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ABSTRACT

This article presents a generic method to solve 2D multi-
objective placement problem for free-form components prire
posed method is a relaxed placement technique combinedmvith
hybrid algorithm based on a genetic algorithm and a separati
algorithm. The genetic algorithm is used as a global opténiz
and is in charge of efficiently exploring the search spacee Th
separation algorithm is used to legalize solutions progbbg
the global optimizer, so that placement constraints arésfiat.
A test case illustrates the application of the proposed oakth
Extensions for solving the 3D problem are given at the entdeof t
article.

1 Nomenclature

m Number of components

v Vector of positioning variables

v; Vector of variables containing position variables of
component. v = (vy,..., V)

O; Componeni

n; Number of circles of component

A; Area of component

Pi Density of component

S;;  j™ circle of thei™ component

cij  Vector of coordinates of thg circle of thei™ com-
ponent

/i Penetration penalty between th circle of thei™

component and thi#¥" circle of thek™ component

*Address all correspondence to this author.

f1;° Protrusion penalty of thg" circle of thei"™ compo-
nent

C Container / Enclosure

cl(S) Closure ofS

2 Introduction

The problem of placing a set of components inside an enclo-
sure is known as the placement problem. A placement problem
asks to find all placement variables of all components so that
objectives are minimized and constraints are satisfiedvigpl
a placement problem consists in finding one or several soluti
that minimizes the objectives and respects a set of contdrai
Among all constraints, each placement problem presents non
overlap and non-protrusion constraints. These consraat
spectively express the fact that components should noieoll
with each other and that each component must lay inside the
boundaries of the container. These problems are non-lamer
most of the time#Z?-complete, meaning that solutions asso-
ciated with the corresponding decision problem can be atbck
with a polynomial algorithm.

Placement problems gather Cutting & Packing (C&P) prob-
lems and layout problems. In a C&P problem, components are
only geometrically related to each other, whereas in a layou
problem, components are geometrically and functionnaly r
lated to each othefr [1]. The underlying objective of each C&P
problem is a compaction objective: either a maximum number
of components has to be placed in the container, or a minimum
number of containers has to be used to place all components.



This characteristics, that may also be found in a layoutlerab
can influence the choice of modelling.

Wascheret al. [2] recently proposed a typology of C&P
problems and improved the one proposed by Dyckhoff [3].
Among all C&P problems, knapsack problems [4], bin pack-
ing problems|[5], nesting problemis[[6, 7] container loadingb-
lems [8] may be the most representative. Layout problents als
gather a wide panel of problems, including Facility LaydeitY
problems([9], Very Large Scale Integration (VLSI) problefi@]
and engineering problems [11].

Caganet al. [12] proposed a survey on 3D layout problem,
in which the different aspects of layout problems are diseds
Grignonet al. [13] proposed a multi-objective genetic algorithm
framework to solve 3D layout problems, where individuals ar
clouds of solutions. Aladahalkt al. [1,(14] developed a pat-
tern search algorithm to solve 3D layout problems, wherembj
tives and constraints are aggregated in a single meritifumcyi
et al. [15] used a genetic algorithm (NSGA-II) to find the posi-
tions of a set of components of a trunk. CAD is used to model
the problem and perform geometric computations. Non-agerl
and non-protrusion constraints act as a penality when cémpu
ing the rank of each solution. Tiwaet al. [16] proposed a 3D
bottom-left-back strategy to solve a 3D C&P problem. The-vox
elization of components allows to pack complex geometry-com
ponents inside the container. A steady-state geneticitiigors
used to generate the packing order and find the correct afient
tion of each component. Placement constraints are autcaligti
satisfied with the voxel-based representation. Zheingj. [11]
used a combination of soft computing techniques (GA/PSO) to
place a set of components in a satellite module under betzvio
constraints. Components are modeled by either paralfsesi
or cylinders, which allow using analytical functions to kiste
overlap and protrusion constraints. Doetgal. [17] proposed a
shape-morphing method to design components and solve a lay-
out problem at the same time.

The objective of this article is to introduce a new place-
ment method adapted to multi-objective problems. The fast s
tion gives a general presentation of different placemenhous,

the second section concerns the proposed method. An example

is discussed in the third section, finally the different edens
needed to develop the 3D placement method are presented.

3 Placement methods

Placement problems have generated a large amount of liter-
ature, however all placement techniques proposed can be cla
sified in two categories: legal placement method and relaxed
placement method. A legal placement method is a method that
ensures that all placement constraints are satisfied wiilldithg
the solution. This is typically the case when using an encod-
ing scheme €.g. bottom-left heuristic). Tiwaret al. [18] pro-

to propose different placements. These placement techaaye
perfectly suited for problems presenting compaction dhbjes,
such as the minimization of the wire-length of components in
side an electronic module. Relaxed placement methods allow
the non-respect of placement constraints during the eddioor

of the solution. These methods are mainly used when dealing
with complex geometries and can easily model any placement
constraints.

When using a legal placement method, the decision vari-
ables of the problem are usually permutations, which indica
the order of introduction of the components inside the doeta
Other more evolved encoding schemes have been proposed such
as the sequence pair encoding, in which permutations inted
topological relations between components. The decision va
ables of relaxed placement techniques are directly theiposi
ing variables of the components.

Placement problems are generally multi-objective proklem
However, most of the problems are treated as single-olgeati-
constrained problems, where objectives and contraintsggee-
gated in a single merit function. Such a formulation has isdve
shortcomings, first of all only the convex part of the Parebmf
can be identified. Second, the set of weights used to aggregat
functions can be difficult to identify, and may lead on straisg
sumptions on the solutions obtained. A multi-objectiveriata-
tion is therefore preferred: multi-objective algorithmil gearch
for the set of non-dominated points in the objective spaceryi
by efficient solutions, as shown on figlide 1.
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Figure 1. ILLUSTRATION OF THE VARIABLE SEARCH SPACE AND
OBJECTIVE SEARCH SPACE FOR A BI-OBJECTIVE MINIMIZATION
PROBLEM. THICK DARK LINE ON SUBFIGURE (B) REPRESENTS
PARETO FRONT OF THE PROBLEM, |.E. THE SET OF NON-
DOMINATED POINTS.

(@)

4 The proposed method
The objective of the proposed method is to be generic, thus
suited to a wide set of placement contraints and objecti&es-

posed a survey of various encoding schemes, which can be usedaxed placement technique is therefore chosen. The vasaisl
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the problem are directly the positioning variables of thenpo-
nents. These variables can be of differenttypes. Translatri- @ @
ables are modeled as continuous variables and orientagion v
ables can be continuous or discrete depending on the de'signe
needs.

The difficulty of such a modelling will be to propose feasible  Figure 2. DIFFERENT STEPS OF THE CONVERSION OF A POLY-
solutions,i.e. solutions that satisfy placement constraints. The GON TO A SET OF CIRCLES.
proposed method is based on the use of a separation algprithm
which objective is to legalize unfeasible solutions. A gibbp- a penalty function' characterizing the violation of the place-
timizer is used to generate different promising solutioi$ie ment constraints.
different elements needed for the resolution of the prokdeen
presented in the following subsections.

(a) Original shape (b) Medial axis (c) Circle placement

The separation algorithm and the formalism used here are
the ones proposed by Imamigadti al. [23]. Let's consider a col-
lection of m component®’ = {Oy, ..., O,,}. Each component
O; consists ofr; circles{S;1, Sz ..., Sin, }. Lete;; be the vec-
tor that represents the center of cirélg, r;; be the radius of;;
(i=1,...,m;j =1,...,n;). Circles are denoted with the cap-
ital letter.S, because the separation algorithm can also be applied

4.1 Geometry handling
When using a relaxed placement method, collision or over-
lap detection may represent most of the computational teffor
Th_e objectivg is ther_efore to use a correct geometric repres in 3D with Spheres.
tation, that will be §U|ted to our needs. o The separation problem is an unconstrained minimization
Several techniques can be used t_o de_tect a CO||!SIOI’1 betweenpromem defined by
two components. The first one consists in computing the over-
lap area of each pair of polygons. However, this technique is ]
too costly. No-fit polygonKIFP) and inner-fit polygonlEP) can (Sep {mm F (v) = wpenFpen (v) + wproFpro (v) (1)
also be used[19]. NFP and IFP present the advantage of allow- st [v=(v1,...,0m)
ing collision detection with a simple test of a point beingain
polygonal region. These features depend on the orientafion  where vectow represents the placement variables, which repre-
the components, meaning that these elements have to be-recomsent degrees of freedomddf) of the componentsupen andwpro
puted for each orientation. When components are convex, thi are positive parameters representing the weights of thetmen
can be done in linear time with respect to the number of ver- tion and protrusion function. These values are respeytasdto
tices of polygons. Otherwise, a convex decomposition islede 1/3 and2/3. The total penetration and protrusion penalty func-
However, this approach can hardly be adapted to 3D problems tions can be mathematically written as follows:
even in the case of polytopes.

In case one is interested in the free rotation of components i "k .pen
. . ! Foen(v) = P (v
components can be transformed into sets of circles. Thefoan pen(v) Zl<i<k<m Zj:l 21—1 Tijui () @
mation proposed is based on the use of medial axis, which cor- Firo (v) = m i 710 ()
. . ) : . pro\V) = E :., E :-, ij
responds to the centers of maximum inscribed circles. E{@ur i=1 =1

illustrates how components are converted to sets of cirEliest,

the medial axis of the polygon is computed. Second, a set of wheref;; andf° represent the local penalties of the penetra-
circles which centers are located on the medial axis aretathe tion and protrusion, defined by the penetration depth. Thepe
Circles are inserted such that the distance between twersast tration depthy [24] of two component$); andOs is defined as
lower than a distance chosen by the designer. We choosefhisr the minimum translation distance of componént so thatO,

resentation for which collision detections between congmis andO- do not overlap. These penalties write
can be performed with simple distance computations, and for
which a separation algorithm has been proposed. pen

P () = (5(Si; (v), Skt (vi)))®
2

pro Yol 3)
fij (0) = (3(Sy5 (vi) , ¢l (C)))

4.2 Separation algorithm

Different separation algorithms have been proposed, [20, 2

22/23] however the key idea is always the same: given a configu The penetration penalty of two circlé; andS; can be finally

ration that does not satisfy placement contraints, theatiligeof written as:
the separation algorithm is to minimize the non-respectvef-o
lap and protrusion constraints. These constraints aregedhin P (v) = (max {ry; +ru — [leij (vi) — e (vn) 01 (4)



Regarding non-protrusion constraints, inward offsetauaesl to
evaluate if circles belong to the container. These comggaian
be checked with a simple test of a point being inside a polygon
If the center of a circle is not contained inside the inwarfd of
set polygon, the minimum distance between the center ard thi
polygon is used to build the constraint function and its grat

The functionF' is a piecewise continuous function, therefore
its gradient can be used to find its minimum. The gradient of
function F' is

(a) Fiteration F'(v) = 13741.2 (b) 2 iteration F'(v) = 6130.7

VF ('U) = UJpenvaen ('U) + CUproVFpro ('U) (5)

The gradienWV F (v) is computed by evaluating all components
of gradientsV Fyen andV Fyo as follows:

ni n pen
ViFpen(v) = 8Fgf;(v) - Z Z Z 6fijkl )

ov;
j=1k={1,....,m}\q I=1 g

n; pro
Vi Foro (v) = O Fpro (vi) _ Z afij (vi) (c) 3Miteration F(v) = 904.1 (d) 4™ iteration F'(v) = 342.0

(91%' 8’01'

j=1

(6)

For further details on the expressions of gradients, theeea
can refer to Imamichet al. [23]. The separation problem is
solved using the BFGS quasi-Newton methiod [25]. This tech-
nique is iterative and moves all components at the same time,
unlike different separation heuristics that move one comepo
at a time [6]. Figuré13 illustrates how the separation athani
works on a solution proposed by the global optimizer. Theord (e) 8N iteration F'(v) = 122.4 (f) 6% iteration F'(v) = 52.9
of magnitude of the functiof’ depends on the circle conversion.
However, when placement constraints are satisfied, thaifumc
F should always be zero.

The separation algorithm allows one to find a feasible solu-
tion from a solution that does not satisfy placement coimdsa
The generation of solutions is the role of the global optaniz

4.3 Global optimizer

The global optimizer is in charge of exploring efficientlgth
search space to propose promising solutions. The gengtie al
rithm (GA) Omni-Optimizer([27] is used. Its objective is tm4
prove the current population at each new generation. Based 0 Figure 3. SEPARATION ALGORITHM AT WORK ON INSTANCE
NSGA-2 [28], this generational GA is designed to handle sin- DIGHE 1 [26]. 16 COMPONENTS MODELLED WITH 515 CIRCLES.
gle and multi-objective problems. This algorithm was araly EACH COMPONENT HAS ONE ROTATION DOF.
chosen for its capacities to find multi-modal solutions. &eéhr
variation operators are used to generate new solutions:

(g) 20" iteration F(v) = 7 x 10~3  (h) 30" iteration F'(v) = 3 x 104

e The crossover operator takes two solutions and generates  schemeSBXis used for real variables [29] and the two point
two offspring solutions by crossing over all parent vari- crossover is used for discrete variables. The crossovef ope
ables under a certain probability. The standard crossover ator is used with extreme parsimony: indeed when the com-

4



pacity of the problem increases, crossing over two solstion

do not produce promising solutionisg( offspring solutions l

present too much overlaps when compared with their parent ] 1 =10 _
solutions), even when using the restricted selection epera Creation of the initial population Py
tor. Introduced by Delet al. [27], the restricted selection
operator consists in selecting two parents which genotypic

> Separation algorithm |

distance is minimum.

e Mutations generate new solutions from one parent. The

polynomial mutation operator is used for real variables, an
a bit wise mutation is used for discrete variables.

e A swap operator that exchanges the position of two compo-
nents has been added. This classical operator in placement
problems allows one to generate new solutions fromone par- , _ ; )

ent solution.

4.4 The proposed algorithm

The proposed algorithm is presented figure 4. The structure

of the algorithm is very close to a generational geneticritigm.
The separation algorithm is nested in the genetic algoritimd

modifies component position so that the solution proposed re

spect placement constraints. The initial population cagdreer-
ated randomly, or the designer can provide a set of solutions
its choice or also solutions obtained from a placement bgari
such as bottom-left placement technique.

Before evaluating a solution, the algorithm checks if place
ment constraints are satisfied. If so, the different objestiof

the solution are evaluated and the algorithm moves to thé nex

solution. Otherwise, the separation algorithm is run andlimo
fies the solution so that placement constraints are reshethe
solution is then evaluated. At the end of the local optinmdarat
performed by the separation algorithm, the value of fumcfio
returned is used as a constraint violation indicator for dke
netic algorithm. This indicator will then be taken into aoab
in the genetic operations. As a consequence, a solutiol tesst
not respect placement constraints will not be selectedarctim-
strained binary tournamentwhen compared to a feasibléisolu

4.5 Characteristics of the method

This subsection sums up the different characteristics and

possibilities of the proposed method:

[ Evaluation of population P ]

Is one of the stopping criterion
satisfied ?

Y—>(_STOP ]

N

| Crossover / Mutation / Exchange |

Figure 4. GENETIC ALGORITHM PROPOSED TO SOLVE PLACE-
MENT PROBLEMS.

e Distance queries between components can easily be satis-

fied. For example, a minimum distanééetween two com-
ponents andk can be obtained by virtually growing radius

of each circle of componentsandk of d/2 when consider-

ing their possible overlap.

In the case, components are all rectangular in 2D and paral-
lelepipedic in 3D, the separation algorithm can be adapted
to handle these special cases. The objective of the separa-
tion algorithm may be to reduce the sum of overlaping ar-
eas/volumes, for which an analytical function and gradient
can easily be found.

The separation algorithm may be optional for problems with
a low compacity. In this case, the method is equivalentto use
a simple genetic algorithm to solve a placement problem, as
Yi et al.[15] already did.

e Components can be restricted to lay in an area defined by the5 Simulation results
designer. It consists in reducing the inward offset domains 5.1 Data of the problem

of a component.

Let's consider the problem of loading a car trunk, in which

e Alignement constraints can be included in the modelling and a set ofl1 components should be placed (Figures 94 & 5b). Two

in the separation algorithm, therefore automatically fein
satisfied.

e The designer can easily interact with solutions, and can pro

objectives are taken into account: the first one consistsiin m
imizing the euclidean distance between the geometric ceifite
gravity of the trunk and the center of gravity of the assembhe

pose solutions even if these solutions do not respect place- second objective consists in minimizing the inertia monnt

ment constraints.

the assembly around theaxis of the trunk (Figurgl5a). The first



Table 1. COMPONENT PROPERTIES
Type of components T1 | T2 | T3 | T4 | T5 | T6
Number of components 2 2 1 1 2 3
Density of components 0.7 | 0.6 | 0.6 | 0.8 | 0.3| 0.5

objective gives information on the static behavior of thenk,
whereas the second is more about the dynamic behavior.

Component properties are given in table 1. The grayscale
of components will be used to code their density: the darker a
component, the larger its density. The global compacityhi t
problem is evaluated to 79.5%. Orientations of componeams a
chosen to be discrete. For each component, the set of possibl
orientations i§0°, 90°, 180°, 270°}, except for symetrical com-
ponents which orientation is chosen among the{8&190°}.

The problem hag2 real variables coding component posi-
tions and11 discrete variables coding component orientations.
The separation algorithm only translates components tiey
solutions proposed by the global optimizer. The formulatid
the problem can be formulated as follows:

min f; (v) = /d3 + d3

& min f; (v) = 21 pilijyy 7
s.t. placement constraints are satisfied
where
dz — m 1 Z plAz (I’L - SCG)
21 piAi i=1
dy = =—— > pidi (vi — yc) (8)
iZIPiAi i=1
Lijyy = ff (z— xg)dedy
(z,y)EP;

with (z¢, ye) the cordinates of the geometric center of gravity.
Parameters of the genetic algorithm are given thble 2. The

probability of crossover of real and discrete variables\ang

low: in this example, the global optimizer looks like more an

evolution strategy than a genetic algorithm. These pamrset

are set to such low values because the high compacity ofgrobl

does not permit to generate promising solutions with crossn

For high compacity problems, the priority is given to mugati

and swap operators.

5.2 Results and analysis
Figure[® presents a set of efficient solutions extracted from
the Pareto front of figurlgl 7. Subfigures are sorted in the asere

6

Table 2. PARAMETERS OF THE GA

Number of generations 100
Number of individuals 100
Crossover probability of real variables 0.05
Mutation probability of real variables 0.4

Crossover probability of binary/discrete variables 0

Mutation probability of binary/discrete variables 0.3
Distribution index,. for real variable crossover 5
Distribution index,,, for real variable mutation 5
Swapping probability of two components 0.05
Relative coefficient used for tedomination 0.001
Use of phenotypic and genotypic distance Yes
Use of restricted selection operator Yes

ing order of objectivd and decreasing order for objecti#eOn
each solution presented, every component is in contactamith
other one, and one can observe that there is very little sfpace
move components. One can also observe that the darkest com-
ponentsj.e.the components with the largest density, are located
close to the center of the trunk or along thexis: these com-
ponents have a larger impact on the objective functions gnd b
placing them close to the geometric center of gravity of thek,

one optimizes both objective functions. Once the Paretat i
found, a multi-criteria analysis can be performed to chanse
solution.

Figure[T presents the different trade-off surfaces obthine
for the different simulations. One simulation correspotudsne
execution of the genetic algorithm. Each simulation eviaisia
10, 000 solutions in15 minutes. The problem is solved witl3
differentinitial random populations. Each point corresgeto a
feasible solution, meaning that the corresponding solugattis-
fies placement constraints. Identical symbols represeritdde-
off surface obtained from one simulatidre. the Pareto set ob-
tained. The first conclusion that can be drawn from this figure
is that there are large disparities between results. Twerdift
initial populations do not converge towards the same ticftle-
surface. If one has a look at the solutions proposed at the@end
a simulation, one can see that the layouts associated véteth
solutions are very close to each other, meaning that diyesi
the population in the variable space and in the objectiveeshas
been lost. The loss of diversisty can be explained by thetfiatt
the first feasible solutions found generate a selectionspres
on the other unfeasible solutions. As a consequence, unfeas
ble but promising solutions are not selected for next gediters,
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Figure 5. PRESENTATION OF THE CONTAINER AND THE DIFFERENT COMPONENTS OF THE EXAMPLE.
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Figure 6. EXAMPLE OF SOLUTIONS EXTRACTED FROM THE PARETO FRONT.

making them disappear. After a certain number of generstion
all solutions begin to look like each other and the convecgen
stalls, the genetic operators do not succeed in proposingfie
ficient solutions. Delet al. [27] have introduced the concept of
e-domination to preserve diversity in the population. Tlelaxk-
ation on the dominance relation allows inferior solutioashe
kept in the population while preserving diversity. This cgter
could be extended to constraints in order to preserve diyers
of population for problems with high compacity. It may alse b
interesting to regenerate a part of the population when ene d
tects that diversity is being lost. Tiwaat al.[16] use this feature

inside their steady-state genetic algorithm.

Numerical results tend to prove that the higher the compac-
ity of the problem is, the harder it is to find the set of efficien
solutions, and once a feasible solution has been found if-is d
ficult to change completely the topology of the solution. Hét
same problem is solved without one component of type 1, the
compacity falls to 59.6%, and the trade-off surfaces olethere
identical whatever the initial population. When compaoityhe
problem grows, the problem transforms itself into a C&P prob
lem, where the main objective is to find a feasible solution.
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Figure 7. PRESENTATION OF DIFFERENT PARETO FRONTS OBTAINED FOR DIFFERENT SEEDS.

6 3D separation algorithm Results show that high quality solutions can be obtained
The proposed method can be adapted to 3D, the difficulty with appropriate parameters for the genetic algorithmsmém
being in the adaptation of the separation algorithm. Thestien diate work includes a study of the influence of the initial pop
algorithm can easily be adapted to the 3D version of the prob- lation and a statistical study of the influence of the paranset
lem. Imamichiet al. [23] has already adapted his separation al- of the genetic algorithm. Several tests need to be perfortimed
gorithm to 3D, however only with simple components and enclo  see if diversity can be maintained inside the populatiorotif-s
sure. To adapt the separation algorithm, the first task stmisi tions. Trade-off surfaces obtained for different simala must
converting polyhedra in sets of spheres. Hubbard [30] amdlBr ~ be numerically evaluated with multi-objective indicat(egy.de-
shawet al.[31] have already solved this problem by approximat- lineation, distance, diversity and hypervolume) to qugrttie
ing polyhedra with hierarchies of spheres based on comyonen differences between them.

medial-axis surfaces (skeletal representations of compish Several extensions can be included in this work: the col-
Non-overlap constraints can be checked by simple distamte ¢ lision detection process can be speeded up by using a hierar-
putations between sphere centers. Non-protrusion camistra- chical description of components, articulated componeoitsd

quire to compute the minimum distance between sphere center be taken into account with the circle decomposition of compo
and the boundary of the enclosure. The challenge of such-an al nents. Future works also include comparison of differentlmo
gorithm is to find the correct trade-off between the number of elling techniques for high compacity problems: indeed @lac
spheres required to represent components and the congmatiati  ment problems with a large compacity are close to packingpro
complexity of the collision detection. Preliminary stuslieveal lems, for which fast and efficient technique have been preghos
that only decompositions based on medial axis provideéster [16].
ing results. Other methods such as sphere-trees basedrer oct
decomposition are prone to premature convergence during th
separation optimization. REFERENCES
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