Approximation of the finite dimensional distributions of multiple fractional integrals - Archive ouverte HAL
Journal Articles Journal of Mathematical Analysis and Applications Year : 2010

Approximation of the finite dimensional distributions of multiple fractional integrals

Abstract

We construct a family $I_{n_{\eps}}(f)_{t}$ of continuous stochastic processes that converges in the sense of finite dimensional distributions to a multiple Wiener-Itô integral $I_{n}^{H}(f1^{\otimes n}_{[0,t] })$ with respect to the fractional Brownian motion. We assume that $H>\frac{1}{2}$ and we prove our approximation result for the integrands $f$ in a rather general class.
Fichier principal
Vignette du fichier
conv-Ito-frac7.pdf (245.79 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-00432689 , version 1 (16-11-2009)

Identifiers

Cite

Xavier Bardina, Khalifa Es-Sebaiy, Ciprian A. Tudor. Approximation of the finite dimensional distributions of multiple fractional integrals. Journal of Mathematical Analysis and Applications, 2010, 369 (2), pp.694-711. ⟨hal-00432689⟩

Altmetric

Share

More