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Geometric and numerical techniques in optimal

control of the two and three-body problems

B. Bonnard,∗ J.-B. Caillau† and G. Picot‡

Dedicated to John Baillieul on the occasion of his 65th birthday

Abstract. The objective of this article is to present geometric and numeri-
cal techniques developed to study the orbit transfer between Keplerian elliptic
orbits in the two-body problem or between quasi-Keplerian orbits in the Earth-
Moon transfer when low propulsion is used. We concentrate our study on the
energy minimization problem. From Pontryagin’s maximum principle, the opti-
mal solution can be found solving the shooting equation for smooth Hamiltonian
dynamics. A first step in the analysis is to find in the Kepler case an analyti-
cal solution for the averaged Hamiltonian, which corresponds to a Riemannian
metric. This will allow to compute the solution for the original Kepler problem,
using a numerical continuation method where the smoothness of the path is re-
lated to the conjugate point condition. Similarly, the solution of the Earth-Moon
transfer is computed using geometric and numerical continuation techniques.

1 Introduction

In this article we consider the orbit transfer in the two and three-body problem,
using low propulsion. In the first case, the model is given by Kepler equation

q̈ = − q

|q|3 +
u

m

where m represents the mass of the satellite, subject to

ṁ = −δ|u|

modelling fuel consumption. The control satisfies the constraint |u| ≤ ε where
ε is a small parameter.

The physical optimal control has to maximize the final mass which leads to

min
u(.)

∫ tf

0

|u|dt
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where tf is the fixed transfer time. From Pontryagin maximum principle [27],
fixing the boundary conditions—e.g. a transfer from a low eccentric to a geo-
stationary orbit—, an optimal solution can be numerically computed using a
shooting algorithm. This leads to a complicated numerical problem. In [19],
the following numerical scheme is proposed. One computes the optimal solution
using the convex homotopy

min
u(.)

∫ tf

0

[λ|u|2 + (1 − λ)|u|]dt, λ ∈ [0, 1],

which amounts to regularizing the L1-minimization problem into an L2-problem.
This was the starting point of the use of continuation methods in orbital transfer,
when low propulsion is applied—see also [14] for the use of the continuation
method in the time minimal control problem, where the homotopy parameter
is the bound of the maximal amplitude of the thrust. From the mathematical
point of view, the original dynamics associated with the optimal flow is replaced
by another Hamiltonian one, and a continuation is made to solve the shooting
equation.

The first motivation of this article is to present a neat geometric result
from [8]: Neglecting the mass variation, restricting to coplanar transfer (the
inclination being considered as a homotopy parameter) and replacing the L1-
problem by an averaged L2-problem, one can substitute the Hamiltonian vector
field defined by the maximum principle with

H =
1

2n5/3

[
9n2p2

n +
5

2
(1 − e2)p2

e +
5 − 4e2

2

p2
θ

e2

]
,

where n is the mean motion, e the eccentricity, and θ the angle of the pericenter
(the singularity e = 0 corresponds to circular orbits). Coordinates (n, e, θ) are
moreover orthogonal coordinates for the Riemannian metric associated with H,

g =
dn2

9n
1

3

+
2n

5

3

5(1 − e2)
de2 +

2n
5

3

5 − 4e2
dθ2.

Such a metric is isometric to

g = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2)

where

r =
2

5
n5/6, ϕ = arcsin e

and

c =
√

2/5, G(ϕ) =
5 sin2(ϕ)

1 + 4 cos2(ϕ)
·

The Hamiltonian flow
−→
H is Liouville integrable and the metric in the above nor-

mal form captures the main properties of the averaged orbital transfer. Indeed,
one can extract from g the following two-dimensional Riemannian metrics:

– g1 = dr2 + r2dψ2 which is associated with the orbital transfer where θ is
kept fixed (this encompasses the case of circular targets). Such a metric
is flat and geodesics are straight lines in suitable coordinates.
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– g2 = dϕ2 + G(ϕ)dθ2 which represents the restriction of the metric to
r2 = c2 and describes by homogeneity the orbit transfer in the general
case.

A generalization of the results of [30] will allow to compute for the metric g2 the
conjugate and cut loci and to get a global optimality solution for the averaged
optimal control problem. This is the starting point to analyze the original
optimal control problem using a continuation method.

A second motivation of this article is to present some results from geometric
control theory connected to our analysis with adapted numerical codes devel-
oped to compute the solutions. First of all, the maximum principle is only
a necessary optimality condition. In order to get sufficient optimality con-
ditions under generic assumptions one must define the concept of conjugate
point, associated with the energy minimization problem. This concept was al-
ready introduced in the standard litterature of calculus of variations [5]. If the
Hamiltonian optimal dynamics is described by a smooth Hamiltonian vector

field
−→
H , conjugate points are the image of the singularities of the exponential

mapping: expx(0) : p(0) −→ Πx exp tf
−→
H (x(0), p(0)) where Πx : (x, p) −→ x is

the canonical projection. Such points can be numerically computed using the
code [12]. An important remark, in view of the use of the (smooth) continuation
method in optimal control is to observe that the shooting equation is precisely
to find p(0) such that expx(0)(p(0)) = x1 where x1 is the terminal condition and

the derivative is generated using the variational equation of
−→
H . This will lead

to convergence results for the smooth continuation method in optimal control,
related to estimates of conjugate points.

The last section is devoted to the Earth-Moon transfer, using low propulsion.
The model is the standard circular restricted model [24] where the two primaries
are fixed in a rotating frame. Up to a normalization the system can be written
in Hamiltonian form,

ẋ =
−→
H0(x) + u1

−→
H1(x) + u2

−→
H2(x)

where x = (q, p) ∈ R4 and the drift
−→
H0 is given by

H0(x) =
1

2
(p2

1 + p2
2) + p1q2 − p2q1 −

1 − µ

ρ1
− µ

ρ2
,

q being the position of the spacecraft, ρ1 representing the distance to the Earth
with mass 1−µ located at (−µ, 0), and ρ2 the distance to the Moon with mass µ
located at (1−µ, 0), µ ≃ 1.2153e−2 being a small parameter. The Hamiltonian
fields associated with the control are given by

Hi(x) = −qi, i = 1, 2,

and the control bound is |u| ≤ ε. The parameter µ is small and this remark
was used by Poincaré to study the dynamics of the free motion described by−→
H0 by making a deformation of the case µ = 0 which corresponds to Kepler
equation in rotating coordinates [24]. Inspired by this approach and using our
preliminary geometric analysis, we propose a simple solution to the Earth-Moon
transfer using low propulsion for the energy minimization problem.
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2 Geometric and numerical methods

2.1 Maximum principle

We consider the energy minimization problem minu(.)

∫ tf

0
|u|2dt, for a smooth

control system of the form

ẋ = F0(x(t)) +

m∑

i=1

ui(t)Fi(x(t)) = F (x(t), u(t)), x ∈ X.

The set of admissible controls is the subset U of measurable bounded mappings
u(.) with corresponding trajectory x(.) defined on the whole interval [0, tf ].
Pontryagin maximum principle [27] tells us that

Proposition 2.1. If (x, u) is an optimal pair on [0, tf ], there exists a non trivial
pair (p0, p), p0 ≤ 0 and p an absolutely continuous adjoint vector valued in T ∗X,
such that on [0, tf ] we have

ẋ =
∂H

∂p
(x, p, u), ṗ = −∂H

∂x
(x, p, u), (1)

and
H(x, p, u) = max

v∈Rm
H(x, p, v) (2)

where H(x, p, u) = p0
∑m

i=1 u
2
i + < p, F (x, u) >.

Definition 2.1. The mapping H from T ∗X × Rm to R is called the pseudo-
Hamiltonian. A triple (x, p, u) solution of (1-2) is called an extremal trajectory.

2.2 Computation of extremals

From the maximization condition (4), one deduces that ∂H/∂v = 0, and there
are two types of extremals:

– Abnormal extremals. They correspond to the situation p0 = 0 and are
implicitely defined by the relations Hi = 0, i = 1, . . . ,m, where Hi =<
p, Fi(x) > are the Hamiltonian lifts.

– Normal extremals. If p0 < 0, it can be normalized to −1/2 by homogeneity.
From ∂H/∂v = 0, one deduces ui = Hi for i = 1, . . . ,m, and plugging
such Hi into H defines a true smooth Hamiltonian

Hn = H0 +
1

2

m∑

i=1

H2
i

whose solutions are the normal extremals.

2.3 The concept of conjugate point

Definition 2.2. Let z = (x, p) be a normal reference extremal defined on [0, tf ].
The variational equation

δ̇z(t) = d
−→
Hn(z(t))δz(t)
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is called the Jacobi equation. A Jacobi field is a non-trivial solution δz =
(δx, δp). It is said to be vertical at time t if δx(t) = dΠx(z(t))δz(t) = 0 where
Πx is the projection (x, p) 7→ x.

The following standard geometric result is crucial.

Proposition 2.2. Let L0 be the fiber T ∗
x0
X and Lt = expt(

−→
Hn)(L0) be its

image by the one-parameter subgroup generated by
−→
Hn. Then Lt is a Lagrangian

submanifold whose tangent space at z(t) is generated by the Jacobi fields which
are vertical at t = 0.

Definition 2.3. We fix x0 = x(0) and define for t ∈ [0, tf ] the exponential
mapping

expx0,t(p0) = Πx(z(t, z0))

where z(t, z0), with z0 = (x0, p0), denotes the normal extremal departing from
z0 when t = 0.

Definition 2.4. Let z = (x, p) be the reference normal extremal. The time
tc ∈ [0, tf ] is called conjugate if the mapping expx0,tc

is not an immersion at
p(0). The associated point x(tc) is said to be conjugate to x0. We denote by t1,c

the first conjugate point and by C(x0) the conjugate locus formed by the set of
first conjugate points when we consider all normal extremals starting from x0.

The conjugate time notion admits the following generalization.

Definition 2.5. Let M1 be a regular submanifold of M , and let us define
M⊥

1 = {(x, p) ∈ T ∗M | x ∈M1, p ⊥ TxM1}. Then tfoc ∈ [0, tf ] is called a focal
time if there exists a Jacobi field J = (δx, δp) such that δx(0) = 0 and J(tfoc)
is tangent to M⊥

1 .

Remark 2.1. The concept of conjugate point is related to the necessary and
sufficient optimality conditions, under generic assumptions, see for instance [12].

2.4 Conjugate points and smooth continuation method

Smooth continuation is a general numerical method to solve a system of equa-
tions F (x) = 0 where F : Rn −→ Rn is a smooth mapping, see [1]. The
principle is to construct a homotopy path h(x, λ) such that h(x, 0) = G(x) and
h(x, 1) = F (x) where G(x) is a map having known zeros, or where the zeros
can be easily computed using a Newton type algorithm. The zeros along the
path can be calculated by different methods, the simplest being a discretization
0 = λ0 < λ1 < · · · < λn = 1 of the homotopy parameter where, at step i+1, the
zero computed at step i is used to initialize Newton algorithm. The approach
has to be adapted to optimal control problems: The shooting equation comes
from the projection of a symplectic mapping, the Jacobian can be computed
using Jacobi fields and one must consider the central extremal fields associated
with the problem (see [13]). A short description of the method is given below
in our case study.
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2.4.1 Shooting equation

We consider a family Hλ, λ ∈ [0, 1], of smooth Hamiltonians on T ∗X associated
with normal extremals of an energy minimization problem. We fix the boundary
conditions x0, x1 and the transfer time tf . This leads to a family expλ

x0,tf
(p0) of

exponential mappings. Using the notation Eλ : p0 −→ expλ
x0,tf

(p0), one must

solve the shooting equation Eλ(p0) = x1.

Proposition 2.3. For each λ, the shooting equation is of maximal rank if and
only if the point x1 is not conjugate to x0 for the corresponding λ. Moreover, in
this case, the solutions of the shooting equation contain a smooth branch, which
can be parameterized by λ and the derivative E′λ can be generated integrating
the Jacobi equation.

From the above proposition, to ensure convergence of the method one must
control

– the distance to the conjugate loci,

– that the branch has is defined on the whole interval [0, 1].

The second point is related to two standard problems in optimal control: Ex-
istence of Lipschitzian minimizers—hence solutions of the maximum principle
[21]—, and compactness of the domain of the exponential mapping. Next we
present a nice geometric situation for which convergence of the method is en-
sured.

Definition 2.6. Consider the normal extremal field
−→
Hn of an energy mini-

mization problem with fixed final time tf . Given an initial condition x0, the
separating locus L(x0) is the set of points where two distinct normal extremal
curves intersect with same cost. The cut point along a normal extremal is the
first point where it ceases to be optimal. The cut locus Cut(x0) is the set of such
points when we consider all extremals initiating from x0 and losing optimality
exactly at time tf .

2.4.2 Convergence of the continuation method in the Riemannian

case

We first recall that the Riemannian problem can be, at least locally, reset in the
following framework.

Let F1, . . . , Fn be a set of smooth vector fields on a manifold X and assume
that they are linearly independent. One can define a Riemannian metric on
X by asserting that {F1, . . . , Fn} form an orthonormal frame. Introducing the
control system dx(t)/dt =

∑n
i=1 ui(t)Fi(x(t)), the length of the curve x(·) is

l(x) =
∫ T

0

∑n
i=1(u

2
i (t))

1/2dt. From Maupertuis principle, minimizing length is

equivalent to minimizing the energy
∫ T

0

∑n
i=1 u

2
i (t)dt. There exists only normal

extremals and Hn is given by (1/2)
∑n

i=1H
2
i . Fixing the level set Hn = 1/2

parameterizes trajectories by arc length. For the energy minimization problem,
the transfer time can be arbitrarily prescribed.

Theorem 2.1. Let gλ, λ ∈ [0, 1], be a smooth family of complete Riemannian
metrics on X. Let us fix the initial point x0. Denote iλ(x0) the distance from
x0 to the cut locus Cutλ(x0) and by iλ = infx0

iλ(x0) the injectivity radius of
the corresponding metric. Then,
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– for length shorter than infλ iλ(x0), the continuation method with initial
condition of the shooting equation at x0 converges,

– for length shorter than infλ iλ the continuation method converges for every
initial condition of the shooting equation.

Remark 2.2. In the Riemannian case, the situation is neat. Completeness leads
to existence of smooth normal minimizers, the domain of the exponential map-
ping is a sphere, and estimates of the injectivity radius are related to the curva-
ture tensor. In general, such estimates are a difficult problem and a pragmatic
point of view is to have numerical approximations [12].

3 The energy minimization problem in orbital

transfer with low thrust

3.1 Preliminaries

Neglecting the mass variation and restricting to the coplanar case, the system
is represented in Cartesian coordinates by

q̈ = − q

|q|3 + u

where q = (q1, q2) is the position and x = (q, q̇) ∈ R4 is the state. We denote
by H0(q, q̇) = (1/2)q̇2 − 1/|q| the Hamiltonian of the free motion. We have the
following first integrals:

– C = q ∧ q̇ (momentum),

– L = −q/|q| + q̇ ∧ C (Laplace integral).

Proposition 3.1. The domain Σe = {(q, q̇) | H < 0, C 6= 0}, called the elliptic
domain, is filled by elliptic orbits and to each orbit (C,L) corresponds a unique
(oriented) ellipse.

To represent the space of ellipses, one introduces the following geometric
coordinates:

– the semi-major axis of the ellipse a, related to the semi-latus rectum P
by the relation a = P/

√
1 − e2,

– the argument of the pericenter θ,

– the eccentricity e, the eccentricity vector being (ex, ey) = (e cos θ, e sin θ).

To represent the position of the satellite we use the longitude l ∈ S1, while l ∈ R

takes into account the rotation number and is called the cumulated longitude.
Observe that e = 0 corresponds to circular orbits. The control u can be de-
composed into moving frames attached to the satellite, the two standard frames
being

– the radial-orthoradial frame {Fr, For} where Fr = (q/|q|) ∂/∂q̇,

– the tangential-normal frame {Ft, Fn} where Ft = (q̇/|q̇|) ∂/∂q̇.
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3.2 Averaging of periodic sub-Riemannian problems

Let X be an n-dimensional smooth manifold and let Fi(l, x), i = 1, . . . ,m be
smooth vector fields parameterized by l ∈ S1 that set up a constant rank m
distribution on X (see also Remark 3.2). Given a positive pulsation ω on S1×X
relating the time t and the angle l according to

dl = ω(l, x)dt, (3)

one defines a periodic sub-Riemannian problem as follows: Given two points
x0 and xf on the manifold, minimize the L2dt control norm of trajectories
connecting the two points and associated with the previous vector fields,

dx

dl
=

m∑

i=1

uiFi(l, x), u ∈ Rm,

min
u(.)

∫ tf

0

|u|2dt =

∫ lf

0

|u|2 dl

ω(l, x)
(here |u|2 =

m∑

i=1

|ui|2).

The total angular length, lf > 0 is fixed, implicitly defining tf through (3).
Pontryagin maximum principle asserts that minimizing trajectories are pro-

jection of Hamiltonian curves on the cotangent bundle (extremals), z = (x, p),
such that

dx

dl
=
∂H

∂p
(l, x, p, u),

dp

dl
= −∂H

∂x
(l, x, p, u),

where

H(l, x, p, u) = p0|u|2 +
m∑

i=1

uiHi(l, x, p), Hi = 〈p, Fi(l, x)〉, i = 1, . . . ,m,

is the Hamiltonian parameterized by l ∈ S1, u ∈ Rm, and a non-positive con-
stant p0. We restrict the analysis to the normal case, p0 < 0, and pass to affine
coordinates in (p0, p) setting p0 = −1/2. Pontryagin maximization condition
that, almost everywhere along an extremal,

H(l, z(l), u(l)) = max
v∈Rm

H(l, z(l), v),

implies that the control is given by the dynamic feedback

u(l, z) = ω(l, x)(H1, . . . ,Hm)(l, z), (4)

and that z is an integral curve of the maximized Hamiltonian

Hn(l, z) =
ω(l, x)

2

m∑

i=1

H2
i (l, z).

We are interested in the behaviour of solutions for large angular length, so we set
ε = 1/lf as the small parameter and renormalize the problem in the following
manner—typical of systems with two time scales.

In contrast to l which is the fast time, define the slow time s = εl in [0, 1],
and renormalize variables on the cotangent bundle by

x̃ = x, p̃ = p/ε.
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Lemma 3.1. In the renormalized variables,

dz̃

ds
=

−→
Hn(s/ε, z̃). (5)

Proof. Obvious since Hn(l, x, ·) is quadratic in the adjoint state p.

For fixed z, Hn(·, z) is a smooth function on S1 and can be expanded into
its Fourier series. In particular, one can define its first coefficient or average,

H(z) =
1

2π

∫ 2π

0

Hn(l, z) dl.

Since taking symplectic vector field and averaging readily commute, it is well
known [2, 20] that H trajectories are good approximations of those of Hn as ε
goes to zero.

Theorem 3.1. Given any initial condition, the solution z̃ε of (5) converges
uniformly on [0, 1] towards the solution z of the averaged Hamiltonian.

Remark 3.1. The same rate of convergence holds for the cost which can be
added as a new state in the augmented system. But as the integrand depends
on the fast variable l through the pulsation ω, there is a priori no higher order
approximation of the performance index [4, 15].

As for Hn(s/ε, z) which converges to H in the large space of Schwartz distri-
butions,1 one can only expect weak convergence on the control uε of the original
problem on [0, 1/ε]. We address two questions: first, can we describe the fast
oscillating control by means of Fourier series with slowly varying coefficients
and, secondly, what is the asymptotic behaviour of ‖uε‖∞ when ε → 0? The
importance of such an estimate relies on the fact that one has in practice to
estimate lf so as to meet a given requirement on the L∞-norm of the control.

We first note that the average system provides a sub-Riemannian approxi-
mation of the original one.

Proposition 3.2. The averaged Hamiltonian is a nonnegative quadratic form
in the adjoint. If constant, its rank is not less than m, and H can locally be
written as a sum of squares, thus defining a sub-Riemannian (Riemannian if
k = n) problem.

Proof. Clearly, H(x, ·) remains quadratic nonnegative in p by linearity and pos-
itivity of the integral and

kerH(x, ·) =
⋂

l∈S1

kerHn(l, x, ·)

so that, if constant, the rank k is at least equal to m. In this case, the quadratic
form can always be decomposed into a sum of k squares in a chart by taking
the square root of the associated symmetric nonnegative matrix.

Remark 3.2. (i) The increase in the rank is related to the generation of Lie
brackets of the following system with drift: Set x̂ = (l, x) and define

F̂0(x̂) = ω(x̂)
∂

∂l
, F̂i(x̂) = ω(x̂)Fi(x̂), i = 1, . . . ,m.

1Topological dual of the space of smooth compactly supported functions on the real line.
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The fast oscillations (with respect to l) of the control in

dx̂

dt
= F̂0(x̂) +

m∑

i=1

uiF̂i(x̂)

generate new directions, namely

(adjF̂0)F̂i, j ≥ 0, i = 1, . . . ,m,

a natural requirement being that the distribution {F̂0, F̂1, . . . , F̂m} on the aug-
mented space S1 ×X be bracket generating. This is equivalent to the bracket
condition on S1 ×X for the distribution {∂/∂l, F1, . . . , Fm}.
(ii) The assumption of rank constancy is sufficient to get a decomposition into
a smooth sum of squares [3]. That the assumption is crucial is illustrated by
the fact that it cannot be removed, even in the analytical category. Eigen-
values (and associated projectors) are indeed analytic functions on the set of
matrices in the neighbourhoud of a simple (hence diagonalizable) endomorphism
[22, Theorem II.5.16]. Avoiding semi-simple eigenvalues is necessary as is clear
considering [

x1 x2

x2 −x1

]

whose eigenvalues are not differentiable at (0, 0). But even in the simple sym-
metric nonnegative analytic case, existence of a differentiable square root matrix
may fail as illustrated by [

x2
1 + x2

2 0
0 1

]
. (6)

To get a positive result with non constant rank, one must actually restrict to the
symmetric nonnegative case with analytic dependence on one real variable only.
Eigenvalues and eigenvectors are then analytic on the real line [Ibid., Theorem
II.6.1 and §II.6.2], and nonnegativeness ensures analyticity of square roots of
the eigenvalues.
(iii) In the case of periodic sub-Riemannian systems, the loss of regularity may
originate in averaging. The analytical distribution on S1 × R2

F1(l, x) =
√

2(x1 cos l + x2 sin l)
∂

∂x1
, F2(l, x) =

∂

∂x2

has quadratic form [
2(x1 cos l + x2 sin l)2 0

0 1

]

whose averaged is (6) which does not define an even differentiable sub-Riemannian
system on R2.
(iv) A much stronger requirement is the existence of a change of coordinates on
X (inducing a symplectic transformation on the cotangent) so that the averaged
quadratic form be diagonal.

For a given z ∈ T ∗X, let

u(l, z) =
∑

k∈Z

ck(z)ek(l), ek(l) = eikl,

denote the Fourier series of the control (4). One has the following convergence
result.

10



Proposition 3.3. For any positive ε, the normal optimal control is

uε(l) = ε
∑

k∈Z

ck ◦ z̃ε(εl) ek(l)

and the series converges pointwisely. Moreover, for any k ∈ Z,

ck ◦ z̃ε → ck ◦ z uniformly on [0, 1] as ε→ 0+

where the sub-Riemannian extremal z depends only on the boundary conditions
x0, xf on X.

Proof. For l ∈ [0, lf ],

uε(l) = u(l, x̃ε(εl), εp̃ε(εl))

= εu(l, x̃ε(εl), p̃ε(εl))

= ε
∑

k∈Z

ck(z̃ε(εl)) ek(l)

thanks to the pointwise convergence of the Fourier series at l for z = z̃ε(l). For
any k ∈ Z,

ck(z) =
1

2π

∫ 2π

0

u(l, z)ek(l)dl

and the dependence on z is continuous since the integrand is bounded in a
compact neighbourhood of the image of z.

Let us finally denote λ(l, x) the biggest (positive) eigenvalue of the nonneg-
ative quadratic form in p

|u(l, x, p)|2 = ω2(l, x)
m∑

i=1

H2
i (l, z) = 2ω(l, x)Hn(l, z),

and define
λ(x) = max

l∈S1

λ(l, x).

As a supremum of continuous functions, x 7→ λ(x) is only lower semi-continous
and we must assume the existence of a continous upper bound in the subsequent
result.

Proposition 3.4. Let σ be a continuous function such that σ2 dominates λ in
a neighbourhood of x. Then

lim sup
ε→0+

‖uε‖∞
ε

≤ ‖σ ◦ x · |p|‖∞.

Proof. On [0, lf ], one has

|uε(l)|2 = ε2|u(l, z̃ε(εl))|2

≤ ε2σ2 ◦ x̃ε(εl) · |p̃ε(εl)|2,

so the result holds since the square root of the right hand side converges uni-
formly to σ ◦ x · |p| as ε goes to zero by continuity of σ.
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3.3 Computations in Kepler case

Using the neat geometric coordinates of §3.1 on the three dimensional space of
ellipses, we get

Hn(l, z) =
ω(l, x)

2
(H2

1 +H2
2 )(l, z), u(l, z) = ω(l, x)(H1,H2)(l, z),

|u(l, z)|2 = ω2(l, x)(H2
1 +H2

2 )(l, z), (7)

with

F1(l, x) =
P 2

W 2

(
sin l

∂

∂ex
− cos l

∂

∂ey

)
,

F2(l, x) =
P 2

W 2

(
2P

W

∂

∂P

+(cos l +
ex + cos l

W
)
∂

∂ex
+ (sin l +

ey + sin l

W
)
∂

∂ey

)
,

and

ω(l, x) =
W 2

P 3/2
, W = 1 + ex cos l + ey sin l.

Introducing mean motion, n = a−3/2, and true anomaly, τ = l − θ, one gets

F1(l, x) =
P 2

W 2

(
− 3en

1 − e2
∂

∂n
+ sin τ

∂

∂e
− cos τ

1

e

∂

∂θ

)
, (8)

F2(l, x) =
P 2

W 2

(
− 3Wn

1 − e2
∂

∂n
+ (cos τ +

e+ cos τ

W
)
∂

∂e

+ (sin τ +
sin τ

W
)
1

e

∂

∂θ

)
, (9)

with
W = 1 + e cos τ.

As a result, the computation of Fourier series of Hn (or u) are performed with
respect to τ rather than l so, as θ only appears through τ ,

Hn(l, z) =
∑

k∈Z

ck(n, e, p)ek(l − θ) =
∑

k∈Z

ck(z)ek(l),

and coefficients verify
ck(z) = ck(n, e, p)ek(θ).

Proposition 3.5. The adjoint pθ is a linear first integral of H.

Proof. According to the previous remark, θ is cyclic in the averaged Hamilto-
nian.

The remarkable feature of the set (n, e, θ) of coordinates is the following
[17, 18, 7].

Proposition 3.6. The averaged Hamiltonian is Riemannian and orthogonal in
(n, e, θ) coordinates,

H(z) =
1

2n5/3

[
9n2p2

n +
5

2
(1 − e2)p2

e +
5 − 4e2

2

p2
θ

e2

]
.

12



Fourier coefficients of the control are obviously obtained from (8-9), noting
that

Lemma 3.2. One has

e+ cos τ

W
= −z − 2

√
1 − e2

e

∑

k≥1

zk cos kτ,
sin τ

W
= −2

e

∑

k≥1

zk sin kτ,

where z = −e/(1 +
√

1 − e2) is the only pole in the open unit disk of W =
1 + e cos τ .

We finally provide a continuous upper bound of the eigenvalues of the qua-
dratic form associated with the control norm, allowing us to estimate precisely
‖uε‖∞ as ε→ 0+.

Proposition 3.7. Eigenvalues of the quadratic form (7) are uniformly domi-
nated by

σ2(n, e) =
4(1 − e2)

n2/3

[
(1 + e)2

n4/3
+ 1

]
+

e

n2/3

[
e+

√
1 − e2

]
.

Proof. Since we have a rank two distribution (8-9) of vector fields (parameterized
by l ∈ S1) on the three-dimensional manifold X, a simple computation shows
that the maximum eigenvalue is

λ(l, x) =
ω2(l, x)

2

[
F 2

1 + F 2
2 +

√
(F 2

1 − F 2
2 )2 + 4(F1|F2)2

]
(l, x),

hence the result.

The resulting estimate provided by Proposition 3.4 depends only on the
geodesic connecting the two prescribed points on the manifold. Complete qua-
drature for these geodesics are computed in the next section.

3.4 Analysis of the averaged system

The main step in the analysis is to use further normalizations to obtain a geo-
metric interpretation.

Proposition 3.8. In the elliptic domain, we set

r =
2

5
n5/6, ϕ = arcsin e,

and the metric is isometric to

g = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2)

with

c =
√

2/5 and G(ϕ) =
5 sin2 ϕ

1 + 4 cos2 ϕ
·

13



Geometric interpretation. This normal form captures the main properties
of the averaged orbital transfer. Indeed, we extract from g two Riemannian
metrics in dimension two

g1 = dr2 + r2dψ2

with ψ = ϕ/c which is associated with orbital transfer where θ is kept fixed,
and also

g2 = dϕ2 +G(ϕ)dθ2

which represents the restriction to r2 = c2.

3.4.1 Analysis of g1

When pθ vanishes, θ is constant. The corresponding extremals are geodesics of
the Riemannian problem in dimension two defined by dθ = 0. We extend the
elliptic domain to the meridian half-planes all isometric to

Σ0 = {n > 0, e ∈] − 1,+1[}.

In polar coordinates (r, ψ), Σ0 is defined by {r > 0, ψ ∈]−π/(2c), π/(2c)[}. This
extension allows to go through the singularity corresponding to circular orbits.
Geometrically, this describes transfers where the angle of the pericenter is kept
fixed and pθ = 0 corresponds to the transversality condition. Such a policy is
clearly associated with steering the system towards circular orbits where the
angle θ of the pericenter is not prescribed. An important physical subcase is
the geostationary final orbit.

In the domain Σ0, the metric g1 = dr2 + r2dψ2 is a polar metric isometric
to the flat metric dx2 + dz2 if we set x = r sinψ and z = r cosψ.
We deduce the following proposition.

Proposition 3.9. The extremals of the averaged coplanar transfer in Σ0 are
straight lines in suitable coordinates, namely

x =
23/2

5
n5/6 sin(c−1arcsin e), z =

23/2

5
n5/6 cos(c−1arcsin e)

with c =
√

2/5. Since c < 1, the domain is not convex and the metric g1 is not
complete.

Proof. The axis ex = 0 corresponds to circular orbits. Among the extremals,
we have two types (see Fig. 1): complete curves of type 1, and non-complete
curves of type 2 that meet the boundary of the domain. The domain is not
geodesically convex and in subdomain II, the existence theorem fails. For each
initial condition, there exists a separatrix S which corresponds to a segment line
in the orbital coordinates which is meeting n = 0 in finite time. Its length gives
the bound for a sphere to be compact.

In order to complete the analysis of g and to understand the role of g2, we
present now the integration algorithm.
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Figure 1: Geodesics of the metric g1 in (n, ex) and flat coordinates.

3.4.2 Integrability of the extremal flow

The integrability property is a consequence of the normal form only,

g = dr2 + r2(dϕ2 +G(ϕ)dθ2),

and the associated Hamiltonian is decomposed into

H =
1

2
p2

r +
1

r2
H ′, H ′ =

1

2
(p2

ϕ +
p2

θ

G(ϕ)
).

Lemma 3.3. The Hamiltonian vector field
−→
H admits three independent first

integrals in involution, H, H ′, pθ, and is Liouville integrable.

To get a complete parameterization, we proceed as follows. We use the
(n, e, θ) coordinates and write

H =
1

4n5/3
[18n2p2

n +H ′′]

with

H ′′ = 5(1 − e2)p2
e +

5 − 4e2

e2
p2

θ.

Lemma 3.4. Let s = n5/3 then s(t) is a polynomial of degree 2, s(t) = c1t
2 +

ṡ(0)t+ s(0) with s(0) = n5/3(0), ṡ(0) = 15n(0)pn(0) and c1 = 25H/2.

Lemma 3.5. Let dT = dt/4n5/3. If H ′′(0) 6= 0, then

T (t) =
1

2
√

|∆|
[arctanL(s)]t0

where L(t) = (2at + b)/
√
|∆|, a = c1, b = ṡ(0) and ∆ = −25H ′′(0)/2 is the

discriminant of s(t).

This allows to make the integration. Indeed if H ′′ = 0, pe = pθ = 0 and the
trajectories are straight lines (the line S in Fig. 1). Otherwise, we observe that
n5/3(t) is known and depends only upon n(0), pn(0) and H which can be fixed
to 1/2 by parameterizing by arc length. Hence, it is sufficient to integrate the
flow associated with H ′′ using the parameter dT = dt

4n5/3
where T is given by

15



the previous lemma. Let H ′′ = c23 and pθ = c2. Using pe = ė/10(1 − e2), we
obtain

ė2 =
20(1 − e2)

e2
[c3e

2 − (5 − 4e2)c22].

To integrate, we set w = 1 − e2 for e ∈]0, 1[, so the equation takes the form

dw

dT
= Q(w)

where
Q(w) = 80w[(c23 − c22) − (c23 + 4c22)w]

with positive discriminant. Hence the solution is

w =
1

2

c23 − c22
c23 + 4c22

[
1 + sin(

4√
5

√
c23 + 4c22 )T +K

]
,

K being a constant. We deduce that

θ(T ) = θ(0) + 2c2

∫ T

0

1 + 4w(s)

1 − w(s)
ds

where θ(0) can be set to 0 by symmetry. To conclude, we must integrate (1 +
4w(s))/(1 − w(s)) with w = K1(1 + sinx) and x = (4s/

√
5)

√
c23 + 4c22 + K.

Therefore, we must evaluate an integral of the form
∫

A+B sinx

C +D sinx
dx·

More precisely, the formula is
∫

A+B sinx

C +D sinx
dx =

B

D
x+AD −BC

∫
dx

C +D sinx

with ∫
dx

C +D sinx
=

2√
C2 −D2

arctan

(
C tan(x/2) +D√

C2 −D2

)

and C2 −D2 > 0. The previous lemmas and computations give

Proposition 3.10. For H ′′ 6= 0, the solutions of
−→
H can be computed using

elementary functions and

n(t) =

[
25

2
Ht2 + 15n(0)pn(0)t+ n5/3(0)

]3/5

,

e(t) =
√

1 −K1(1 + sinK2(t)),

θ(t) = θ(0) +
pθ

2|pθ|
K3

[
−4x+

10

K3
arctan

(1 −K1) tan(x/2) −K1

K3

]K2(t)

K

,

with

K = arcsin

(
1 − e(0)2

K1
− 1

)
, K1 =

1

2

H ′′(0) − p2
θ

H ′′(0) + 4p2
θ

,

K2(t) =
4√
5

(
T (t)

√
H ′′(0) + 4p2

θ +K

)
, K3 =

√
5p2

θ

H ′′(0) + 4p2
θ

·

For H ′′ = 0, they are straight lines.

Remark 3.3. The above formulas give the complete solution of the associated
Hamilton-Jacobi Equation.
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Figure 2: Action of the symmetry group on the extremals.

3.4.3 Geometric properties of g2

The previous integration algorithm shows that the extremals of this metric
describe the evolution of the angular variables θ and ϕ parameterized by dT =
dt/r(t)2 where r(t)2 is a second order polynomial whose coefficients depend only
upon the energy level H fixed to 1/2, r(0) and pr(0). We now give some basic
properties of g2.

Lemma 3.6. The metric g2 can be extended to an analytic metric on the whole
sphere S2, where θ and ϕ are spherical coordinates with two polar singularities
at ϕ = 0 or π corresponding to e = 0, whereas the equator corresponds to e = 1;
θ is an angle of revolution. The meridians are projections on S2 of the extremals
of g1.

Lemma 3.7. The two transformations (ϕ, θ) 7→ (ϕ,−θ) and (ϕ, θ) 7→ (π−ϕ, θ)
are isometry of g2. This induces the following symmetries for the extremal flow:

– if pθ 7→ −pθ then we have two extremals of same length symmetric with
respect to the meridian θ = 0,

– if pϕ 7→ −pϕ then we have two extremals of same length intersecting on
the antipodal parallel, ϕ = π − ϕ(0).

Such properties (illustrated on Fig. 3.4.3) are shared by the following one-
parameter family of metrics.

Metrics induced by the flat metric on oblate ellipsoid of revolution.

We consider the flat metric of R3, g = dx2+dy2+dz2, restricted to the ellipsoid
defined by

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ

where µ ∈]0, 1[. A simple computation leads to

Eµ(ϕ)dϕ2 + sin2 ϕ dθ2

for the restricted metric, where Eµ(ϕ) = µ2 + (1− µ2) cos2 ϕ, and we can write

g2 =
1

Eµ(ϕ)
(Eµ(ϕ)dϕ2 + sin2 ϕ dθ2)

where µ = 1/
√

5. We deduce the following lemma.
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Lemma 3.8. The metric g2 is conformal to the flat metric restricted to an
oblate ellipsoid of revolution with parameter µ = 1/

√
5.

3.4.4 A global optimality result with application to orbital transfer

In this section, we consider an analytic metric on R+ × S2

g = dr2 + (dϕ2 +G(ϕ)dθ2)

and let H be the associated Hamiltonian. We fix the parameterization to arc
length by restricting to the level set H = 1/2. Let x1, x2 be two extremal curves
starting from the same initial point x0 and intersecting at some positive t. We
get the relations

r1(t) = r2(t), ϕ1(t) = ϕ2(t), θ1(t) = θ2(t),

and from Lemma 3.4, we deduce that

Lemma 3.9. Both extremals x1 and x2 share the same pr(0) and for each t,
r1(t) = r2(t).

If we consider now the integral curves of H ′ where H = (1/2)p2
r + H ′/r2

on the fixed induced level and parameterize these curves using dT = dt/r2, we
deduce the following characterization.

Proposition 3.11. The following conditions are necessary and sufficient to
characterize extremals of H ′ 6= 0 intersecting with same length

ϕ1(T ) = ϕ2(T ) and θ1(T ) = θ2(T )

together with the compatibility condition

T =

∫ t

0

dt

r2(t)
=

[
2√
∆

arctanL(t)

]t

t=0

.

Theorem 3.2. A necessary global optimality condition for an analytic metric
on R+ × S1 normalized to

g = dr2 + r2(dϕ2 +G(ϕ)dθ2)

is that the injectivity radius be greater than or equal to π on the sphere r = 1,
the bound being reached by the flat metric in spherical coordinates.

Proof. We observe that in the flat case, the compatibility condition cannot be
satisfied. Moreover, the injectivity radius on S2 is π corresponding to the half-
length of a great circle. For the analytic metric on S2 under consideration, the
injectivity radius is the length of the conjugate point at minimum distance or
the half-length of a closed geodesic [16]. The conjugate point is, in addition,
a limit point of the separating line. Hence, if the injectivity radius is smaller
than π, we have two minimizers for the restriction of the metric on S2 which
intersects with a length smaller than π. We shall show that it corresponds to a
projection of two extremals x1 and x2 which intersect with same length.
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For such extremals r(0) = 1, we set pr(0) = ε, H = 1/2 and we get

2H ′ = p2
ϕ(0) +

p2
θ(0)

G(ϕ(0))
= λ2(ε), λ(ε) =

√
1 − ε2.

If t1 is the injectivity radius on the level set H ′ = 1/2, for H ′ = λ2(ε)/2 and
pr(0) = ε, it is rescaled to T1 = t1/λ(ε). The compatibility relation for T = T1

then gives

T1 = arctan
t+ ε

λ(ε)
− arctan

ε

λ(ε)
·

Clearly, the maximum of the right member is π, taking ε < 0, |ε| → 1. Hence,
it can be satisfied since t1 < π. The flat case shows that it is the sharpest
bound.

By homogeneity, we deduce the following corollary.

Corollary 3.1. If the metric is normalized to dr2 + (r2/c2)(dϕ2 + G(ϕ)dθ2),
then the bound for the injectivity radius on r2 = c2 is cπ.

3.4.5 Riemannian curvature and injectivity radius in orbital transfer

Using standard formulæ from Riemannian geometry [16], we have the following
proposition.

Proposition 3.12. Let g be a smooth metric of the form dr2 + r2(dϕ2 +
G(ϕ)dθ2). The only non-zero component of the Riemann tensor is

R2323 = r2
[
−G

′′(ϕ)

2
−G(ϕ) +

G′(ϕ)2

4G(ϕ)

]

which takes the form R2323 = −r2F (F ′′ +F ) if we set G(ϕ) = F 2(ϕ). We have
therefore R2323 = 0 if and only if F (ϕ) = A sin(ϕ+ϕ0) which is induced by the
flat case in spherical coordinates.

Hence, the main non-zero sectional curvature of the metric is

K =
R2323

| ∂
∂θ ∧ ∂

∂ϕ |2

and computing this term in the case of orbital transfer, we get:

Lemma 3.10. The sectional curvature in the plane (ϕ, θ) is given by

K =
(1 − 24 cos2 ϕ− 16 cos4 ϕ)

r2(1 + 4 cos2 ϕ)2

and K → 0 as r → +∞.

Proposition 3.13. The Gauss curvature of the metric of g2 = dϕ2 +G(ϕ)dθ2

with G(ϕ) = (sin2 ϕ)/(1 + 4 cos2 ϕ) is

K =
5(1 − 8 cos2 ϕ)

(1 + 4 cos2 ϕ)2
·
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Theorem 3.3. The Gauss curvature of g2 is negative near the poles and max-
imum at the equator. The injectivity radius is π/

√
5 and is reached by the

shortest conjugate point along the equator.

Proof. Clearly K is maximum and equal to five along the equator which is an
extremal solution. Hence a direct computation gives that the shortest conjugate
point is on the equator with length π/

√
5. It corresponds to the injectivity

radius if the half-length of a shortest periodic extremal is greater than π/
√

5.
Simple closed extremals are computed in [8] using the integrability property
and a simple reasoning gives that the shortest corresponds to meridians whose
length is 2π. Hence the result is proved.

Corollary 3.2. Since π/
√

5 < π
√

2/5, the necessary optimality condition of
Theorem 3.3 is not satisfied in orbital transfer for the extension of the metric
to R+ × S2.

3.4.6 Cut locus on S2 and global optimality results in orbital transfer

From the previous section, the computation of the injectivity radius for the
metric on S2 is not sufficient to conclude about global optimality. A more
complete analysis is necessary to evaluate the cut locus. This analysis requires
numerical simulations. The main results are [8, 11]:

Proposition 3.14. For the metric g2 on S2, they are exactly five simple closed
geodesics modulo rotations around the poles, the shortest being meridians with
length 2π, the longest the equator with length 2π

√
5.

Theorem 3.4. Except for poles, the conjugate locus is a deformation of a stan-
dard astroid with axial symmetry and two cusps located on the antipodal parallel.
With the exception of poles, the cut locus is a simple segment, located on the
antipodal parallel, with axial symmetry, and whose extremities are cusps points
of the conjugate locus. For a pole, the cut locus is reduced to the antipodal pole.

Proof. The proof is made by direct analysis of the extremal curves. The main
problem is to prove that the separating line is given by points on the antipodal
parallel where, because of the isometry ϕ → π − ϕ, two extremals curves with
same length intersect. This property cannot occur before. The results are
represented Fig. 3.

Geometric interpretation and comments. The metric is conformal to
the restriction of the flat metric to an oblate ellipsoid of revolution. For such a
metric, the cut locus is known since Jacobi and is similar to the one represented
on Fig. 3. It is a remarkable property that there is no bifurcation of the cut
locus when the metric is deformed by the factor Eµ(ϕ) In orbital transfer for
instance, the Gauss curvature is not positive. On S2, relations between the
conjugate and cut loci allow to deduce the cut locus from the conjugate locus.2

The conjugate locus can also easily be computed using the code [12]. It can also
be deduced by inspecting the extremal flow only, the conjugate locus being an
envelope.

2For instance, a domain bounded by two intersecting minimizing curves must contain a
conjugate point.
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Figure 3: Conjugate and cut loci in averaged orbital transfer.

Finally, we observe that in order to have intersecting minimizers, we must
cross the equator ϕ = π, that is e = 1. The same is true for conjugate points.
Hence we deduce

Theorem 3.5. Conjugate loci and separating lines of the averaged Kepler met-
ric are always empty in the spaces of ellipses where e ∈ [0, 1[.

3.5 The averaged system in the tangential case

An interesting question is to analyze if the averaged system in the tangential
case where the control is oriented along Ft retains similar properties [10]. The
first step is to compute the corresponding averaged system.

Proposition 3.15. If the control is oriented along Ft only, the averaged Hamil-
tonian associated with energy minimization is

Ht =
1

2n5/3

[
9n2p2

n +
4(1 − e2)3/2

1 +
√

1 − e2
p2

e +
4(1 − e2)

1 +
√

1 − e2
p2

θ

e2

]

and corresponds to the Riemannian metric

gt =
dn2

9n1/3
+
n5/3

4

[
1 +

√
1 − e2

(1 − e2)3/2
de2 +

1 +
√

1 − e2

(1 − e2)
e2dθ2

]

where (n, e, θ) remain orthogonal coordinates.

3.5.1 Construction of the normal form

We proceed as in Section 3.4 and set

r =
2

5
n5/6, e = sinϕ

√
1 + cos2 ϕ .

The metric becomes

gt = dr2 +
r2

c2
(dϕ2 +G(ϕ)dθ2), c =

2

5
< 1,

and

G(ϕ) = sin2 ϕ

(
1 − (1/2) sin2 ϕ

1 − sin2 ϕ

)2

.
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Hence the normal form is similar to the full control case. As before, we introduce
the metrics

g1 = dr2 + r2dψ2, ψ = ϕ/c,

and
g2 = dϕ2 +G(ϕ)dθ2.

The main difference with the full control case will concern the singularities of
the function G.

3.5.2 Metrics g1 and g2

The metric g1 corresponds again to transfer to circular orbits and is the polar
form of the flat metric dx2 + dz2, if x = r sinψ and z = r cosψ.

The normal form reveals the same homogeneity property between the full
control and the tangential case, so the metric g2 can be used to make a similar
optimality analysis, evaluating the conjugate and cut locus. But the metric g2
cannot be interpreted as a smooth metric on S2. This can be seen by computing
the Gauss curvature.

Proposition 3.16. The Gauss curvature of g2 is given by

K =
(3 + cos2 ϕ)(cos2 ϕ− 2)

(1 + cos2 ϕ) cos2 ϕ
·

In particular K → −∞ when ϕ→ π/2, and since K < 0, the conjugate locus of
any point is empty.

Nevertheless, the extremals can be smoothly extended through the singular
boundary of the domain, the equator ϕ = π/2.

3.5.3 Integration of the extremal flow

The algorithm based on the normal form is similar to the bi-input case, but we
compare the respective transcendence. The Hamiltonian is written

H =
1

4n5/3
[18n2p2

n +H ′′]

where H ′′ now takes the form

H ′′ =
8(1 − e2)3/2

1 +
√

1 − e2
p2

e +
8(1 − e2)

1 +
√

1 − e2
p2

θ

e2
·

We set H ′′ = c23, pθ = c2, and from

pe = 4n5/3 (1 +
√

1 − e2)e

16(1 − e2)3/2

we obtain (
dw

dT

)2

=
Q(w)

(1 + w)2

where w =
√

1 − e2, T is as in the bi-input case, and Q is the fourth-order
polynomial

Q(w) = 32w[c23(1 − w2)(1 + w) − 8c22w
2].
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Figure 4: Extremal flow of g2 in the full control and tangential cases, in the
(ϕ, θ) coordinates, starting from ϕ = π/6.

Hence, the integration requires the computation of the elliptic integral

∫
dw(1 + w)√

Q(w)

which has an additional complexity. It is related to the pole of order 2 of the
metric at the equator. See [9] for both aspects.

3.5.4 Conclusion in both cases

The previous analysis shows that the full control case and the tangential one
admit a uniform representation in coordinates (θ, ϕ). In particular, it allows
to make a continuation between the respective Hamiltonians, i.e., between the
respective functions G. A correction has to be made between orbit elements e
which are respectively defined by

e = sinϕ versus e = sinϕ
√

1 + cos2 ϕ.

The flows in the two cases are presented on Fig. 4 and reveal the similar struc-
ture. The conjugate locus is reached after having crossed the equator. On Fig. 5
and 6 we present a first continuation result, in the tangential case, showing the
convergence of the method from the averaged to the non averaged trajectory for
specific transfer orbits.

3.6 Conjugate and cut loci on a two-sphere of revolution

The problem of computing the conjugate and cut loci in orbital transfer is
connected to a very old geometric problem which goes back to Jacobi and is
briefly introduced next.

Definition 3.1. The two-sphere S2 endowed with a smooth metric of the form
dϕ2 +G(ϕ)dθ2 in spherical coordinates is called two-sphere of revolution.

Many of them can be realized as Riemannian surfaces of revolution embedded
in R3 by rotating on a smooth curve homeomorphic to a half-circle. The classical
examples are the following:
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Figure 5: Computation by continuation of the non-averaged solution. The av-
eraged trajectories are clearly nice approximations of the optimal ones of the
original system. Hence, convergence of the underlying shooting method to com-
pute the non-averaged minimizing trajectory is easily obtained.
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Figure 6: Trajectory of a non-averaged solution for ε = 1e−2 with (e(0), n(0)) =
(7.5e−1, 5e−1) and (e(tf ), n(tf )) = (5e−2, 3e−1). Dashed ellipses are averaged
ellipses and provide a good approximation of the motion.

– Round sphere S2. It is constructed restricting the Euclidian metric to S2

and given by dϕ2 + sin2(ϕ)dθ2.

– Oblate ellipsoid of revolution O(µ). If we restrict the Euclidian metric to
the surface

x = sinϕ cos θ, y = sinϕ sin θ, z = µ cosϕ,

with µ < 1, the metric is (1 − (1 − µ2) sin2 ϕ)dϕ2 + sin2(ϕ)dθ2 which can
be set in the form dϕ2 +G(ϕ)dθ2 using a quadrature.
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We recall some basic properties on the ellipsoid of revolution.

Proposition 3.17. On an oblate ellipsoid of revolution,

– the Gauss curvature is monotone increasing from the North pole to the
equator,

– the cut locus of a point which is not a pole is a subarc of the antipodal
parallel,

– the conjugate locus of a point which is not a pole has a standard astroid
shape with four cusps.

The simple structure of the cut locus is a consequence of [30].

Theorem 3.6. Let dϕ2 + G(ϕ)dθ2 be a metric on a two-sphere of revolution.
We assume:

– The transformation ϕ −→ π − ϕ is an isometry i.e. G(π − ϕ) = G(ϕ),

– The Gauss curvature K is monotone non decreasing along a meridian
from the North pole to the equator.

Then, the cut locus of a point not a pole is a simple branch located on the
antipodal parallel.

Application. Let gλ be the family of analytic metrics on S2 defined by

gλ = dϕ2 +Gλ(ϕ)dθ2, Gλ(ϕ) =
(1 + λ)2 sin2 ϕ

(1 + λ cos2 ϕ)
, λ ≥ 0.

The Gauss curvature is given by

Kλ = − 1√
G

∂2
√
G

∂2ϕ
=

(1 + λ)(1 − 2λ cos2 ϕ)

(1 + λ cos2 ϕ)2
·

Hence if 0 < λ ≤ 2, then Kλ is monotone non decreasing from the North pole
to the equator and the previous theorem asserts that the one parameter family
has a cut locus reduced to a simple branch for λ ∈]0, 2].

If λ > 2 the Gaussian curvature Kλ is not monotone and the result cannot be
applied. In particular the orbit transfer with full control corresponds to λ = 4,
while at the limit case λ = +∞ a singularity appears. The Riemannian metric
has a pole at the equator, the situation being similar to the one occuring when
the thrust is only tangential. Hence Theorem 3.6 has to be refined to deal with
such situations. The final result is coming from [9].

We consider a metric of the form g = ϕ2 +G(ϕ)dθ2 where G′ is non zero on
]0, π

2 [ and G(π − ϕ) = G(ϕ).

Definition 3.2. The first return mapping to the equator is the map

∆θ : pθ ∈]0,
√
G(π/2)[7→ ∆θ(pθ)

that is the θ-variation of the extremal parameterized by arc length and associ-
ated with the adjoint vector component pθ. The extremal flow is called tame if
the first return mapping is monotone non-increasing for pθ ∈]0,

√
G(π/2)[.
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Theorem 3.7. In the tame case, the cut locus of a point different from a pole
is a subset of the antipodal parallel. If moreover ∆θ′(pθ) < 0 < ∆θ′′(pθ) on
]0,

√
G(π/2)[, then the conjugate locus of such a point has exactly four cusps.

Remark 3.4. This result can be extended to the singular case where the metric
has poles at the equator.

4 Energy minimization in the Earth-Moon space

mission with low thrust

4.1 The N-body problem

In this section, we follow mainly [24] (see also [26] and [31]). Consider N point
masses m1, . . . ,mN moving in a Galilean reference system R3 where the only
forces acting are their mutual attractions. If q = (q1, . . . , qN ) ∈ R3N is the state
and p = (p1, . . . , pN ) is the momentum vector, the equations of motion are

q̇ =
∂H

∂p
, ṗ = −∂H

∂q

where the Hamiltonian is

H =

N∑

i=1

|pi|2
2mi

− U, U(q) =

N∑

1≤i<j≤N

Gmimj

|qi − qj |
·

A subcase is the coplanar situation where the N masses are in a plane R2.
In this case the Galilean reference frame can be replaced by a rotating frame
defined by

K =

[
0 1
−1 0

]
, exp(ωtK) =

[
cosωt sinωt
− sinωt cosωt

]
,

and introducing a set of coordinates which uniformly rotates with frequency ω,
one defines the symplectic transformation

ui = exp(ωtK)qi, vi = exp(ωtK).

A standard computation gives the Hamiltonian of the N -body problem in ro-
tating coordinates,

H =
N∑

i=1

|v|2
2mi

−
N∑

i=1

wtuiKvi −
N∑

1≤i<j≤N

Gmimj

|qi − qj |
·

In particular, the Kepler problem in rotating coordinates up to a normalization
has the following Hamiltonian

H =
|p|2
2

− tqKp− 1

|q| ·
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4.2 The circular restricted 3-body problem in Jacobi co-

ordinates

The following representation of the Earth-Moon problem fits in the so-called
circular restricted 3-body problem. In the rotating frame, the Earth which is the
biggest primary planet with mass 1 − µ is located at (−µ, 0) while the Moon
with mass µ is located at (1−µ, 0) (the small parameter being µ ≃ 1.2153e−2).
We note z = x + iy the position of the spacecraft, and ρ1, ρ2 the distances to
the primaries,

ρ1 =
√

(x+ µ)2 + y2,

ρ2 =
√

(x− 1 + µ)2 + y2.

The equation of motion is

z̈ + 2iż − z = −(1 − µ)
z + µ

ρ3
1

− µ
z − 1 + µ

ρ3
2

that is

ẍ− 2ẏ − x =
∂V

∂x
, ÿ + 2ẋ− y =

∂V

∂y
,

where −V is the potential of the system defined by

V =
1 − µ

ρ3
1

+
µ

ρ3
2

·

The system can be written using Hamiltonian formalism setting

q1 = x, q2 = y, p1 = ẋ− y, q2 = ẏ + x,

and the Hamiltonian describing the motion writes

H0(q1, q2, p1, p2) =
1

2
(p2

1 + p2
2) + p1q2 − p2q1 −

1 − µ

ρ1
− µ

ρ2
·

4.3 Jacobi integral, Hill regions and equilibrium points

The Jacobi integral using Hamiltonian formalism is simply the Hamiltonian H0

which gives

H(x, y, ẋ− y, ẏ + x) =
ẋ2 + ẏ2

2
− Ω(x, y)

where

Ω(x, y) =
1

2
(x2 + y2) +

1 − µ

ρ1
+
µ

ρ2
·

Solutions are confined on the level set

ẋ2 + ẏ2

2
− Ω(x, y) = h, h constant.

The Hill domain for the value h is the region where the motion can occur, that
is {(x, y) ∈ R2 | Ω(x, y) + h ≥ 0}.

The equilibrium points of the problem are well known. They split into two
different types:
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– Euler points. They are the collinear points denoted L1, L2 and L3 located
on the line y = 0 defined by the primaries. For the Earth-Moon problem
they are given by

x1 ≃ −1.0051, x2 ≃ 8.369e− 1, x3 ≃ 1.1557.

– Lagrange points. The two points L4 and L5 form with the two primaries
an equilateral triangle.

Some important information about stability of the equilibrium points are pro-
vided by the eigenvalues of the linearized system. The linearized matrix eval-
uated at points L1, L2 or L3 admits two real eigenvalues, one being strictly
positive, and two imaginary ones. The collinear points are consequently not
stable. In particular, the eigenvalues of the linearized matrix evaluated at L2

with µ = 1.2153e − 2 are approximately ±2.931837 and ±2.334248i. When it
is evaluated at L4 or L5, the linearized matrix has two imaginary eigenvalues
since µ < µ1 = (1/2)(1−

√
69/9) in the Earth-Moon system. Points L4 and L5

are thus stable according to Arnold stability theorem [24]. See also [23] for a
review of mission design techniques using the equilibrium points.

4.4 The continuation method

The mathematical continuation method in the restricted circular problem is
omnipresent in Poincaré’s work, in particular for the continuation of circular
orbits [25]. Geometrically, it is simply a continuation of trajectories of Kepler
problem into trajectories of the 3-body problem. It amounts to considering µ as
a small parameter—the limit case µ = 0 being Kepler problem in the rotating
frame—writing

H0 =
|p|2
2

− tqKp− 1

|q| + o(µ).

The approximation for µ is valid, a neighbourhood of the primaries being ex-
cluded. In the Earth-Moon problem, since µ is very small, the Kepler problem
is a good approximation of the motion in a large neighbourhood of the Earth.
This point of view is important in our analysis, as indicated by the status re-
port of the SMART-1 mission since most of the mission time is spent under the
influence of the Earth attraction only, see [28, 29].

4.4.1 The control problem

The control system in the rotating frame is deduced from the previous model
and can be written in Hamiltonian form

dx

dt
=

−→
H 0(x) + u1

−→
H 1(x) + u2

−→
H 2(x)

where x = (q, p),
−→
H 0 is the free motion and

−→
H 1,

−→
H 2 are given by

−→
H i = −qi,

i =1,2. As for the Kepler problem, the mass variation of the satellite can be
introduced in the model dividing ui bym(t) and adding the equation ṁ = −δ|u|.
Again, it will be not taken into account here. Moreover we still restrict our
analysis to the energy minimization problem with fixed final time tf and control
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valued in R2. The physical problem which is to maximize the final mass can be
analyzed using a continuation method.

A lunar mission using low propulsion called SMART-1 was realized by ESA
and the practical details of the mission—in particular the description of the
trajectory—are reported in [29]. We present a trajectory analysis based on our
geometric and numerical techniques. For simplicity, we have fixed the boundary
conditions to circular orbits, the one around the Earth corresponding to the
geostationary one. But everything can be applied to other boundary conditions,
for instance those described in the report status of the SMART-1 mission. A
trajectory comparison is discussed in the final section (see also [6]).

Our analysis is based on a numerical continuation, including second-order
optimality check, where µ is the parameter of the continuation. The averaged
system is finally applied to get an approximate energy minimizing trajectory for
the phase of the mission that starts from the circular Earth orbit and aims at
a quasi-elliptic orbit where the apogee is about 338000 Kilometers. In the re-
stricted problem approximation, the effect of the inclination (around 30 degrees
in phase two of the mission) is not modelled here.

4.4.2 Numerical continuation for the Earth-L2 transfer

As a first approach we choose to simulate the Earth-L2 transfer in the restricted
3-body problem. Indeed, in the limit case µ = 0, the Moon and the point L2 are
identical. Moreover, in the Earth-Moon system, the point L2 and the Moon are
very close. As a result, the first phase of an Earth-Moon transfer is comparable
to an Earth-L2 transfer. Solving the shooting function associated with the
Earth-L2 transfer is consequently useful to provide a good approximation of the
solution of the Earth-Moon transfer shooting function.

Using a circular orbit around the Earth for the geostationary one, we set as
initial condition x0 = (1 − µ+ 1.099e− 1, 0, 0, 2.8792). The point L2 is located
on (xL2

, 0) with xL2
solution of the equation

x− (1 − µ)(x+ µ)

ρ3
1

− µ(x− 1 + µ)

ρ3
2

= 0.

Since we want to reach L2 with a zero speed, we fix the target xf = (xL2
, 0, 0, 0).

By making the parameter µ vary from zero, one builds up a family (Sµ)µ of
shooting functions which connects the Kepler and the 3-body problem. The
numerical continuation method can be applied to deduce low thrust extremal
trajectories of the Earth-L2 transfer from the Kepler ones.

In accordance with the report status of ESA, we fix the transfer time to 121
time units of the restricted 3-body problem, which approximately corresponds to
the transfer time from the Earth to the point L2 during the SMART-1 mission
(about 17 months). In addition, we consider a constant spacecraft mass of
350 Kilograms, see [28, 29]. Setting µ = 0, we compute an extremal using the
shooting method, then increase µ up to 1.2153e−2 with a discrete continuation.
At each step, the first conjugate time along the extremal is computed to ensure
convergence of the continuation method. The Euclidian norm of the extremal
control is plotted Fig. 14 to draw a comparison between the control bound and
the maximum thrust allowed by electro-ionic engines. Figs. 7 to 14 present the
computed spacecraft trajectories in both rotating and fixed frames, as well as
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the first conjugate time and the norm of the control along trajectories in Kepler
and Earth-Moon systems.

Figure 7: Earth-L2 trajectory in the rotating frame, µ = 0.
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Figure 8: Earth-L2 trajectory in the fixed frame, µ = 0.

The numerical continuation method, considering µ as a small parameter,
leads to deduce an extremal trajectory of the energy minimization Earth-L2

transfer problem from one corresponding to the Kepler case, in accordance with

30



0 100 200 300 400 500 600 700
0

20

40

60

80

100

t

ar
cs

h 
de

t(
δ 

x)

0 100 200 300 400 500 600 700
0

2

4

6

8

10

t

σ
n

Figure 9: First conjugate time, Earth-L2 transfer, µ = 0.

Figure 10: Norm of the extremal control, Earth-L2 transfer, µ = 0.

Poincaré’s work. The second order optimality condition check ensure that the
computed extremals are locally energy minimizing in L∞([0, tf ]). We also note
that in both cases µ = 0 and µ = 1.2153e − 2, the maximum value reached
by the norm of the extremal control is inferior to the bound |u| ≤ 8e − 2 of
the SMART-1 electro-ionic engine (7.3e− 2 Newtons), while transfer times are
comparable.
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Figure 11: Earth-L2 trajectory in the rotating frame, µ = 1.2153 − 2.
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Figure 12: Earth-L2 trajectory in the fixed frame, µ = 1.2153e− 2.

4.4.3 Numerical continuation method for the Earth-Moon transfer

The second part of our trajectory analysis is devoted to the Earth-Moon transfer.
We use the same dynamics and initial conditions as previously. In this case, the
circular orbit around the Moon, denoted OL and defined by

(x1−1+µ)2+x2
2 = 1.7e−3, x2

3+x2
4 = 2.946e−1, (x1−1+µ, x2) ⊥ (x3, x4),
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Figure 13: First conjugate time, Earth-L2 transfer, µ = 1.2153e− 2.

Figure 14: Norm of the extremal control, Earth-L2 transfer, µ = 1.2153e− 2.

is chosen as the target orbit. In addition to the former necessary conditions, the
maximum principle provides the transversality condition p(tf ) ⊥ Tx(tf )OL. The
shooting equation is modified accordingly, and one has to check local optimality
computing focal instead of conjugate points.

The transfer time is fixed to 124 time units of the restricted 3-body problem.
The extremal trajectory is obtained using the shooting method and initializing
p0 with the initial costate vector of the Earth-L2 transfer. The Earth-Moon
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trajectories in both rotating and fixed frames, the first focal time and the norm
of the extremal control are presented from Fig. 15 to Fig. 22 for µ varying
between 0 and 1.2153e−2. In the two cases µ = 0 and µ = 1.2153e−2, the first
focal time along extremals t1,foc is higher than 3tf/2, ensuring local optimality.
The maximal bound of the norm of the extremal control is about 4.5e−2 which
approximately corresponds to the half of the maximal thrust allowed during
SMART-1 mission.

It is interesting to notice that the Earth-L2 Keplerian trajectory differs from
the Earth-Moon Keplerian trajectory. The first phase of the Earth-Moon trans-
fer matches the Earth-L2 transfer. It underlines the crucial role of the neigh-
bourhood of the point L2 where the attractions of the two primaries compensate
each other. By treating the first phase as a Keplerian transfer from the geo-
stationary orbit (GEO) to a geostationary transfer orbit (GTO), we are able to
use the averaging results of section 3.2 in order to estimate the maximal bound
of the control associated with energy minimizing trajectories.

The first phase of the Earth-Moon trajectory with µ = 1.2153e − 2 can be
approximated by a Keplerian transfer from the GEO to a GTO orbit with semi-
major axis a ≃ 5.84e− 1, eccentricity e ≃ 3.96e− 1, and argument of pericenter
θ = 8π/7. Using the system of coordinates introduced in Proposition 3.9, one
can compute the appropriate geodesic and estimate the final longitude required
to achieve a prescribed maximal bound on the norm of the control thanks to
Proposition 3.7.
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Figure 15: Earth-Moon trajectory in the rotating frame, µ = 0.
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