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Summary. The flow of the Kepler problem (motion of two mutually attracting
bodies) is known to be geodesic after the work of Moser [21], extended by Belbruno
and Osipov [2, 22]: Trajectories are reparameterizations of minimum length curves
for some Riemannian metric. This is not true anymore in the case of the three-body
problem, and there are topological obstructions as observed by McCord et al. [20].
The controlled formulations of these two problems are considered so as to model
the motion of a spacecraft within the influence of one or two planets. The averaged
flow of the (energy minimum) controlled Kepler problem with two controls is shown
to remain geodesic. The same holds true in the case of only one control provided
one allows singularities in the metric. Some numerical insight into the control of the
circular restricted three-body problem is also given.
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1 Introduction

The circular restricted three-body problem is defined as follows [26].

Two bodies describe circular orbits around their center of mass under
the influence of their mutual gravitational attraction, and a third one
(attracted by the previous two but not influencing their motion) evolves
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no. 2009-160E-160-CE-160T) and ANR GCM. The second author is supported
by the French Ministry for Higher Education & Research (grant no. 31716-2008).
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in the plane defined by the two rotating ones. The restricted problem
is to describe the motion of this third body.

We investigate the optimal control of this problem. The two primaries are
planets, typically Earth and Moon, the third body is a spacecraft. The con-
trol is the thrust of this spacecraft. A recent example of this problem is the
SMART-1 mission [4, 23] of the European Space Agency in the Earth-Moon
system. This case has three important features: (i) Provided we neglect non-
coplanar effects, the circular restricted model is germane to the problem as
the eccentricity of the Moon orbit is about 0.0549; (ii) The mass m2 of the
second primary (the Moon) is much smaller than the mass of the first (the
Earth), m1, so that µ = m2/(m1 + m2) ! 0.0121 is a small parameter of the
model; (iii) The thrust of the engine is very low since solar-electric propulsion
is used (around 0.07 Newtons for a 350 Kilogram vehicle), so the magnitude
of the control is another small parameter.

In a rotating frame, the dynamics is normalized to the second order me-
chanical system

q̈ + ∇Vµ(q) + 2iq = εu, |u| =
√

u2
1 + u2

2 ≤ 1.

Coordinate q ∈ C ! R2 is the position vector while u is the control (the
normalized acceleration, here). In this moving frame, the circular restricted
three-body potential is

Vµ(q) = −q2

2
− 1 − µ

r1
− µ

r2
,

r2
1 = (q1 + µ)2 + q2

2 , r2
2 = (q1 − 1 + µ)2 + q2

2 .

Parameter µ is the ratio m2/(m1 + m2) of the masses of the two primaries,
and ε is the bound on the acceleration. When µ vanishes, we have a controlled
two-body problem. The uncontrolled equations of motion can also be written
in Hamiltonian form using Jacobi first integral (total energy),

Jµ(q, q̇) =
|q̇|2

2
+ Vµ(q).

In complex notation, let p = q̇ + iq. Then

Jµ(q, p) =
|p|2

2
+ p2q1 − p1q2 −

1 − µ

r1
− µ

r2
·

The controlled system with Hamiltonian drift is so

q̇ =
∂Jµ

∂p
, ṗ = −∂Jµ

∂q
+ εu, |u| ≤ 1. (1)

In the case of two bodies (µ = 0) and no control (ε = 0), the equations of
motion in a fixed frame are
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q̈ +
q

|q|3 = 0, q ∈ R2 − {0}. (2)

In Hamiltonian form,

q̇ =
∂J0

∂p
, ṗ = −∂J0

∂q
,

with energy J0 = |q̇|2/2−1/|q| = |p|2/2−1/|q|, as p = q̇ in the fixed frame. It
was proven in [21] that, for negative values of the energy, the Hamiltonian flow
of the system is a reparameterization of the geodesic flow on the punctured
two-sphere, Ŝ2 = S2−{N} (North pole removed). We sketch the construction
in dimension n ≥ 2 where the result holds unchanged. (Take q ∈ Rn − {0} in
(2).) One first identifies the tangent bundle of the punctured n-sphere with
the set of vectors ξ = (ξ0, . . . , ξn), η = (η0, . . . , ηn) of Rn+1 such that

|ξ| = 1, (ξ|η) = 0.

The puncture is obtained by removing ξ0 = 1. Then, the transformation from
the tangent bundle to R2n is

qi = (1 − ξ0)ηi + η0ξi, pi = − ξi

1 − ξ0
, i = 1, . . . , n.

Provided time is changed according to

dt = |q|ds, (3)

the Hamiltonian flow on J0 = −1/2 is mapped into the Hamiltonian flow on
J̃0 = 1/2 ⊂ T Ŝn where

J̃0(ξ, η) =
1
2
|ξ|2|η|2.

This level set is the unit or spherical tangent bundle of Ŝ2 since |η| = 1.
There,

ξ′ = η, η′ = −ξ,

so ξ′′ + ξ = 0 and one actually gets geodesics parameterized by arc length.
The Levi-Civita change in time (3) regularizes the collision and the dynamics
is extended on the whole n-sphere. The result of [21] was further generalized
to cover the case of zero or positive energy levels by [2] and [22].

Trajectories in optimal control are projections of Hamiltonian flows, in
general with singularities described by Pontryagin maximization condition.
Riemannian problems being the simplest instance of control problems, one
may ask whether a given smooth Hamiltonian flow is the reparameterization
of some Riemannian flow as in the two-body case. This question is addressed
in [20], noting the following fact. Given a flow on an odd 2n − 1-dimensional
manifold M , a necessary condition for the flow to be geodesic is that the
manifold be the unit tangent bundle of some other manifold of dimension n.
This puts topological restrictions on M . These conditions are expressed in



4 J.-B. Caillau, B. Daoud, and J. Gergaud

terms of the homology of M and applied to the (general) three-body problem.
We state the results and recall some basic facts on homology [17].

On a topological space X , a singular p-simplex is a continuous map σp :
∆p → X . Here, ∆p is the standard p-simplex, that is the set of (t0, . . . , tp) ∈
Rp+1 such that

t0 + · · · + tp = 1, ti ≥ 0, i = 0, . . . , p.

Let v0, . . . , vp be its vertices. The set Cp(X) of p-chains is the free abelian
group generated by singular p-simplices. The boundary operator ∂p : Cp(X) →
Cp−1(X) is

∂p(σp) =
p∑

i=0

(−1)pσp|∆(v0, . . . , v̂i, . . . , vp)

where the restriction is on the (p−1)-simplex ∆(v0, . . . , v̂i, . . . , vp) with vertex
vi removed, implicitly identified with ∆p−1. Images of (p + 1)-chains by ∂p+1

are p-boundaries, and p-chains in the kernel of ∂p are p-cycles. As δpδp+1 = 0,
boundaries are cycles while, conversely, one defines the p-th homology group
Hp(X) as the quotient

Hp(X) = Ker∂p/Im∂p+1.

The rank of the Z-module Hp(X) is βp, the p-th Betti number, and the Euler-
Poincaré characteristic of M is

χ(M) =
n∑

p=0

βp.

Proposition 1 ([20]). If M is a non-compact connected orientable manifold
of dimension 2n−1, a necessary condition for it to be the unit tangent bundle
of some orientable n-manifold is βn−1 )= 0.

Applying this condition to the three-body problem, one gets the following
negative result.

Theorem 1 ([20]). The flow of the planar three-body problem on a negative
level of energy is not geodesic.

In the case of controlled two and three-body problems, there is not much
hope to retrieve Riemannian flows, unless one uses some approximation pro-
cess. The paper is organized as follows. In section 2, we examine the case of
two bodies and two controls. Using averaging on a relaxed problem, we show
that the flow is Riemannian when the L2-norm of the control is minimized.
Its properties are essentially captured by those of a metric on the two-sphere.
The same holds true for the case of two bodies and one control (directed by
velocity) provided one allows singularities in the metric. This is addressed
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in section 3. A preliminary discussion of the restricted three-body and two-
control case is made in section 4. The problem is control-affine, with a drift.
One can still define the exponential mapping associated with minimum time
extremals and compute conjugate points to ensure, as in the Riemannian case,
local optimality of trajectories.

2 Two bodies, two controls

We consider an L2-relaxation of the controlled two-body problem. The bound
ε on the control is dropped,

q̈ +
q

|q|3 = u, u ∈ R2, (4)

while the final time, tf , is a fixed parameter of the criterion:
∫ tf

0
|u|2dt → min .

In the sub-Riemannian case, L2-minimization parameterized by final time
can be recast as a minimum time problem with a bound on the control. Both
problems coincide, so tf and ε play dual roles in this sense. The situation is
more complicated here because of the Kepler drift in the motion. In order
to identify a new small parameter of the problem and perform averaging, we
notice that the negative energy level J0 < 0 has a trivial fiber structure. This
is apparent in suited geometric coordinates.

The set X of oriented ellipses has moduli space the product manifold
R∗

+ × S2: Each ellipse is defined by its semi-major axis a > 0 (we exclude
trivial orbits, a = 0), and to any point on S2, (θ,ϕ) in standard spherical
coordinates, is uniquely associated an eccentricity, e = sinϕ, an argument
of perigee (angle of the semi-major axis with a fixed reference axis), θ, and
an orientation. The orientation of the ellipse changes when the point goes
from one hemisphere to the other. Collisions orbits correspond to the equator
ϕ = π/2 and are included in the model.

Remark 1. Ellipses associated with the poles or the equator have richer sym-
metries (automorphisms) than others. The moduli space is then said to be
coarse. It remains finer that the moduli space of conformal ellipses where
homothety and rotation moduli (a, θ) would be dropped.

Position on the orbit is defined by the polar angle in the plane or longitude,
l ∈ S1. The state space is hence S1 × X , and we have a trivial fiber space
whose fiber is the moduli space. To each uncontrolled trajectory on J0 < 0
corresponds a unique point in the fiber, so the drift in (4) has the form

F0(l, x) = ω(l, x)
∂

∂l
, (l, x) ∈ S1 × X.
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(See (5) hereafter for the definition of ω.) Keeping the same notation, let then
l be the cumulated longitude, associated with the covering

R + l ,→ eil ∈ S1.

Choosing l as new time, we recast the problem as control-affine problem on X
without drift but with non-autonomous vector fields depending periodically
on l,

dx

dl
= u1F1(l, x) + u2F2(l, x), u ∈ R2,

∫ lf

0
|u|2 dl

ω(l, x)
→ min (fixed lf ).

The two vector fields F1, F2 on X are periodic in the parameter l. Introducing
mean motion, n = a−3/2, and true anomaly, τ = l − θ, one gets

F1(l, x) =
P 2

W 2

(
− 3en

1 − e2

∂

∂n
+ sin τ

∂

∂e
− cos τ

1
e

∂

∂θ

)
,

F2(l, x) =
P 2

W 2

(
− 3Wn

1 − e2

∂

∂n
+ (cos τ +

e + cos τ
W

)
∂

∂e

+ (sin τ +
sin τ
W

)
1
e

∂

∂θ

)
,

with W = 1 + e cos τ . The pulsation is

ω(l, x) =
nW 2

(1 − e2)3/2
· (5)

Averaging on the base space eliminates l, that is the drift in the equation.
The normal maximized Hamiltonian on S1 × T ∗X is

H(l, x, p) =
ω

2
(H2

1 + H2
2 )(l, x, p),

where Hi = 〈p, Fi(l, x)〉, i = 1, 2, are the Hamiltonian lifts of the vector fields.
Let

H(x, p) =
1
2π

∫ 2π

0
H(l, x, p)dl (6)

be the averaged Hamiltonian. As 1/lf , the new small parameter, tends to zero,
the flow of H converges uniformly towards the flow of H on [0, lf ]. (See [16].)
It turns out that the averaged flow is the flow of some Riemannian metric on
X , a result which can be traced back to Edelbaum [14]. We refer to [5, 9] for
details.

Proposition 2. The averaged Hamiltonian is

H(x, p) =
p2

r

2
+

c2

2r2

(
1 − λ sin2 ϕ

sin2 ϕ
p2

θ + p2
ϕ

)

with r = (2/5)n5/6, c =
√

2/5 and λ = 4/5.
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The metric is

dr2 +
r2

c2

(
sin2 ϕ

1 − λ sin2 ϕ
dθ2 + dϕ2

)
.

It is Liouville integrable. The integration and the analysis of optimality can
be made on the restriction to S2 by reparameterizing time according to ds =
c2dl/r2. (See [6].) This amounts to restricting to a coarser moduli space where
homothetic ellipses are identified. The restricted metric is

XR(λX)dθ2 + dϕ2 with R =
1

1 − X
and X = sin2 ϕ. (7)

As χ(S2) = 2, the two vector fields (XR(X))−1/2∂θ, ∂/∂ϕ cannot form a
global frame on the sphere. They have polar singularities that do not define
genuine singularities of the metric.

Remark 2. Coordinates (θ,ϕ) are associated with the covering of the sphere
with two punctures at North and South poles,

R × (0,π) + (θ,ϕ) ,→ (sinϕ cos θ, sinϕ sin θ, cosϕ) ∈ R3.

One retrieves the standard covering exp : C → C∗ ! S2 − {N, S} by putting
(θ,ϕ) ,→ tan(ϕ/2) exp(iθ).

The Hamiltonian on S2 is H2 = (1/2)[(XR(λX))−1p2
θ + p2

ϕ]. On the level
H2 = 1/2, time is arc length and we get the quadrature

Y 2 = 4(1 − X)[X − p2
θ(1 − λX)], Y = Ẋ.

Since θ is cyclic, pθ is constant (Clairaut first integral of a surface of revolu-
tion). The complex curve is of genus zero and admits a rational parameteri-
zation. We get

sin z =
1

δ2 − p2
θ

[2δ2X − (δ2 + p2
θ)], dt =

dz

2δ
,

for z ∈ R and δ2 = 1 + λp2
θ. We set θ0 = 0 by symmetry of revolution.

We also assume ϕ0 = π/2 without loss of generality since time translations
generate any extremal on H2 = 1/2 with arbitrary initial condition. The
squared adjoint p2

θ is bounded by 1/(1 − λ).

Proposition 3. The system for two bodies and two controls can be integrated
using harmonic functions. One has

sin2 ϕ =
1

2δ2
[(δ2 − p2

θ) cos(2δt) + (δ2 + p2
θ)], δ2 = 1 + λp2

θ, λ = 4/5,

θ = sign(pθ)
[
atan

(δ2 − p2
θ) + (δ2 + p2

θ) tan(δt + π/4)
2δpθ

]t

0

− λpθt.



8 J.-B. Caillau, B. Daoud, and J. Gergaud

Proof. The quadrature on θ is

dθ
dz

=
pθ

2δ

(
1
X

− λ

)
,

whence the result. /0

Coordinate ϕ (resp. θ) is periodic (resp. quasi-periodic) with period T =
2π/δ = 2π/

√
1 + λp2

θ. (The period of ϕ is twice the period of X = sin2 ϕ.)
The increment of θ over one period is important for the optimality analysis
concluding the section. One has

∆θ = 2π

(
1 − λpθ√

1 + λp2
θ

)
. (8)

Fix y0 on S2. The exponential mapping is defined for t ∈ R and p0 ∈
H2(y0, ·)−1(1/2) ⊂ T ∗

y0
S2 by

expy0
: (t, p0) ,→ Π ◦ exp t

−→
H 2(y0, p0) = y(t, y0, p0)

where Π : T ∗S2 → S2 is the canonical projection and
−→
H 2 the symplectic

gradient. A conjugate point is a critical value of the exponential mapping. The
time associated with such a critical point is the conjugate time, and one can
define the first conjugate point along the geodesic associated with a given p0.
The (first) conjugate locus is the set of all such points on geodesics emanating
from y0. Jacobi theorem [13] asserts that, up to the first conjugate point, a
geodesic is locally minimizing with respect to neighbouring continuous broken
curves with same endpoints.

Theorem 2. In the two-body two-control case, the conjugate locus of any point
on the sphere has four (possibly degenerate) cusps, two horizontal and two
meridional.

Proof. According to [10] result, a sufficient condition is that ∆θ is strictly
decreasing convex. The condition is valid for (8). /0

Finally, define the cut time along the geodesic defined by p0 as the supre-
mum of times t such that the geodesic s ,→ expy0

(s, p0) is globally minimizing
on [0, t]. (See [13].) The corresponding point, if any, is the cut point . The cut
locus is the set of all such points on geodesics emanating from y0. It is known
since Poincaré that the cut locus of an analytic metric on the sphere is a finite
tree whose extremities are singularities of the conjugate locus. In the case of
a metric with more symmetries, the result can be specialized as follows.

Theorem 3 ([25]). The cut locus of an analytic metric on the sphere of rev-
olution with equatorial symmetry is an antipodal 3 subarc provided the Gauss
curvature is nondecreasing from North pole to equator.
3 Symmetric with respect to the center of the sphere.
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Fig. 1. Conjugate locus, two bodies and two controls. The astroid-shaped locus (in
red) is the envelope of geodesics (in blue) emanating from the initial point. It has
four (degenerate for initial condition on the poles) cusps, two horizontal and two
meridional. The cut locus is a closed antipodal subarc (in black) whose extremities
are horizontal cusps of the conjugate locus.

Though metric (7) has the required symmetries, the monotonicity condition
on the curvature does not hold as

K =
1 − λ(3 − 2X)

(1 − λX)2

is not decreasing when X ∈ [0, 1] (remember that X = sin2 ϕ) for λ = 4/5. A
refined result relying on ∆θ being strictly decreasing still gives the result [10].

Theorem 4. In the two-body two-control case, the cut locus of any point on
the sphere is a closed antipodal subarc.

Varying λ from zero to one in the definition of the metric (7), one connects
the canonical metric on the sphere to a metric with an equatorial singularity,
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sin2 ϕ

1 − sin2 ϕ
dθ2 + dϕ2.

The original metric is conformal to the standard metric on an oblate ellipsoid
of revolution with semi-minor axis

√
1 − λ since

XR(λX)dθ2 + dϕ2 =
1

1 − λ sin2 ϕ
[dθ2 + (1 − λ) sin2 ϕ)dϕ2].

Making λ tend to one can be interpretated as letting the semi-minor axis tend
to zero, thus collapsing the sphere on a two-face disk [7]. Such a singularity is
intrinsic in the case of only one control as explained in next section.

3 Two bodies, one control

Consider the L2-minimization of the two-body problem with only one control
acting tangentially [8],

q̈ +
q

|q|3 = u
q̇

|q̇| , u ∈ R,

∫ tf

0
|u|2dt → min .

The state space is as before the trivial fiber space S1 ×X , X = R∗
+ ×S2, but

we correct the relation between ϕ and the eccentricity,

e = sinϕ
√

1 + cos2 ϕ.

Changing again time to cumulated longitude,

dx

dl
= uF1(l, x),

∫ lf

0
|u|2 dl

ω(l, x)
→ min (fixed lf ).

In (n, e, θ) coordinates,

F1 = − 3(1 − e2)w
n1/3(1 + e cos τ)2

∂

∂n
+

2(1 − e2)2

n4/3(1 + e cos τ)2w

[
(e + cos τ)

∂

∂e
+

sin τ
e

∂

∂θ

]

with true anomaly τ = l − θ and w =
√

1 + 2e cos τ + e2. Since the drift is
unchanged, the pulsation is the same (compare (5)),

ω(l, x) =
n(1 + e cos τ)2

(1 − e2)3/2
·

The normal maximized Hamiltonian on S1 × T ∗X is

H(l, x, p) =
ω

2
H2

1 (l, x, p),

where H1 = 〈p, F1(l, x)〉. Define the averaged Hamiltonian as in (6). It is
remarkable that the averaged flow remains Riemannian.
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Proposition 4. The averaged Hamiltonian is

H(x, p) =
p2

r

2
+

c2

2r2

[
(1 − sin2 ϕ)2

sin2 ϕ(2 − sin2 ϕ)2
p2

θ + p2
ϕ

]

with r = (2/5)n5/6 and c = 2/5.

As in the case of two controls, the flow is Liouville integrable and the whole
analysis can be restricted to S2. The metric induced on the sphere is

XR(X)dθ2 +dϕ2, R(X) =
1
4

[
1 +

2
1 − X

+
1

(1 − X)2

]
, X = sin2 ϕ. (9)

There is now an equatorial singularity at ϕ = π/2. It is an order two pole
at X = 1 of the rational fraction R. (Compare with R = 1/(1 − X) in the
previous section.)

Let H2 = (1/2)[(XR(X))−1p2
θ+p2

ϕ]. On the level H2 = 1/2, the quadrature
on ϕ is

Y 2 = 4(1 − X)[X(2 − X)2 − 4p2
θ(1 − X)2], Y = Ẋ. (10)

The underlying curve is of genus one.4 It is parameterized by a doubly periodic
Weierstraß function,

X = 1 − 1
℘(z) − 1/3

,
dt

dz
= 1 +

1
℘(z) − 1/3

, (11)

whose invariants reflect the dependence on pθ,

g2 =
16
3

+ 16p2
θ, g3 =

64
27

− 16
3

p2
θ. (12)

Without loss of generality, we restrict again the computation to θ0 = 0 and
ϕ0 = π/2. With the initial condition at singularity, p2

θ is unbounded in con-
trast to the two-control case. Analyzing roots of the degree three polynomial
4ξ3 − g2ξ − g3 associated with Weierstraß function, one sees that the param-
eterization has to be restricted to the unbounded component of the cubic to
ensure X ∈ [0, 1]. Hence z belongs to R.

Proposition 5. The transcendence for two bodies and one (tangential) con-
trol is elliptic. One has

sin2 ϕ =
℘(z) − 4/3
℘(z) − 1/3

, z ∈ R,

t =
1

℘′(a)

[
ln

σ(z − a)
σ(z + a)

]z

0

+
(

1 +
2ζ(a)
℘′(a)

)
z,

θ = 2pθ

[
1

℘′(b)
ln

σ(z − b)
σ(z + b)

− 1
℘′(c)

ln
σ(z − c)
σ(z + c)

]z

0

+ 4pθ

(
ζ(b)
℘′(b)

− ζ(c)
℘′(c)

)
z,

with ℘(a) = 1/3, ℘(b) = 4/3, ℘(c) = −2/3, and invariants (12).
4 Excluding the degenerate case pθ = 0 associated with meridians.
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Proof. The quadrature on θ is

dθ
dz

= 2pθ

(
1

℘(z) − 4/3
− 1

℘(z) + 2/3

)
.

It is similar to the quadrature (11) on t. Introducing Weierstraß ζ and σ
functions, ℘ = −ζ′, ζ = σ′/σ, one has

∫
℘′(a)dz

℘(z) − ℘(a)
= 2ζ(a)z + ln

σ(z − a)
σ(z + a)

,

whence the result. /0

The family of genus one complex curves (10) are all homeomorphic to the
torus. The topological classification of extremals is then trivial. We recall
standard facts on the moduli space of elliptic curves [18] so as to refine the
classification up to conformal equivalence.

Let L be a lattice in the complex plane with basis (l1, l2) (complex numbers
linearly independent over R2). A pair (l′1, l′2) defines another basis if only if

l′1 = al1 + bl2,

l′2 = cl1 + dl2,

for some matrix [
a b
c d

]
∈ SL(2,Z).

Two tori C/L, C/L′ are conformal if and only if there is some µ ∈ C∗ such
that L′ = µL. Let (l1, l2) and (l′1, l′2) be bases of L and L′, respectively. We
can assume that τ = l2/l1 and τ ′ = l′2/l′1 belong to Poincaré upper half-plane,
H. From the previous remarks, L and L′ are conformal if and only if there is
a quadruple (a, b, c, d) such that

τ ′ =
aτ + b

cτ + d
, a, b, c, d ∈ Z, ad − bc = 1. (13)

Such particular Möbius transformations are automorphisms of H. The induced
group morphism between SL(2,Z) and Aut(H) has kernel ±id. Transforma-
tions (13) are then identified with the Fuchsian modular group PSL(2,Z) =
SL(2,Z)/± id. Then H/PSL(2,Z) is the moduli space for congruences of con-
formal tori. One eventually defines the modular function [18]

j(τ) =
g3
2

∆
·

It is a bijection from H/PSL(2,Z) onto C.
In our case, to each pθ is associated a real rectangular lattice. Using (12),

one can define
j(pθ) =

16(1 + 3p2
θ)

3

27p2
θ(8 + 13p2

θ + 16p4
θ)

(14)

and obtain the following classification of extremals.
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Proposition 6. There are not more than three conformal ϕ-curves.

Proof. Function (14) has exactly two critical points, so j(pθ) = constant has
at most three distinct solutions (not taking into account symmetric solutions,
±pθ). /0

To estimate the conjugate locus at singularity, we use the following local
model. Set x = π/2 − ϕ, y = θ. The metric (9) is locally approximated by

dx2 +
dy2

x2p
· (15)

In the case of one (tangential) control, p = 2.

Proposition 7 ([7]). The conjugate locus at the origin of (15) is y =
±Cpxp+1 minus the origin itself. As p → ∞, Cp ∼ 8/(3p + 1).

As a result, the conjugate locus of the metric on S2 has an order 3 contact with
the equatorial singularity. Because of the symmetry pθ → −pθ, this defines
two meridional cusps of the conjugate locus at ϕ0 = π/2. (See Fig. 2.) The
result of section 2 can be extended to this singular setting.

Theorem 5 ([7]). If ∆θ is strictly decreasing convex, the conjugate locus
has four (possibly degenerate) cusps, all meridional for equatorial points, two
horizontal and two meridional otherwise.

The verification on ∆θ is intricate but can again be made. The following
estimates are computed in [7],

∆θ ∼0 2π(1 − 3
√

2
4

pθ +
35

√
2

128
p3

θ), ∆θ ∼∞
4
3
(2 −

√
2)K(3 − 2

√
2)p−3/2

θ ,

where K(k) is the complete Jacobi integral of first kind and modulus k. The
previous structure result on the cut locus is also extended to include the two-
body one-control case.

Theorem 6 ([7]). If ∆θ is strictly decreasing, the cut locus of a point on
the sphere is the equator minus the point itself for equatorial points, a closed
antipodal subarc otherwise.

4 Three bodies, two controls

In contrast with sections 2 and 3, we keep the original constraint on the
control, and consider the final time minimization of

q̈ + ∇Vµ(q) + 2iq = εu, |u| ≤ 1.
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Fig. 2. Conjugate locus, two bodies and one (tangential) control. The double-heart
locus (in red) is the envelope of geodesics (in blue) emanating from the initial point.
It has four meridional cusps (two of them generated by order 3 contacts at origin).
The cut locus (in black) is the whole equator minus the origin.

See [9] for preliminary computations on the L2-relaxation of the problem.
Available results on controlled three-body problems are mostly numerical.
They usually deal with refined models taking into account three-dimensional
effects, perturbations, and rely on direct optimization methods. (See, e.g., [3].)

The position vector q belongs to the complex plane with two punctures
at −µ and 1 − µ, denoted Qµ. The state space Xµ is the tangent space TQµ

in (rotating) cartesian coordinates (q, q̇). It is the cotangent space T ∗Qµ in
(q, p) variables, see (1). In both cases, Xµ ! Qµ × R2 is a trivial bundle. In
cartesian coordinates,

ẋ = F0(x) + ε(u1F1(x) + u2F2(x)), |u| ≤ 1.

There,



On some Riemannian aspects of two and three-body controlled problems 15

F0(x) = q̇
∂

∂q
− (∇Vµ(q) + 2iq)

∂

∂q̇
, F1(x) =

∂

∂q̇1
, F2(x) =

∂

∂q̇2
·

The maximized normal Hamiltonian5 is

H = −1 + H0 + ε
√

H2
1 + H2

2 , Hi = 〈p, Fi(x)〉, i = 0, . . . , 2.

Extremals are classified according to the order of their contact with the switch-
ing surface Σ = {H1 = H2 = 0}. (See [12].)

Proposition 8. Contacts with Σ are of order one and define isolated π-
singularities.6

Proof. The distribution {F1, F2} being involutive, the switching function ψ =
(H1, H2) is C 1,

ψ̇1 = {H0, H1}− u1{H1, H2}, ψ̇2 = {H0, H2} + u2{H1, H2}.

The bracket {H1, H2} vanishes on Σ. The drift comes from a second order
mechanical system, so {F1, F2, [F0, F1], [F0, F2]} has full rank. Then ψ̇ )= 0
on Σ and contacts are of order one. By Pontryagin maximization condition,
u = ψ/|ψ|, so u is changed to −u whenever ψ vanishes. /0

As Σ is of codimension two in T ∗Xµ, we can neglect these finitely many π-
singularities for the numerical computation and restrict to smooth extremals
not crossing the switching surface.

For the minimum time problem, the exponential mapping associated with
order zero extremals is defined on a neighbourhood of the origin in R ×
H(x0, ·)−1(0),

expx0
: (t, p0) ,→ Π ◦ exp t

−→
H (x0, p0) = x(t, x0, p0), Π : T ∗Xµ → Xµ.

Given a target xf , the problem is to find a zero of the shooting equation

expx0
(tf , p0) = xf .

The two-body problem is embedded into the three-body one thanks to
parameter µ. This paves the way for using continuation methods between
two and three-body control problems. (See also [15] for such an approach in
the two-body case.) Rather than information on the adjoint, the knowledge
of the Kepler minimum time from [12] turns out to be critical to initialize
the continuation. Our target for numerical computation is an equilibrium
point of the uncontrolled problem or Lagrange point [26]. Such points where
the influences of the two primaries compensate each other are appropriate
targets for the continuation. Here we use the L2 Lagrange point. It is equal to
5 From now on, p denotes the adjoint to x.
6 Instantaneous rotations of angle π of the control.
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the second primary when µ = 0. Lagrange points are extensively studied in
celestial mechanics and mission design [19]. A second continuation on ε is also
used to reach low bounds on the control, see results in Fig. 3. Hill regions are
projections on the q-space of level sets of the Jacobi integral. In the controlled
case, they vary dynamically along the trajectory (see Fig. 4),

Rµ(t) = {ξ ∈ Qµ | Jµ(q(t), q̇(t)) − Vµ(ξ) ≥ 0}.

Fig. 3. Three bodies, two controls. Minimum time trajectories from the geostation-
ary orbit to Lagrange L2 point in the Earth-Moon system (µ ! 0.0121). Successively,
ε = 2.440, 0.2440, 0.1220 and 0.04148.

A normal extremal is regular if it verifies the strong Legendre condition
that there exists some positive α such that, everywhere on [0, tf ], ∂2H/∂u2 ≤
−αI along the extremal.

Lemma 1. Order zero extremals of the minimum time three-body problem
with two controls are regular.

Proof. Along an order zero extremal, u ∈ S1. In any chart,

∂2H

∂u2
= −ε

√
H2

1 + H2
2 = −ε|ψ|.

The absence of π-singularity implies the strong Legendre condition as |ψ| is
then smooth and bounded below by some positive constant. /0
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Fig. 4. Dynamics of the Hill regions, ε = 2.440. The controlled trajectory (in red)
is plotted up to three different times and prolongated by the osculating uncontrolled
trajectory (in blue). During a first phase, energy Jµ is increased so as to include the
L2 target. The second phase is close to the motion of the system towards projection in
the q-space of the Lagrange point. The last two graphs are identical (the rightmost
one has a finer scale) and illustrate instability of the L2 point after the target is
reached.

As in the Riemannian case (without singularities), regular extremals are lo-
cally time minimizing for short times [1]. To investigate further local optimal-
ity, one generalizes Jacobi theory to the optimal control setting. Define again
conjugate points as critical values of the exponential mapping. The following
technical condition is sufficient to avoid degenerate situations on the kernel of
the second variation of the problem (see [24]). Let

Ex0 : (tf , u) ,→ x(tf , x0, u)

be the endpoint mapping. It is defined on a neighbourhood of the reference
pair (tf , u) in R×L∞([0, tf ],S1). We assume that, for any subinterval [t1, t2]
of [0, tf ], the partial derivative ∂Ex(t1)/∂u(t2 − t1, u|[t1, t2]) has corank one.

Theorem 7 ([1, 24]). Under the corank one assumption, the trajectory as-
sociated with a regular extremal is C 0-locally time minimizing up to the first
conjugate point. Past this point, the control is not even L∞-locally minimizing.

Local optimality of every extremal is verified by a conjugate point test. (See
Fig. 5). The practical computation of conjugate points is done by rank eval-
uation on Jacobi fields [11]. The concept of conjugate point is extended by



18 J.-B. Caillau, B. Daoud, and J. Gergaud

the notion of focal point [Ibid.] to encompass the case of submanifold targets.
Such an example for a lunar orbit target is provided Fig. 6.

Fig. 5. Conjugate point computation, ε = 0.04148. The reference trajectory is
prolongated up to the first conjugate point, beyond the L2 target. Local optimality
up to the target is guaranteed. The cuspidal point of first kind observed is generically
due to the condition q̇f = 0.

Fig. 6. Focal point computation, ε = 0.2440. The target is a lunar orbit, and the
focal point test ensures local optimality of the trajectory. The leftmost frame is the
rotating frame, the rightmost one is fixed.

Whatever the target, the value function ε ,→ tf (ε) of the minimum time
problem is decreasing: The smaller ε, the larger the transfer time. This is
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contradicted by results portrayed Fig. 7. We infer that the first extremal is
locally but not globally minimizing. When decreasing the bound on the control
ε from 0.2221 to 0.2196, one revolution around the first primary has to be
added before escape towards the second body is obtained. There lies global
analysis of the problem, in the interplay between the two small parameters µ,
ε. This leaves open the question of global optimality.

Fig. 7. Lunar target, ε = 0.2221 and 0.2196. Focal point tests ensure local optimality
in both cases. However, tf ! 17.8 versus tf ! 10.8 in the second one. The first
extremal is a local but not a global minimizer. The difference in strategies is apparent
as one extra revolution around the Earth is added in the second case before reaching
the lunar orbit target.
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