Rosenblatt process.
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1 Introduction

The self-similarity property for a stochastic process means that scaling of time is equivalent to
an appropriate scaling of space. That is, a process (Y;)¢>o is selfsimilar of order H > 0 if for all
¢ > 0 the processes (Yet)i>0 and (¢7Y;);>0 have the same finite dimensional distributions. The
selfsimilar processes are of interest for various applications, such as economics, internet traffic
of hydrology. The fractional Brownian motion (fBm) is the usual candidate to model phe-
nomena in which the selfsimilarity property can be observed from the empirical data. Recall
that the fractional Brownian motion is a centered Gaussian process with covariance function
RH(t,s) = L(t*1 + s> — |t — s|*/). The parameter H € (0,1) characterizes almost all the
important properties of the process. The fBm can be also defined as the only Gaussian process
which is selfsimilar with stationary increments. In some models the gaussianity assumption



could be not plausible and in this case one needs to use a different selfsimilar process with sta-
tionary increments to model the phenomena. Natural candidates are the Hermite processes:
these stochastic processes appear as limits in the so-called Non-Central Limit Theorem (see
[3], [7], [18], [10]). In contrast with the classical Central Limit Theorem, the non-central limit
theorem deals with sequences of dependent random variable whose renomalized sum converges
in some situations to a non gaussian distribution. For a complete exposition of limit theorems
in probability theory, we refer to [9] or [16]. Except the Gaussian character, these Hermite
processes have the same property as the fBm with Hurst parameter H > %: selfsimilarity, sta-
tionarity of increments, Holder continuous path, long -range dependence. While the fractional
Brownian motion can be expressed as a Wiener integral with respect to the standard Wiener
process, the Hermite process of order ¢ > 2 is a q iterated integral of a deterministic function
with g variables with respect to the Brownian motion. The Rosenblatt process is obtained in
the particular case ¢ = 2. It will be properly defined in Section 2. This processes have been
recently studied by several authors (see [2], [4], [13], [11], [12], [19], [20]).

The Hurst parameter H characterizes all the important properties of a Hermite process,
as seen above. Therefore, estimating H properly is of the utmost importance. Several statis-
tics have been introduced to this end, such as wavelets, k-variations, variograms, maximum
likelihood estimators, or spectral methods. Information on these various approaches can be
found in the book of Beran [1].

One of the most popular methods to estimate the selfsimilarity order for stochastic process
is based on the study of their variations. The p- variation of a process (Xt)te[o,l] is defined
as the limit of the sequence (sometimes the absolute value of the increment is used in the
definition)

veN(x) = — N N —11. 1
R PPy w

N

There exists a direct connection between the behavior of the variations and the convergence
of an estimator for the selfsimilarity order based of these variation (see [6], [20]); basically if
there renormalized variation satisfies a central limit theorem then the estimator satisfies a
central limit theorem and this fact is very useful for statistical aspects.

In a recent paper ([20]) the quadratic variation of the Rosenblatt process (Zt(H))te[OJ} with
selfsimilarity order H € (3,1) has been studied. The following facts happen: the normalized
sequence N'=HV2N(Z(H)) gatisfies a non-central limit theorem, it converges in L? to the
Rosenblatt random variable Z%H). From this, we can construct an estimator for H whose
behavior is still non-normal. This situation is somehow not good for statistical applications
because one always prefers the estimators which are asymptotically normal. To have normal
estimators we need to define some adjusted variations (as in [20]).

In the fractional Brownian motion case the well-known non-normality of the quadratic
variation when H € (3,1) can be avoided by using "longer filters" (that means, replacing
the increments X% - X% by X% - QX% + X%) or higher order variations (choosing a
bigger p). In this work we will consider the second choice (the first choice has been treated
in the paper [5]): we replace the quadratic variation by the cubic variation for the Rosenblatt
processes to see what happens and if it is possible to find a Gaussian distribution as law of
the renormalized cubic variation. In the fractional Brownian motion case, this has no sense
because the third moment of a centered Gaussian random variable is zero. We use the Wiener
chaos expansion for the statistics V3™ (Z(H)) and we will decompose it in several terms in



the Wiener chaoses 2,4 and 6. As in other cases (|20], |[4]) the second chaos term is dominant
and it has to be renormalized by N'=# to have a non-trivial limit. We note that the rate of
convergence N'=H is the same as for quadratic variation, so there no gain for the speed and
moreover the limit is again, modulo a constant, a Rosenblatt random variable with index H
(only the constant is changing). This property has been called in [4] the reproduction property
of the Rosenblatt process because its variations generates again Rosenblatt random variable
as limits. We conjecture that the same property holds true for the p variations.

The organization of our paper is as follows. Section 2 contains the presentation of the
basic tools that we will need throughout the paper: multiple Wiener-It6 integrals and their
basic properties, the definition of the Rosenblatt process and its characteristics. In Section 3
we estimate the mean square of the cubic variation of the Rosenblatt process and we give its
normalization and finally in Section 4 we prove a non-central limit theorem for the renormalized
cubic variation.

2 Preliminaries

2.1 Multiple stochastic integrals

In this paragraph we describe the basic elements of calculus on Wiener chaos. Let (Wt)te[o,l]
be a classical Wiener process on a standard Wiener space (Q,F,P). If f € L([0,1]") with
n > 1 integer, we introduce the multiple Wiener-Ito6 integral of f with respect to W. We refer
to [14] for a detailed exposition of the construction and the properties of multiple Wiener-Ito
integrals.

Let f € S;, be an elementary functions with m variables that can be written as

f = § cily---i'm 1A11 ><~--><Aim
i1y

where the coefficients satisfy c¢;, i, = 0 if two indices i and 4; are equal and the sets
A; € B([0,1]) are disjoints. For a such step function f we define

Ln(f) = Y CinanW(Ai)... W(A;,)
7;17---7i'm
where we put W([a,b]) = Wj, — W,. It can be seen that the application I,, constructed above
from S to L?(2) is an isometry on S | i.e.

E [In(f)lm(g)] = n'(f, g>L2([0,1]n) ifm=n (2)
and
E[L.(f)In(9)] =0if m # n.
It also holds that )
IN<f) =1y (f)

where f denotes the symmetrization of f defined by f(z1,...,2n) = % Yoves, f(@a1ys s Ta(n))

Since the set S, is dense in L?([0,1]") for every n > 1 the mapping I,, can be extended to
an isometry from L2([0,1]") to L?(Q2) and the above properties hold true for this extension.
Note also that I, can be viewed as an iterated stochastic integral

1 tn to
I(f) :n!/ / o F ) AW, AW,
0 JO 0
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here the integrals are of It type; this formula is easy to show for elementary f’s, and follows
for general f € L?([0,1]") by a density argument.

The product for two multiple integrals can be expanded into a sum of multiple integrals
(see [14]): if f € L%([0,1]") and g € L?([0,1]™) are symmetric functions, then it holds that

mAn
L(f)Im(g) = > 1ChCplmin-a(f ©1 g) (3)
1=0
where the contraction f ®; g belongs to L2([0,1]™*"=2) for I = 0,1,...,m An and it is given

by
(f@1g)(st, - sSn—tst1y -y tm—i)

= : }lf(sl,...,sn_l,ul,...,ul)g(tl,...,tm_l,ul,...,ul)dul...dul. (4:)
0,1

When [ = 0, we will denote, throughout this paper, by f ® g := f ®¢ g.

2.2 The Rosenblatt process

The Rosenblatt process (Z) (t))teo,1) appears as a limit in the so-called Non Central Limit
Theorem (see [7], [18], [10]). It is not a Gaussian process and can be defined through its
representation as double iterated integral with respect to a standard Wiener process (see
[19]). More precisely, the Rosenblatt process with self-similarity order H € (3,1) is defined
by

t t
7" = /0 /0 Li(y1, y2)dWy, dWy, (5)
where (Wy,t € [0,1]) is a Brownian motion,
toort oK
L (y1,y2) = Li(yr, y2) = d(H)1 4 (y1) 1104 (y2)/ T(u,yﬁT(U,yz)dU, (6)
Y1Vy2 u u
with )
H+1 1 H 2
H :=——— and d(H):=
y— and dH) =g <2(2H—1))

and with K7 the standard kernel defined in (7) appearing in the Wiener integral representation
of the fBm (for ¢t > s and H > 3)

t
KH(t,s) = cHsé_H/ (u— S)H_%UH_%dU (7)
S
1
with cg = (B(QH_(Q%%) * and f(-,-) the beta function. The derivative of K is
) 2
@KH H S %_H H-—3
S (ts) = 0k (t5) = en (¥> (t—s)H=3. (8)

The two parameters function L; given by (6) will be called the kernel of the Rosenblatt process.
The following key relation in crucial in our calculation and it will repeatedly used in the paper

UNvV
/ K™ (u, )01 K (v, y)dy = a(H)|u — v~ (9)
0

with a(H) = H'(2H' — 1). Among the main properties of the Rosenblatt process, we recall



e it is H-self-similar in the sense that for any ¢ > 0, (Zg{)) =(d) (CHZt(H)), where 7 =(@) »
means equivalence of all finite dimensional distributions;

e it has stationary increments, that is, the joint distribution of (Zt(f,z — Z,(lH),t € [0,1]) is
independent of h > 0.

o E(|Zt(H)|p) < 0o for any p > 0, and Z() has the same variance and covariance than a
standard fractional Brownian motion with parameter H.

e the Rosenblatt process is Hoélder continuous, of order 6 < H. This can easily obtained by
the Kolmogorov continuity criterium.

3 Renormalization of the cubic variation

3.1 Estimation of the mean square

We will study in this paragraph the cubic variation of the Rosenblatt process obtained by

putting p =3 in (1)
3
o (72

1 —

3,.N __ § : N N
YA —0 @\’
=0 | E <Zi+1 7" >

N N

—1 (10)

Note that this expression is immaterial is the case of the fractional Brownian motion because

the third moment of a centered Gaussian random variable is zero. By denoting for =1,... N
H H
fin =L = LD
N N

we obtain ZSiHl) - Z
Section 2.1 arjlvd then

= I>(fi n) where Iy is a multiple integral of order 2 as defined in

2\&’5

N—1
Z (L(fin)” 1
N I2 fz N))
By using the product formula for multlple Wiener-1to6 integrals (3), for any function f €
L%(]0,1)?) symmetric,

L(f)?
= I ((f&N) @ f) + 8L (f&F) @1 f) + 4L ((f &1 [) ® f)
+121 (f&f) @2 f) + 1612 ((f @1 f) @1 f) + 20, [ 2o L2(f) + 8((f @1 f), ) r2(0,112)-

Here and in the sequel f&f denotes the symmetrization of the function f ® f which is not
necessary symmetric even if f is symmetric. Applying this to f = f; ;v we obtain

(L(fin)? = 8(fin @1 fin) ®2 fin + Ia(gin) + 4L(hin) + T6((fi N©fin) @ fin)(11)

Here we used the following notation

gin =2 inlFefin + 12(fiN®fin) ®2 fin +16(fin @1 fin) @1 fin (12)



and
hin = 2(fiN®fiN) @1 fin + fin @ (fin @1 fin) = hglfv + h,EQ]if (13)

Note that g; v € L2([0,1]?) and h; y € L?([0,1]*). On the other hand, we can simplify a little
bit the above expressions since

- 1 2
(fiNn®fiN) @2 fin = g”fi,N”szi,N + g(fi,N ®1 fin) @1 fin.

Hence the kernel of the second chaos term can be written as

giN = 6| finlF2fin +24(fin @1 fin) @1 fin-

We start with the following lemma where we compute the cubic mean of the increment of
the Rosenblatt process. We already observe a significant difference from the Gaussian case:
this cubic mean is not zero.

Lemma 1 Let (Zt(H))te[o,l] be a Rosenblatt process with selfsimilarity index H € (%, 1). Then,
for every s,t € [0,1]

3
E(7{" - 2(0)" = o)t - s (14)

where
C(H) = 8a(H)3d(H)3/ (lu—vlju — o'|jo — ') > 2
0,13

dudu’dv. (15)

Proof. Let us denote by
fS,t('ray) = Lt(xvy) - L8<x7y)

where L is the kernel of the Rosenblatt process given by (6) and z,y € [0,1]. We will have,
by using relation (9),
1
@ f)@n) = [ @)oot s
t oot
— d(H)2a(H) (noﬂ @) [ [ 0K (wa) K (ol ~ o dud
z Jy
t s
—lj4 (‘T)l[(),s](y)/z /y K™ (u,2)0 KM (v,y)|u — v* 2dvdu
s t
_1[0,5](x)1[0,t](y)/x /y K™ (u, )01 KT (v, y)|u — 0P 2 dvdu
e [ [ oK K ol = o).
z Jy
The computation of the cubic mean of a multiple integral in the second chaos (11) implies

3
E (Zt(H) _ Z§H)> = 8(fs,t @1 fsts fst)L2([0,112)-

We compute, by (9)



(Fst @1 fss fst)2o12) = /[01]2(fs,t®1 fs) (@, y) fsp(2, y)dzdy

t oot gt ,
= d(H)ga(H)?’/ / / (|u—v]|u—u'||v—u’|)2H 2 dudu/dv.
S S S

By the change of variables u = =2 we will transform the integrals on [s, ¢] into integrals from

0 to 1. We immediately obtain the relation (14). m

To calculate E(V3™V)2 we apply the above result and we obtain

E[(L(fin)®] = 8(fin ®1 fin) ®2 fin
sa()’a()* | | / | / iy (b — ]y vl s —

d(H)3a(H)3 =
- 8(]\/)61{’(—3) /[0,1]3 dyrdyadys (Jy1 — ol - [y2 — ys| - lys — 1 ))*"" 2
= C(H)N~CT"=3 = o(H)N =51,

where a(H) = M and C(H) is defined in (15).

We can write the expression of the statistics Vv as follows

N-—1

v = W > ((B(fin) ~E(b(fin)°)
=0
N-1

Il
=)

)

We prove next the following renormalization result.
Proposition 2 Let V3V the cubic variation statistics of the Rosenblatt process. Then
E(N'HY3N)? L C(H) (17)
where C(H) := C(H)?>Co(H) with

Co(H) = (9 +36C"(H)H(2H — 1) + 144 [C'(H)H (2H — 1)]2> .



Proof. The isometry property of multiple Wiener-Ito integrals and relation (16) imply

N—1
1
E(WV3 )2 = N2E(L (i) Z [E(12(9:,8)12(g5,n)) + 16E(Ls(hi N)1a(hjN))
2\Ji,N i,j=0
+E (Is((fin®fin) © fin)I6((fjn®fiN) © fin))]
. N—1
=GN | 2 20 gim) e
i\j=0
N—-1 -
! 4 )
—I—ijz:o 4! x 16 <hZ,Na hJ’N>L2([O,1]4)
N—-1
+ Z 6! ((fi N®fiN) @ fin, (fi,N®FjN) ® fj,N>L2([O’1]6)
ij=0
. 1 @ | p) . O

We use the notation AE\Q,) to indicate that this term comes from the estimation of the second
chaos summand of V¥ and similarly for the terms B](\Z,l) and DJ(?). We will try to estimate

the all the three terms above to see which is the dominant term of V.

Estimation of the term Ag\Q,). We start by calculating Ag?,). Taking into account the
expression of the second chaos kernel g; v (12)

N—-1
AE\?) = Z 2 < giN,9jN >12([0,1]2)
i,j=0
N—-1
= 2) [36||fi,N||%2([o,1}2)”fJ':N||%2([0,1P)<fi’N’fj’N>L2([O’”2)
1,7=0

+144]| fi v 1|72 0,172 (Fivs (Fiv @1 Fin) ®1 F5,8) L2 0.a)
+(24)*((fin ®1 fin) @1 fin, (Fin @1 Fin) @1 Findi2(op2)-)
= 2(36A0) + 14447 + (24)2A0)

(2)

Let us evaluate the term ALN, we have

2
H)| _ ny—2H

AA
N

Ea
N

2 fin 120,12 = E

Furthermore

2<fi,N7fj,N>L2([0,1]2) = E (Zggl) — Z;’H)) (Zggl) — ZEJ\,H)) .



Hence

1

AR = 3 [Ian B 15 2o, fins v 2o |
i,j=0
1 - ) _ )\ () ) _ 1
- §N_4H > E <Zi# —Zﬁ. ) <Zj]+V1 —Z% ) - §N_4H

1,7=0

because E Y1} (Ziﬁ) - Z&H)) <Z§f3 - Z<.H)> =E(Z")2 = 1 and we have
N

2
N N N
. 2 1
lim N AR = < (18)

We evaluate A:(f])v Note that

d(H)?a(H) " (fin ®1 fin)(z,y)
= 1®24 (J},y)/ / BlKH/(ul,x)(‘)lKHl(uQ,y)\ul—uQ|2H/*2dquu1
I; JI;

[07ﬁ
i41
N ’ / ’_
—l—l[o&](az)l[i(y)/ / K (uy, 2) K (ug, y)|ur — uz|*™ 2 dugduy
I;
ij\»]l
+1[0,%](y)11i (x)/ / 81KH (ul,:r)alKH (UQ,y)”U,l — UQ‘QH _2du2du1
x Ii
i+1 i+1

N N 7 2 7
+17, (7)1, (y) / / N K™ (ur, 2)0 K™ (uz, y)[ur — ua|* ~2dusduy.
Yy

T

Sometimes its useful to use to following compressed expression

(fin®@1fin)(z,y) :d(H)Za(H)1%2i+l](m7y)/ / K (uy, )01 K (us, y) |y —us | 2 dusduy
’ I JI;

N
(19)
and

d(H)flfin(a:,z) |
@(2) [ O g, )UK (g, 2}

z

= 1®2i ({L‘,Z)/ alKH/(u:J,,JJ)alKH,(’LLg,Z)dUg—|—1Ol
[Ovﬁ} I; [ ’N
i1
) N H/ Hl
g4 ()15 (@) / KM (ug, )00 KM (ug, 2)dus

T

+17, ()17, (2) / / NEK™ (us, 2)0, K™ (ug, 2)dus
I, JI;
or otherwise

fin(z,2z) = d(H)l®2 ](:E,z) /I 81KH/(U3,z)@lKH/(u;g,z)du;g. (20)

-
0,5



Therefore
((fin @1 fin) @1 fin) (y,2) = d(H)?a(H)? <1([822+1](ya 2)

X/ / / (|U1 —uQHul —U3|)2H,_2 81KH/(uQ,y)&lKH/(ug,z)dugdqum) .
I JI; JI;

The norm has a nicer expression. Using the change of variables u = (u — ﬁ)N (which is now

usual and it can be used systematically) we have
((finv @1 fin) @1 fins (fiv @1 F5,8) @1 f8) L20.1p2)

= d(H)%(H)" / duy dusdus / dvidvadus

3 3
I I

|U1 o u2’2H’—2’u1 N u3‘2H’—2’,U1 i U2‘2H/_2"U1 N ’Ug‘ZHl_z‘UQ o ,U2’2H’—2Hu3 — 3 2H'—2

d(H)Ga(H)G / / 2H'—2 2H'—2 . 2H'—2
——— A |v1 — vg| |vg — w3 lvg —vg + 1 — |
N12H'—6 0112 Jo,172
X‘7)4 — ’1)5’2H/_2‘U5 — 1}6’2H/_2’1)6 —v1 45— i’QH/_2dvl ... dvg.

The rate of convergence of all terms presents in this proof comes actually from how many
product |u — v|2H/_2 with u € I; and v € I; we have. Hence

2 ’_ ’_ . . ’_
Ai(’)l)\f - N12H’ Z /01]3 /[0 18 1 — U2|2H 2|U2 - U3|2H 2|Us — U4+t —J’2H 2
’1)4 — U5‘2H/72"U5 — 1)6|2Hl72‘116 —v] 4+ — 7:|2H/72d1) . dvg
2d(H
N12H/ Z /01 /01 ’Ul—U2|2H 2‘1}2 ,1)3|2H 2|U3—U4+Z ]|2H -2
>3 =1

x vy — vs [P 2|5 — v6|* 2oy — vg + i — jP " 2dvy . dvg

2d(H)Sa(H)S = 2H'—2 2H' -2 2H'—2
2 ) Z; (N =) /[01]3 /[071]3 o1 — 2 220y — v 22 2o — vy +
x vy — vs| 2 =2 |vs — v6| 2T 2|y — vg + k|2 2dw; . . . dug.
We put
A7y = ﬁ Ni(zv — k) Jvs — va + k[P 2wy — vg + k[2H 2
k=0

N—-1
1 1 k’ V3 — U4 k‘ 2H'—92 V1 — Vs /{ oH'—92
= 77E 1— —)|—— — _ —
NSH’—4Nk_O( N)| N JrN| | N +N|

and we conclude easily by a Riemann sum convergence that

1
, 1 1
N A, = NS =44, v — 1—z)z* 4y = -
3N BN N s 0( z)a YToHm 1 2H

10



because the terms “*7™ are negligible with respect to % for large enough k. This implies

that,

a4 AU a(H) H2(20 — 1)

3N Noso H(2H —1)

where
C/(H) = / |U1 . U2|2H/72|122 — v3]2H/72dv1dv2dvg.
(0,13

Now, we estimate the term AéQJ)V.

<(fi,N7 (fj,N ®1 fj,N) ®1 fj,N>L2([071]2)

(©'(m)? = ==y (21)

= d(H)4a(H)4/ /3 lur — uo P 2 ug — ug* 2 us — a2 ug — w2 2duy . dug
L)1

d(H)*a(H)* . 2H — _ _ Y
— ( ) ( ) /[ . ‘U1—02+l—]|2H 2|U2—’03|2H 2|U3—U4|2H 2|U4—U1+]—Z|2H 2d’U1..
0,1

NSH'—4

d(H)a(H)*

4@ _ TP / vy — val2H 72| — g |2H 2
9N i,z 0,002)— Nsmr—a [071]4\ 2 — 3] lug — v4

N
X Z\vl—v2+i—j|2H’72\v4—v1+j—i|2H/’2 dvy ... dvy

4,j=1

‘QH’72’1)3 N 1)4‘2H’72

92 N8H'—4 ’1)2 — U3

)

N~72H q(H)*a(H)* /
[

0,14

N-1
X (2 D (N = K)oy —va + B 2oy — o + k|2H’2> dvy ..
k=0
o d H)* "~ -
- N 2H (N)4H(2) / |’U2—U3‘2H 2|’U3—’U4|2H 2
[0,1]*
1 UQ k 2H"—92 1)4—'1)1 k 2H"—2
(T I A R

d(H)*a(H)* - -
— ( ])\741—(1 ) /[1}4 ’1}2—1}3|2H 2‘113—’1)4|2H 2

1 phly k. vi—v k Vg — U k

1 2 2H'—2,V4 1 2H' -2
—E 1—— + — —_— 4+ — dvy ..
X <N ( N)| N N| | N N’ ) V1

k=0

We obtain that N4HA§2])V converges as N — 00 to

1
( / (1= 2)2 ' =4 dy) <d(H)4a(H)4 / (w3 — v P2 ~2vg — va2H' 2dy . . dU4>
0 (0,13

1 1 , ,
- — ) | ) H4/ — 3?2y — v Pdvy . d
a1 2H)< (H)"a(H) o v — o3|™" v — w4 vy ... duy

11

.dvug

. d’U4

. dvy.

.dvuy



Thus

NAZ, TR 22)
From (18), (21) and (22), we obtain that
N AG) = 236N AP + 144N ALY + (24)2 N AD)) (23)

converges to (9 +36C"(H)H(2H — 1)+ 144 [C"(H)H (2H — 1)]2) =Cy(H) as N — 0.
Consequently

N4HA§3)
— — 1.

(6)

Estimation of the term Dj(\é). Now, we study the convergence of D) , using the symmetry
property of every fin, i =0,..., N — 1on [0,1]?, there exist positive combinatorial constants
c1, ¢ and cg such that

N-1

DY = > 6{(fn@FmBLin), (N fim)@Ffin)) 2o
=

= Z ( Finvs iN) 2o a2 )3

,7=0
N-1

+ o Z (fi,Ns F3,N) 20,12 )/ fin (w1, 22) fi N (T2, 73) fi N (73, 24) fj N (4, T1)dT1 - - dy

,7=0

N-1
+ 032/ fin(x1, x2) fjn(x2, x3) fi N (23, 24) [j N (T4, T5) fi N (25, 26) v (6, 1)dx1 . . . dae

,7=0

= D\ + DY) + esDS),.

By using the same argument as above, we have

N-1
3
Dg?z)v = Z ((fins FiN) L2(0,12))
i,j=0
3
d(H)Sa(H)S R
= (])VGIE()Z / |:C1_x2_|_2_]‘2H 2d1dx2
ij=0 \/[0:1]?
3
d(H)Sa(H)® = B
- ( ])VGIEI ) QZ(N k) /[ 2’$1—$2+]€|2H 2 daydxs
k:O bl
_ AU (PN JI 3
B N* N TN\ ST NN
k=0 [0,1]

12



and clearly since H < 1 we have

4H 1(6)
Iim N**D N—O

Am (25)
By the same way, we obtain

N-1
by =

)

Z <fi,N>fj,N>L2([071]2)/[01]4 fin(z1,22) fj N (@2, 23) fin (T3, 2a) fi N (@4, 21)d2y - . . day
i,j=0 :

1 . . 2H'—2
_ rL—xr2  1—]
= S N () (v i) o) [
i;() ( 1, 75 ([0,1] )) 0,174 N N
T PR e A el PR TR B | el PR A | b
N + N N N dri...dzy
( )Z( ) Z<N_k)/ r5 —x6 |k dede/ L
N k=0 [071}2 N N [0’1}4 N N
2s— $2 L |2H— ws—xz4 K 2H'—2 o1 —z4 K 2H'—2
— — — dry...dxy
N N N N N N
2d( NZ: 1 Ts5 — Tg k -2 ded / T1 — T9 k|22
— — - — — T5AT6 T
v ozl N o] N N
2H -2 2H 2H'—2
T3 — To k T3 — T4 k T1 — T4 k
— — — dxy...dxy.
X N N N + N N + N T T4

This implies that

lim N Df), =o. (26)
The same manner as in previous results, we have

2H'—

. diL'(;

k

N

N-1
Dé?j)v Z/ fin (1, ©2) fiN (22, 23) fi N (23, T4) [N (24, 5) fi, N (5, 6) [N (26, 21 ) dy - . . dwg
2,7=0
_dH 6N1/ 1»‘1—962 L= P Ry L T
= Jop N N N N
. 2H'—2 . 2H'-2 . 2H'-2
T5 —T4 T—) 52T 1] Ty —Tg  1— ) de
N N N N N N T
2d(H)6a(H)6 Nzl 1 1 K xr1 — afg k 2H=2 r3 — X9 E 2H=2 Tr3 — T4
N4 N 4 N N N N N
= 0,1]
2H'—2 2H'—2 2H'—2
5 — T4 k Irs — Tg k 1 — Tg k
— — — dxy...dzg.
N + N N + N N + N X1 T
Hence
lim N*7D{) = 0. (27)
N—oo

13

2H'—
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Thus, from (25), (26) and (27), we obtain

lim N*¥ DY) = 0. (28)

N—oo

Estimation of the term B](\‘,l). Applying the same argument as in last part, there exist
constants ¢} and ¢}, such that

<Ez’\,lj\f’ EJ?VN>L2([071]4)

N-1

= ¢ Z (fi,Ns V) £2((0,12 )/[ fin(z1,22) fin (22, 23) fi N (23, 24) fj N (24, 21)d;
4,j=0

+ & Z o fin (@1, 22) fj,n (22, 23) fi,n (23, 24) f, N (24, 25) fi N (25, 6) .85 (26, 1) dz;
520701

= 4DF) + DY),

The same terms as in the estimation of the sixth chaos kernel appear. Thus, from the conver-
gences (26) and (27),

AHpME)  _ 4H < >
J\}EHOON By J\}E»nooN ;0 iNs N L2([0,1]4)
= lim (c’1N4H D\ + N D }V> = 0. (29)

As a consequence of the convergences (24), (28) and (29), we have proved that for every

H > 1 and with the notation C(H) = g{g@j’

C(H)?

2
2—2H 3,N ~ 1—Hys3,N .
A E(V3N)? E( C(H)N'Hy ) 1. (30)

N—oo
|

3.2 Non-convergence to a Gaussian limit

We prove that the normalized variation doesn’t converge in distribution to the normal law.
Of course this somehow superflu taking into account that in the next section we show a non-
central limit theorem for this statistics, but we found the calculations instructive to see why
it does not converges to a Gaussian limit. Recall that by a result of [15] (Theorem 4 in this
paper) a sequence Fy = I,(fy) in the ¢ Wiener chaos with EFy —py 1 converges to the
normal law N(0, 1) if and only if ||DFN||%2[071] converges to ¢ in L?(2) when N — oo. Here
D denotes the Malliavin derivative and if f € L([0, T|") is a symmetric function, we will use
the following rule to differentiate in the Malliavin sense

DtIn(f) = nIn—l(f('>t))> le [0’ 1}'

14



We put

/ Nl H
TN N1 AT IS3E ZIQ (9i,n) \/72[2 9i,N)

We derive T in the Malliavin sense and we obtain DTy = —22°2 Zl ol1(gin(.,t)) and

\/Co(H
thus
4N4H 2
IDTNIG2(p0,p2) = / (ZII gi,n (- ) dt
4N4H 1
Co(H)/o ;O 1(9:,8 (1) 1(g,n (-5 1))
4N4H
= Z/ Io(g9i,n ®1 95,N) dH—Z/ I5(gi,N®0gj,n )dt
,7=0
4N4H
= J J:
CO(H)( LN+ Jo.N)
where we denoted
SN = Z/ Io(gin ®1 gjN)dt = Z < GiNs G N > 2(01]2)= *A@)
1,]= =0 7] =0
From (24) we obtain
4N4H
—J 2 31
ColF) "N N (31)

in L?(2) because the term Ag\?) is deterministic. To prove that HDTNH%Q([O )2) Mot converges
in L2(2) to 2, it is sufficient to show that

lim E

N—oo

<4N4H

2
™) >

where Jo = SN Jo Ta(gin (- t)gjn (. 1))dt.

15



We calculate the mean square of this term.
2

E(Jon)? = 2/[ . Z/ Iy(gin(r,t)g;n(s,t))dt | drds
0,1

2,7=0

= 2 Z / 9i,N (7, 8) g5 N (8, ) gk N (1, w) g N (s, w)drdsdtdu

,gkl 0
> Z Fin () fin (8, ) fon (ryw) fin (s, u)drdsdtdu
ijdei=0 " (0,1
= 2d(H)'a(H)*N—8H Z ////(|7~—t||s—ty|r—u||s—u|)2H’2drdsdtdu
jkl 0 I
= 2d(H)a(H)*N—81 Z / drdsdtdu
i,5,k,1=0
1 |r—t—|—i—th—s+j—k‘Hs—u+k—l|| —r 41— |2H -2
N4 N N N N '

By using Riemann sums approximations, we obtain

M BNy x)* > 2d(H)4a(H)4/ drydeadrsdey (|21 — w2|lzs — 23||zs — 24l |2s — 1) 72 > 0.
—oe (0,1
4 The non-central limit theorem for the cubic variation of the
Rosenblatt process

Denote by L; the kernel of the Rosenblatt process

Li(e,y) = d(H oy//</ 0K (s,2)01 K (s,

and recall the notation " "
fin(.y) = LD (@.y) — L (.9).

We proved in the previous section that the dominant term of the statistics V3~ which

gives its normalization is
N-1

C(H)_lNgH_1§ Ir(gi.N)
i=0
where

GiN = 6Hfi,N||%2([o,1]2)fi,N +24(fin ®1 fin) @1 fin
= 3NTfin+24(fin @1 fin) @1 fin = 395,11% + 249;21%-
More precisely, it follows from the proof of Proposition 2 that

N-1 2
N <N3H1 > Ig(gg}}v)ﬂ = NTAP) —y_o 1/8
1=0

E

16



and

N-1 2
H?(2H —1)?
E | N1-H <N3H—1 Z 12(92(,213[))] — N4HA§3])V —N—oo Q(C'(H))?

1=0

Consequently, the limit of the sequence V3 y is the same as the limit of the sequence

N—-1 N-1
JU— <3 S L () 213k @g@)) .

i=0 =0
We prove here our main result.

Theorem 3 The renormalized cubic variation statistics based on the Rosenblatt process N1 HV 3N
with V3N given by (10) converges in L*(Q) as N — oo to the Rosenblatt random variable
D(H)Z") where D(H) = C(H)™Y(3 + 24d(H)%a(H)2C"(H)).

Proof. To see the limit of N'"H# V3V we need therefore to study the convergence of

NI (NS (60)) and of N1 (N9 30 1))

Is easy to treat the first part. In fact we have

N-1 N-1 N-1
NYUANSHLN™ (g0 = N ST N2 L (f8) = Y Bfin) = 28 (32)
1=0 =0 =0

where ZH is a Rosenblatt random variable with selfsimilarity order H.
We find then the limit of the second part of the dominant term. We have

N-1 N-1
NYUENSEEN L (g20) = NS L ((fin @1 fin) @1 fin)
i=0 i=0

Let us denote by
1 (z,y,2,t) = 0 KT (z,9)0 KT (2, 1)

and by
B (2,y,2) == O KT (2, )0 KT (2, 2) = 11T (2, y, , )
W' (2,y,2) == O KT (2, )0 KT (y, 2) = 1 (2, 2,9, 2).

Using the relations (19) and (20) we get

((fin @1 fin) @1 fin)(y1,92)

= d(H)Sa(H)%%,Q%](yLyz) /13 duy dugdusl™ (uy, y1,us, y2) [Jur — ualjug — us|]?H 2

= bﬁ,lz)v(yl, y2) + bf}v(yl, Y2)

17



with

bg,llzf(yla Yy2) = d(H)?’a(H)zl%?%](yl,yz) /3 duydusdusl™ (u1, y1,us, yo) [lur — ua||uz — us|]*™"
) Iq,

and
b2 (yr,2) = d(H)Pa(H)?

2H'—2

—

il

N ’

X [112- (yl)l[ojm(yz)/ duy | duadugl™ (w1, y1, uz, y2) [Jur — uz|lus — us]]
Y1 B

[

it
N

2H'—2

+ 1,2y (y)1n(y2) /2 duydus dugl™ (uy, y1, uz, y2) [Jur — ualug — us]]
Ii

S~

2
i+1 i+

N N
+ 112(3/171/2)/ dul/ dus
! Y1 I;

N
We show that the Ir(N2H Zi\!ol bl(?,) converges to zero in L2(£2) and it has no contribution
to the limit. Indeed,

N-1 2 1 N-1 2
E (IQ(NQH > 61(2]2,)) = 2N4H/0 /0 dy1dy2 <Z b?,N(th)))

i=0 =0

—_

/_
dusl™ (uy, y1,uz, yo) [ur — ual[ug — U3|]2H 2

S~

2

IN

N-1 .1 1
2d(H)Sa(H)* N (Z/ﬁ /0 dyrdys /16 duldu’ld@dugdugdug1[%%]2(ul,u’l)
=0 i

2H' -2
X Ay, e (us, w17 (ury g0 (us, i, o) [lun — uzllus — usllu) — whfuh — uh] )

IN

N-1
2d(H)%a(H)* N (Z /6 duy duy dugduydugdusy [|uy — uallug — us||uy — uy||uy — ug]]QH -
i=0 71

ui Auj 7 , uzAuj - ,
X / dyrly (Uhuhyl)/ dyaly” (us, uz, y2)
0 0

N—-1
< 2d(H)%a(H)*N*H Z / duy du’y dugdulydugdu’y
=0 5
2H'—2
X [lur — us||ug — us||uy — uh||uhy — whllur — wi[fur — ugl] )
<

2d(H)%a(H) N N N6 N12-12H ( / dvydv!, dvadvlydvgdul
[0,1)°

2H'—2
X [l = vallva — vs|[v] — vhl[vy — vglvr — vi[Jvr — vs] )

IN

2cd(H)Sa(H)*N'—2H,

18



Combining with the fact that H > %, we conclude that

N-1
LN 0R) — 0 in L2(Q), (33)
=0

N—oo

and then we need to find the limit of

N-1 N-1
N2 Z bﬁlj)v = d(H)%a(H)*N*" Z 1[0,%12@1,.@2)
i—0 i—0

x /3 duld“2du3lH/(u1, Y1, u3, y2) [lur — uallug — U3H2H -
I

K3

N-1
= d(H)*(a(H))? 2 1[0,%12(3/173/2)]\7_1
i=0

1 U1+ 1 v3 +1 1
></ dvydvadvsl™ (Z——, y1, ==, y2) [Jo1 — vaf|va — w3 2.
CRIR N N
The last sequence has the same limit pointwise (for every y1,y2) as
3 2 2H'—2
d(H a(H) /[ | dundeds o — el o] (34)
0,1

N—-1 . .
_ 7,1 1
XD g pun v N (S 7 v).
1=0

This last term is a Riemann sum that converges to

1
d(H)Sa(H)Q/ dvidvadus [|[v1 — va||ug — v3]]2H _2/ dxl™’ (z,y1,%,92)
[0,1]3 y1Vy2
1
- d(H)Sa(H)2C’(H)/ dedy K™ (2, 50) 00 KM (0, ) = d(H)?a(H)2C'(H) LS (2, y)

Y1Vy2

where LEH) is the standard kernel of the Rosenblatt process (6).

We need a Cauchy sequence argument as in [20] to conclude the proof. That is, we will show

that the sequence N2 Zi]\;_(]l bgljz, (or equivalently N2 Zi]\:ol 92(2]3]) is Cauchy in the Hilbert

space L2([0,1]?). This will imply that the sequence of random variable I <N2H Zﬁi_ol gf?,)

is Cauchy, so convergent, in the space L?(Q) and it is easy to deduce that its limit coincides
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with the multiple integral of the pointwise limit of the kernel. We compute, for M, N > 1

l

N-1
= d(H)Sq(H)* | N*H Z /[3 /1‘3 duy dugdusdu duydusy [Jur — ugl|ug — ug||u] — uh|juy — ug\]ZH -
i,j=0"47 745

2

N-1 M—-1
LRSS
=0 1=0

L2([0,1]?)

ui A ugAuj o 0 ,
X / dy1/ dy2l™ (u1,y1,u3, y2)I" (uy,y1,u3, Ya)
0 0
= 2H' 2
+ M Z /13 /[3 duy dugdusduy duydusy [Jur — ug||ug — ug||u) — uh|juy —us|]™
1,j=0"" “ 7

ui Au) ugAuj i o
X/ d?/l/ dyol™ (w1, y1, us, y2)l™ (uy, y1, us, yo)
0 0
N—1M-1

—  QN2H ) 2H E E / / duldUQdu;;du/ldu'zdug [|u1 — ug||ug — u;z,Hu'l — u/2||u/2 - ug\]QH/_2
3 3
i=0 j=0 Y1 /1;

ui A ugAuj o 0o )
X / dy1 / dy2l™ (w1, y1,us, y2)I" (U, y1,u3,y2)
0 0

N-1
= d(H)ba(H)" |[N* )" / duy dugdusduy dulyduly
3JI3

i,j=0
2H'—2
X [fur — | |ug — ug||uy — up|luy — uh|lur — | |ug — uj]]
M-1
+ MYy / / duy dugdusdu dulyduly
= 3 J
4,j=0" "4 J
2H' -2
X [lur — uallug — us||uy — up|luhy — uh||ur — ul[jus — uj]]
N-1M-1
— 2NFHAPHN N / / duy dugdusduy dulydul
i=0 j=0 /17 /I}
2H' -2
X [Jun = sl [uz — s uf, — | — | fur — i fug — ] 7|
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and this equal to

N-1
d(H)%a(H)* N7 3" / duy dugdusduy dulydudy
[0,1]9

ij=0
o . q2H-2
x [|v1 = va||vz — wsl|vh — vy|jvy —vil[or — V) +i = jllvs — w5 + i — ]
M-1
M2 Z duy dugdugdu’y dubydu’y
’L,]:O [071]6
o . 2H-2
X [[v1 = vallva — vs||v] — vh[|vy — vllor — v+ — jllvs — vy + i — jl]
N—1M-1
oN~Ipt Z Z duldu2du;;du'1du/2dug
i=0 j=0 *[0.1]°
vy i j vz i Jj 2H' =2
o1 = el = sl = olivs — i1 = 35+ 7~ Tl e - B+ v — ]

The same way as in above this las term when N — oo and N — oo converges to

1 1 1 1
d(H)%a(H)* [2/ (1 — x)z* 12z + 2/ (1—z)2z?"2dy + 2/ / |z — y|2H_2dxdy}
0 0 0o Jo

B 1 1 2 0
_H(QH—1)+H(2H—1)_H(2H—1) o

We obtained that {N?2 Zi]\if)l bg%,N > 0} is a Cauchy sequence and this completes the
proof. m
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