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ABSTRACT
This article presents a generic method to solve 2D multi-

objective placement problem for free-form components. Thepro-
posed method is a relaxed placement technique combined withan
hybrid algorithm based on a genetic algorithm and a separation
algorithm. The genetic algorithm is used as a global optimizer
and is in charge of efficiently exploring the search space. The
separation algorithm is used to legalize solutions proposed by
the global optimizer, so that placement constraints are satisfied.
A test case illustrates the application of the proposed method.
Extensions for solving the 3D problem are given at the end of the
article.

1 Nomenclature
m Number of components
v Vector of positioning variables
vi Vector of variables containing position variables of

componenti. v = (v1, . . . , vm)
Oi Componenti
ni Number of circles of componenti
Ai Area of componenti
ρi Density of componenti
Sij jth circle of theith component
cij Vector of coordinates of thejth circle of theith com-

ponent
fpen

ijkl Penetration penalty between thejth circle of the ith

component and thelth circle of thekth component

∗Address all correspondence to this author.

fpro
ij Protrusion penalty of thejth circle of theith compo-

nent
C Container / Enclosure
cl(S) Closure ofS

2 Introduction
The problem of placing a set of components inside an enclo-

sure is known as the placement problem. A placement problem
asks to find all placement variables of all components so that
objectives are minimized and constraints are satisfied. Solving
a placement problem consists in finding one or several solution
that minimizes the objectives and respects a set of constraints.
Among all constraints, each placement problem presents non-
overlap and non-protrusion constraints. These constraints re-
spectively express the fact that components should not collide
with each other and that each component must lay inside the
boundaries of the container. These problems are non-linearand
most of the timeNP-complete, meaning that solutions asso-
ciated with the corresponding decision problem can be checked
with a polynomial algorithm.

Placement problems gather Cutting & Packing (C&P) prob-
lems and layout problems. In a C&P problem, components are
only geometrically related to each other, whereas in a layout
problem, components are geometrically and functionnally re-
lated to each other [1]. The underlying objective of each C&P
problem is a compaction objective: either a maximum number
of components has to be placed in the container, or a minimum
number of containers has to be used to place all components.
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This characteristics, that may also be found in a layout problem,
can influence the choice of modelling.

Wäscheret al. [2] recently proposed a typology of C&P
problems and improved the one proposed by Dyckhoff [3].
Among all C&P problems, knapsack problems [4], bin pack-
ing problems [5], nesting problems [6,7] container loadingprob-
lems [8] may be the most representative. Layout problems also
gather a wide panel of problems, including Facility Layout (FL)
problems [9], Very Large Scale Integration (VLSI) problems[10]
and enengineering problems [11].

Caganet al. [12] proposed a survey on 3D layout problem,
in which the different aspects of layout problems are discussed.
Grignonet al. [13] proposed a multi-objective genetic algorithm
framework to solve 3D layout problems, where individuals are
clouds of solutions. Aladahalliet al. [1, 14] developed a pat-
tern search algorithm to solve 3D layout problems, where objec-
tives and constraints are aggregated in a single merit function. Yi
et al. [15] used a genetic algorithm (NSGA-II) to find the posi-
tions of a set of components of a trunk. CAD is used to model
the problem and perform geometric computations. Non-overlap
and non-protrusion constraints act as a penality when comput-
ing the rank of each solution. Tiwariet al. [16] proposed a 3D
bottom-left-back strategy to solve a 3D C&P problem. The vox-
elization of components allows to pack complex geometry com-
ponents inside the container. A steady-state genetic algorithm is
used to generate the packing order and find the correct orienta-
tion of each component. Placement constraints are automatically
satisfied with the voxel-based representation. Zhanget al. [11]
used a combination of soft computing techniques (GA/PSO) to
place a set of components in a satellite module under behavioral
constraints. Components are modeled by either parallelepipeds
or cylinders, which allow using analytical functions to evaluate
overlap and protrusion constraints. Donget al. [17] proposed a
shape-morphing method to design components and solve a lay-
out problem at the same time.

The objective of this article is to introduce a new place-
ment method adapted to multi-objective problems. The first sec-
tion gives a general presentation of different placement methods,
the second section concerns the proposed method. An example
is discussed in the third section, finally the different elements
needed to develop the 3D placement method are presented.

3 Placement methods
Placement problems have generated a large amount of liter-

ature, however all placement techniques proposed can be clas-
sified in two categories: legal placement method and relaxed
placement method. A legal placement method is a method that
ensures that all placement constraints are satisfied while building
the solution. This is typically the case when using an encod-
ing scheme (e.g.bottom-left heuristic). Tiwariet al. [18] pro-
posed a survey of various encoding schemes, which can be used

to propose different placements. These placement techniques are
perfectly suited for problems presenting compaction objectives,
such as the minimization of the wire-length of components in-
side an electronic module. Relaxed placement methods allow
the non-respect of placement constraints during the elaboration
of the solution. These methods are mainly used when dealing
with complex geometries and can easily model any placement
constraints.

When using a legal placement method, the decision vari-
ables of the problem are usually permutations, which indicate
the order of introduction of the components inside the container.
Other more evolved encoding schemes have been proposed such
as the sequence pair encoding, in which permutations introduce
topological relations between components. The decision vari-
ables of relaxed placement techniques are directly the position-
ing variables of the components.

Placement problems are generally multi-objective problems.
However, most of the problems are treated as single-objective un-
constrained problems, where objectives and contraints areaggre-
gated in a single merit function. Such a formulation has several
shortcomings, first of all only the convex part of the Pareto front
can be identified. Second, the set of weights used to aggregate
functions can be difficult to identify, and may lead on strongas-
sumptions on the solutions obtained. A multi-objective formula-
tion is therefore preferred: multi-objective algorithms will search
for the set of non-dominated points in the objective space given
by efficient solutions, as shown on figure 1.

(a) (b)
f1

f2

x1x1 min x1 max

x2

x2 min

x2 max

Figure 1. ILLUSTRATION OF THE VARIABLE SEARCH SPACE AND

OBJECTIVE SEARCH SPACE FOR A BI-OBJECTIVE MINIMIZATION

PROBLEM. THICK DARK LINE ON SUBFIGURE (B) REPRESENTS

PARETO FRONT OF THE PROBLEM, I.E. THE SET OF NON-

DOMINATED POINTS.

4 The proposed method
The objective of the proposed method is to be generic, thus

suited to a wide set of placement contraints and objectives.A re-
laxed placement technique is therefore chosen. The variables of
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the problem are directly the positioning variables of the compo-
nents. These variables can be of different types. Translation vari-
ables are modeled as continuous variables and orientation vari-
ables can be continuous or discrete depending on the designer’s
needs.

The difficulty of such a modelling will be to propose feasible
solutions,i.e. solutions that satisfy placement constraints. The
proposed method is based on the use of a separation algorithm,
which objective is to legalize unfeasible solutions. A global op-
timizer is used to generate different promising solutions.The
different elements needed for the resolution of the problemare
presented in the following subsections.

4.1 Geometry handling
When using a relaxed placement method, collision or over-

lap detection may represent most of the computational effort.
The objective is therefore to use a correct geometric represen-
tation, that will be suited to our needs.

Several techniques can be used to detect a collision between
two components. The first one consists in computing the over-
lap area of each pair of polygons. However, this technique is
too costly. No-fit polygon (NFP) and inner-fit polygon (IFP) can
also be used [19]. NFP and IFP present the advantage of allow-
ing collision detection with a simple test of a point being ina
polygonal region. These features depend on the orientationof
the components, meaning that these elements have to be recom-
puted for each orientation. When components are convex, this
can be done in linear time with respect to the number of ver-
tices of polygons. Otherwise, a convex decomposition is needed.
However, this approach can hardly be adapted to 3D problems
even in the case of polytopes.

In case one is interested in the free rotation of components,
components can be transformed into sets of circles. The transfor-
mation proposed is based on the use of medial axis, which cor-
responds to the centers of maximum inscribed circles. Figure 2
illustrates how components are converted to sets of circles. First,
the medial axis of the polygon is computed. Second, a set of
circles which centers are located on the medial axis are inserted.
Circles are inserted such that the distance between two centers is
lower than a distance chosen by the designer. We choose this rep-
resentation for which collision detections between components
can be performed with simple distance computations, and for
which a separation algorithm has been proposed.

4.2 Separation algorithm
Different separation algorithms have been proposed, [20,21,

22,23] however the key idea is always the same: given a configu-
ration that does not satisfy placement contraints, the objective of
the separation algorithm is to minimize the non-respect of over-
lap and protrusion constraints. These constraints are gathered in

(a) Original shape (b) Medial axis (c) Circle placement

Figure 2. DIFFERENT STEPS OF THE CONVERSION OF A POLY-

GON TO A SET OF CIRCLES.

a penalty functionF characterizing the violation of the place-
ment constraints.

The separation algorithm and the formalism used here are
the ones proposed by Imamichiet al. [23]. Let’s consider a col-
lection ofm componentsO = {O1, . . . , Om}. Each component
Oi consists ofni circles{Si1, Si2 . . . , Sini

}. Let cij be the vec-
tor that represents the center of circleSij , rij be the radius ofSij

(i = 1, . . . , m; j = 1, . . . , ni). Circles are denoted with the cap-
ital letterS, because the separation algorithm can also be applied
in 3D with Spheres.

The separation problem is an unconstrained minimization
problem defined by

(Sep)

{

min F (v) = ωpenFpen(v) + ωproFpro (v)
s.t. v = (v1, . . . , vm)

(1)

where vectorv represents the placement variables, which repre-
sent degrees of freedom (dof) of the components.ωpen andωpro

are positive parameters representing the weights of the penetra-
tion and protrusion function. These values are respectively set to
1/3 and2/3. The total penetration and protrusion penalty func-
tions can be mathematically written as follows:

Fpen(v) =
∑

16i<k6m

∑ni

j=1

∑nk

l=1
fpen

ijkl (v)

Fpro (v) =
∑m

i=1

∑ni

j=1
fpro

ij (v)
(2)

wherefpen
ijkl andfpro

ij represent the local penalties of the penetra-
tion and protrusion, defined by the penetration depth. The pene-
tration depthδ [24] of two componentsO1 andO2 is defined as
the minimum translation distance of componentO2 so thatO1

andO2 do not overlap. These penalties write

fpen
ijkl (v) = (δ (Sij (vi) , Skl (vk)))2

fpro
ij (v) =

(

δ
(

Sij (vi) , cl
(

C
)))2 (3)

The penetration penalty of two circlesSij andSkl can be finally
written as:

f
pen
ijkl (v) = (max {rij + rkl − ‖cij (vi) − ckl (vk)‖ , 0})

2 (4)
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Regarding non-protrusion constraints, inward offsets areused to
evaluate if circles belong to the container. These constraints can
be checked with a simple test of a point being inside a polygon.
If the center of a circle is not contained inside the inward off-
set polygon, the minimum distance between the center and this
polygon is used to build the constraint function and its gradient.

The functionF is a piecewise continuous function, therefore
its gradient can be used to find its minimum. The gradient of
functionF is

∇F (v) = ωpen∇Fpen(v) + ωpro∇Fpro (v) (5)

The gradient∇F (v) is computed by evaluating all components
of gradients∇Fpen and∇Fpro as follows:

∇iFpen(v) =
∂Fpen(v)

∂vi
=

ni
∑

j=1

∑

k={1,...,m}\i

nk
∑

l=1

∂f
pen
ijkl (v)

∂vi

∇iFpro (v) =
∂Fpro (vi)

∂vi
=

ni
∑

j=1

∂f
pro
ij (vi)

∂vi

(6)

For further details on the expressions of gradients, the reader
can refer to Imamichiet al. [23]. The separation problem is
solved using the BFGS quasi-Newton method [25]. This tech-
nique is iterative and moves all components at the same time,
unlike different separation heuristics that move one component
at a time [6]. Figure 3 illustrates how the separation algorithm
works on a solution proposed by the global optimizer. The order
of magnitude of the functionF depends on the circle conversion.
However, when placement constraints are satisfied, the function
F should always be zero.

The separation algorithm allows one to find a feasible solu-
tion from a solution that does not satisfy placement constraints.
The generation of solutions is the role of the global optimizer.

4.3 Global optimizer
The global optimizer is in charge of exploring efficiently the

search space to propose promising solutions. The genetic algo-
rithm (GA) Omni-Optimizer [27] is used. Its objective is to im-
prove the current population at each new generation. Based on
NSGA-2 [28], this generational GA is designed to handle sin-
gle and multi-objective problems. This algorithm was originally
chosen for its capacities to find multi-modal solutions. Three
variation operators are used to generate new solutions:

• The crossover operator takes two solutions and generates
two offspring solutions by crossing over all parent vari-
ables under a certain probability. The standard crossover

(a) 1st iterationF (v) = 13741.2 (b) 2nd iterationF (v) = 6130.7

(c) 3th iterationF (v) = 904.1 (d) 4th iterationF (v) = 342.0

(e) 5th iterationF (v) = 122.4 (f) 6th iterationF (v) = 52.9

(g) 20th iterationF (v) = 7× 10−3 (h) 30th iterationF (v) = 3× 10−4

Figure 3. SEPARATION ALGORITHM AT WORK ON INSTANCE

DIGHE 1 [26]. 16 COMPONENTS MODELLED WITH 515 CIRCLES.

EACH COMPONENT HAS ONE ROTATION DOF.

schemeSBXis used for real variables [29] and the two point
crossover is used for discrete variables. The crossover oper-
ator is used with extreme parsimony: indeed when the com-
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pacity of the problem increases, crossing over two solutions
do not produce promising solutions (i.e. offspring solutions
present too much overlaps when compared with their parent
solutions), even when using the restricted selection opera-
tor. Introduced by Debet al. [27], the restricted selection
operator consists in selecting two parents which genotypic
distance is minimum.

• Mutations generate new solutions from one parent. The
polynomial mutation operator is used for real variables, and
a bit wise mutation is used for discrete variables.

• A swap operator that exchanges the position of two compo-
nents has been added. This classical operator in placement
problems allows one to generate new solutions from one par-
ent solution.

4.4 The proposed algorithm
The proposed algorithm is presented figure 4. The structure

of the algorithm is very close to a generational genetic algorithm.
The separation algorithm is nested in the genetic algorithm, and
modifies component position so that the solution proposed re-
spect placement constraints. The initial population can begener-
ated randomly, or the designer can provide a set of solutionsfrom
its choice or also solutions obtained from a placement heuristic
such as bottom-left placement technique.

Before evaluating a solution, the algorithm checks if place-
ment constraints are satisfied. If so, the different objectives of
the solution are evaluated and the algorithm moves to the next
solution. Otherwise, the separation algorithm is run and modi-
fies the solution so that placement constraints are respected. The
solution is then evaluated. At the end of the local optimization
performed by the separation algorithm, the value of function F
returned is used as a constraint violation indicator for thege-
netic algorithm. This indicator will then be taken into account
in the genetic operations. As a consequence, a solution thatdoes
not respect placement constraints will not be selected in the con-
strained binary tournament when compared to a feasible solution.

4.5 Characteristics of the method
This subsection sums up the different characteristics and

possibilities of the proposed method:

• Components can be restricted to lay in an area defined by the
designer. It consists in reducing the inward offset domains
of a component.

• Alignement constraints can be included in the modelling and
in the separation algorithm, therefore automatically being
satisfied.

• The designer can easily interact with solutions, and can pro-
pose solutions even if these solutions do not respect place-
ment constraints.

Creation of the initial population

Start

P0

Separation algorithm 

Is one of the stopping criterion

satisfied ?

Selection

N

Crossover / Mutation / Exchange

STOPY

Evaluation of population Pi

i = 0

i = i + 1

Figure 4. GENETIC ALGORITHM PROPOSED TO SOLVE PLACE-

MENT PROBLEMS.

• Distance queries between components can easily be satis-
fied. For example, a minimum distanced between two com-
ponentsi andk can be obtained by virtually growing radius
of each circle of componentsi andk of d/2 when consider-
ing their possible overlap.

• In the case, components are all rectangular in 2D and paral-
lelepipedic in 3D, the separation algorithm can be adapted
to handle these special cases. The objective of the separa-
tion algorithm may be to reduce the sum of overlaping ar-
eas/volumes, for which an analytical function and gradient
can easily be found.

• The separation algorithm may be optional for problems with
a low compacity. In this case, the method is equivalent to use
a simple genetic algorithm to solve a placement problem, as
Yi et al. [15] already did.

5 Simulation results
5.1 Data of the problem

Let’s consider the problem of loading a car trunk, in which
a set of11 components should be placed (Figures 5a & 5b). Two
objectives are taken into account: the first one consists in min-
imizing the euclidean distance between the geometric center of
gravity of the trunk and the center of gravity of the assembly. The
second objective consists in minimizing the inertia momentof
the assembly around they axis of the trunk (Figure 5a). The first
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Table 1. COMPONENT PROPERTIES

Type of components T1 T2 T3 T4 T5 T6

Number of components 2 2 1 1 2 3

Density of components 0.7 0.6 0.6 0.8 0.3 0.5

objective gives information on the static behavior of the trunk,
whereas the second is more about the dynamic behavior.

Component properties are given in table 1. The grayscale
of components will be used to code their density: the darker a
component, the larger its density. The global compacity of this
problem is evaluated to 79.5%. Orientations of components are
chosen to be discrete. For each component, the set of possible
orientations is{0◦, 90◦, 180◦, 270◦}, except for symetrical com-
ponents which orientation is chosen among the set{0◦, 90◦}.

The problem has22 real variables coding component posi-
tions and11 discrete variables coding component orientations.
The separation algorithm only translates components to legalize
solutions proposed by the global optimizer. The formulation of
the problem can be formulated as follows:

P



















min f1 (v) =
√

d2
x + d2

y

min f2 (v) =
m
∑

i=1

ρiIi/yy

s.t. placement constraints are satisfied

(7)

where

dx = 1
m
P

i=1

ρiAi

m
∑

i=1

ρiAi (xi − xG)

dy = 1
m
P

i=1

ρiAi

m
∑

i=1

ρiAi (yi − yG)

Ii/yy =
∫∫

(x,y)∈Pi

(x − xG)2dxdy

(8)

with (xG, yG) the cordinates of the geometric center of gravity.
Parameters of the genetic algorithm are given table 2. The

probability of crossover of real and discrete variables arevery
low: in this example, the global optimizer looks like more an
evolution strategy than a genetic algorithm. These parameters
are set to such low values because the high compacity of problem
does not permit to generate promising solutions with crossovers.
For high compacity problems, the priority is given to mutation
and swap operators.

5.2 Results and analysis
Figure 6 presents a set of efficient solutions extracted from

the Pareto front of figure 7. Subfigures are sorted in the increas-

Table 2. PARAMETERS OF THE GA

Number of generations 100

Number of individuals 100

Crossover probability of real variables 0.05

Mutation probability of real variables 0.4

Crossover probability of binary/discrete variables 0

Mutation probability of binary/discrete variables 0.3

Distribution indexηc for real variable crossover 5

Distribution indexηm for real variable mutation 5

Swapping probability of two components 0.05

Relative coefficient used for theε-domination 0.001

Use of phenotypic and genotypic distance Yes

Use of restricted selection operator Yes

ing order of objective1 and decreasing order for objective2. On
each solution presented, every component is in contact withan-
other one, and one can observe that there is very little spaceto
move components. One can also observe that the darkest com-
ponents,i.e. the components with the largest density, are located
close to the center of the trunk or along they-axis: these com-
ponents have a larger impact on the objective functions and by
placing them close to the geometric center of gravity of the trunk,
one optimizes both objective functions. Once the Pareto front is
found, a multi-criteria analysis can be performed to chooseone
solution.

Figure 7 presents the different trade-off surfaces obtained
for the different simulations. One simulation correspondsto one
execution of the genetic algorithm. Each simulation evaluates
10, 000 solutions in15 minutes. The problem is solved with13
different initial random populations. Each point corresponds to a
feasible solution, meaning that the corresponding solution satis-
fies placement constraints. Identical symbols represent the trade-
off surface obtained from one simulation,i.e. the Pareto set ob-
tained. The first conclusion that can be drawn from this figure
is that there are large disparities between results. Two different
initial populations do not converge towards the same trade-off
surface. If one has a look at the solutions proposed at the endof
a simulation, one can see that the layouts associated with these
solutions are very close to each other, meaning that diversity of
the population in the variable space and in the objective space has
been lost. The loss of diversisty can be explained by the factthat
the first feasible solutions found generate a selection pressure
on the other unfeasible solutions. As a consequence, unfeasi-
ble but promising solutions are not selected for next generations,
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(a) Trunk geometry
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Figure 5. PRESENTATION OF THE CONTAINER AND THE DIFFERENT COMPONENTS OF THE EXAMPLE.
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(a) f1 = 0.002, f2 = 48204.0
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(b) f1 = 0.010, f2 = 45274.5
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(c) f1 = 0.1052, f2 = 47277.3
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(d) f1 = 0.506, f2 = 44899.6
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(e) f1 = 0.600, f2 = 43973.2
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(f) f1 = 0.900, f2 = 41239.5

Figure 6. EXAMPLE OF SOLUTIONS EXTRACTED FROM THE PARETO FRONT.

making them disappear. After a certain number of generations,
all solutions begin to look like each other and the convergence
stalls, the genetic operators do not succeed in proposing new ef-
ficient solutions. Debet al. [27] have introduced the concept of
ε-domination to preserve diversity in the population. This relax-
ation on the dominance relation allows inferior solutions to be
kept in the population while preserving diversity. This operator
could be extended to constraints in order to preserve diversity
of population for problems with high compacity. It may also be
interesting to regenerate a part of the population when one de-
tects that diversity is being lost. Tiwariet al.[16] use this feature
inside their steady-state genetic algorithm.

Numerical results tend to prove that the higher the compac-
ity of the problem is, the harder it is to find the set of efficient
solutions, and once a feasible solution has been found it is dif-
ficult to change completely the topology of the solution. If the
same problem is solved without one component of type 1, the
compacity falls to 59.6%, and the trade-off surfaces obtained are
identical whatever the initial population. When compacityof the
problem grows, the problem transforms itself into a C&P prob-
lem, where the main objective is to find a feasible solution.
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Figure 7. PRESENTATION OF DIFFERENT PARETO FRONTS OBTAINED FOR DIFFERENT SEEDS.

6 3D separation algorithm
The proposed method can be adapted to 3D, the difficulty

being in the adaptation of the separation algorithm. The genetic
algorithm can easily be adapted to the 3D version of the prob-
lem. Imamichiet al. [23] has already adapted his separation al-
gorithm to 3D, however only with simple components and enclo-
sure. To adapt the separation algorithm, the first task consists in
converting polyhedra in sets of spheres. Hubbard [30] and Brad-
shawet al.[31] have already solved this problem by approximat-
ing polyhedra with hierarchies of spheres based on component
medial-axis surfaces (skeletal representations of components).
Non-overlap constraints can be checked by simple distance com-
putations between sphere centers. Non-protrusion constraints re-
quire to compute the minimum distance between sphere centers
and the boundary of the enclosure. The challenge of such an al-
gorithm is to find the correct trade-off between the number of
spheres required to represent components and the computational
complexity of the collision detection. Preliminary studies reveal
that only decompositions based on medial axis provide interest-
ing results. Other methods such as sphere-trees based on octree
decomposition are prone to premature convergence during the
separation optimization.

7 Conclusion
This paper has introduced a 2D multi-objective placement

method for complex geometry components. The proposed re-
laxed placement technique is based on the hybridation of a ge-
netic algorithm and a separation algorithm, and allows one to
solve placement problems with several types of placement con-
straints. Applications of the proposed method can be found in
engineering domains, where placement problems have no partic-
ular specificities and can not be treated with classical methods.

Results show that high quality solutions can be obtained
with appropriate parameters for the genetic algorithms. Imme-
diate work includes a study of the influence of the initial popu-
lation and a statistical study of the influence of the parameters
of the genetic algorithm. Several tests need to be performedto
see if diversity can be maintained inside the population of solu-
tions. Trade-off surfaces obtained for different simulations must
be numerically evaluated with multi-objective indicators(e.g.de-
lineation, distance, diversity and hypervolume) to quantify the
differences between them.

Several extensions can be included in this work: the col-
lision detection process can be speeded up by using a hierar-
chical description of components, articulated componentscould
be taken into account with the circle decomposition of compo-
nents. Future works also include comparison of different mod-
elling techniques for high compacity problems: indeed place-
ment problems with a large compacity are close to packing prob-
lems, for which fast and efficient technique have been proposed
[16].
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