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Uniting two Control Lyapunov Functions for

affine systems (full version)

Vincent Andrieu and Christophe Prieur

Abstract

The problem of piecing together two Control Lyapunov Functions (CLFs) is addressed. The first

CLF characterizes a local asymptotic controllability property toward the origin, whereas the second

CLF is related to a global asymptotic controllability property with respect to a compact set. A sufficient

condition is expressed to obtain an explicit solution. Thissufficient condition is shown to be always

satisfied for a linear second order controllable system. In asecond part, it is shown how this uniting

CLF problem can be used to solve the problem of piecing together two stabilizing control laws. Finally,

this framework is applied on a numerical example to improve local performance of a globally stabilizing

state feedback.

I. INTRODUCTION

Smooth Control Lyapunov Functions (CLFs) are instrumentalin many feedback control de-

signs and can be traced back to Artstein who introduced this Lyapunov characterization of

asymptotic controllability in [3]. For instance, one of theuseful characteristic of smooth CLFs

is the existence ofuniversal formulasfor stabilization of non-linear affine (in the control) systems

(see [5], [7]). Numerous tools for the design of global CLF are now available (for instance by

backstepping [6], or by forwarding [9], [14]). On another hand, via linearization (or other local

approaches), one may design local CLF yielding locally stabilizing controllers. This leads to the

idea of uniting a local CLF with a global CLF.
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This issue is closely related to the ability to piece together a local controller and a global one.

This problem of unification of control laws was introduced in[17]. It has been subsequently

developed in [11] where this problem has been solved by considering controllers with continuous

and discrete dynamics (namely hybrid controller). As shownin Section IV below, solving the

uniting CLF problem provides a simple solution to the uniting control problem without employing

discrete dynamics. Some related results concerning the unification of different controllers can

be found in [13], [18] where hybrid controllers are used, or in [1] where the patchy feedbacks

design has been studied.

The problem of piecing together two CLFs seems to be challenging. Indeed, in [11], it is shown

threw a topological obstruction that it may be impossible topiece two arbitrary controllers when

restricting to continuous stabilizing feedbacks. Thus, with the converse Lyapunov theory, this

implies that the uniting CLF problem may have no solution either. This obstruction is a motivation

to look for a sufficient condition guaranteeing the existence of a solution to the uniting CLF

problem.

In Section II a sufficient condition to piece together a pair of CLFs is given. For linear systems,

this sufficient condition can be formalized (in a stronger version) as a Linear Matrix Inequality

(LMI). This provides a simple and efficient test to show that the proposed algorithm provides a

solution to the uniting control problem when dealing with linear systems.

This result on linear systems is interesting also for non-linear systems since it may be helpful to

change the local behavior of the trajectories based on the first order approximation. A numerical

example is given in Section V showing how this framework can be used to modify the local

behavior of the trajectories of a non-linear system in orderto minimize a cost function. Again a

hybrid controller may be used (see e.g. [12] for the design ofa stabilizer being locally optimal).

The paper is organized as follows. In Section II, the unitingCLF problem is precisely stated

and a sufficient condition guaranteeing its solvability is given. In Section III, the linear case is

investigated through a simple example and a sufficient condition in terms of LMI is provided.

Section IV is devoted to the uniting control problem. In thissection it is shown how a solution

can be obtained once the uniting CLF problem is solved. An illustration of the proposed result

on a non-linear example, in which a prescribed local optimality is obtained is given in Section

V. Finally Section VI contains some concluding remarks.

Notation: LfV denotes the Lie derivative of a differentiable functionV with respect to the vector
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field f . Given a symmetric matrixQ, the notationQ < 0 means that it is negative definite.

II. PROBLEM STATEMENT AND MAIN RESULT

A. Problem formulation

In this section it is considered a control affine nonlinear system described by:

ẋ = f(x) + g(x) u , (1)

wherex in R
n is the state,u in R

p is the control input, andf : R
n → R

n and g : R
n → R

p

are locally Lipschitz functions such thatf(0) = 0.

For system (1), two CLFsV0 and V∞ satisfying the Artstein condition (see [3]) on specific

sets are given. More precisely, the following assumption holds.

Assumption 1: There exist a positive definite and continuously differentiable functionV0 :

R
n → R+, a positive semi-definite, proper and continuously differentiable functionV∞ : R

n →
R+, and positive valuesR0 and r∞ such that :

• Local CLF: {x : 0 < V0(x) ≤ R0, LgV0(x) = 0} ⊆ {x : LfV0(x) < 0} ; (2)

• Global set-CLF:{x : V∞(x) ≥ r∞, LgV∞(x) = 0} ⊆ {x : LfV∞(x) < 0} ; (3)

• Covering assumption:{x : V∞(x) > r∞} ∪ {x : V0(x) < R0} = R
n .

The functionV∞ characterizes the global asymptotic controllability toward the set{x : V∞ ≤
R0} for system (1). Hence, this function is proper but not necessarily positive definite.

Roughly speaking the Covering assumption means that the twosets in which the asymptotic

controllability property holds (the two sets in which each CLF satisfies Artstein condition) overlap

and cover the entire domain.

The problem addressed in this paper can be formalized as follows:

Uniting CLF problem: The uniting CLF problem is to find a proper, positive definite and

continuously differentiable functionV : R
n → R+ such that:

• Global CLF: {x : x 6= 0, LgV (x) = 0} ⊆ {x : LfV (x) < 0} ; (4)

• Local property:{x : V∞(x) ≤ r∞} ⊆ {x : V (x) = r∞ V0(x)} ; (5)

• Global property:{x : V0(x) ≥ R0} ⊆ {x : V (x) = R0 V∞(x)} . (6)
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If the local CLFV0 satisfies the small control property (see [15]), then, in view of property (5),

the same holds for the functionV . In this case, the so-calleduniversal formulas(see [15], [7],

[5]) can be used to compute a controller which renders the origin a globally asymptotically stable

equilibrium. Furthermore, as shown in Section IV, solving the uniting CLF problem provides a

way to piece together some specific stabilizing controllers.

B. A sufficient condition and a constructive theorem

The first result establishes that, with the following additional assumption, the existence of a

solution to the uniting CLF problem is obtained.

Assumption 2: Given two positive valuesr∞ and R0 and two functionsV0 : R
n → R+ and

V∞ : R
n → R+, for all x in {x : V∞(x) > r∞ , V0(x) < R0}, the following implication holds:

∃ λx > 0 : LgV0(x) = −λx LgV∞(x) ⇒ LfV0(x)|LgV∞(x)| + LfV∞(x)|LgV0(x)| < 0 . (7)

The first result can now be stated.

Theorem 2.1: Under Assumptions 1 and 2, there exists a solution to the uniting CLF problem.

More precisely, the functionV : R
n → R+ defined, for allx in R

n, by

V (x) = R0

[

ϕ0(V0(x)) + ϕ∞(V∞(x))
]

V∞(x) + r∞

[

1 − ϕ0(V0(x)) − ϕ∞(V∞(x))
]

V0(x) ,

(8)

whereϕ0 : R+ → [0, 1] andϕ∞ : R+ → [0, 1] are two continuously differentiable non decreasing

functions satisfying1:

ϕ0(s)

















= 0 ∀ s ≤ r0

> 0 ∀ r0 < s < R0

= 1
2

∀ s ≥ R0

, ϕ∞(s)

















= 0 ∀ s ≤ r∞

> 0 ∀ r∞ < s < R∞

= 1
2

∀ s ≥ R∞

, (11)

and wherer0 = max{x:V∞(x)≤ r∞} V0(x) and2 R∞ = min{x:V0(x)≥R0} V∞(x), is a proper, positive

definite continuously differentiable function satisfying(4), (5), and (6).

1 For instance,ϕ0 andϕ∞ can be defined as:

ϕ0(s) =
3

2

„

s − r0

R0 − r0

«2

−

„

s − r0

R0 − r0

«3

, s ∈ [r0, R0] , (9)

ϕ∞(s) =
3

2

„

s − r∞

R∞ − r∞

«

2

−

„

s − r∞

R∞ − r∞

«

3

, s ∈ [r∞, R∞] . (10)

2In the case where{x : V0(x) ≥ R0} = ∅ let R∞ be such thatR∞ > r∞.
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The structure of the functionV is inspired by the construction given in [2].

Proof: The first part of the proof is devoted to show that the positivereal numbersr0 andR∞

are properly defined. Indeed, the functionV∞ being positive semi-definite and proper, the set

{x : V∞(x) ≤ r∞} is a non empty compact subset andr0 can be properly defined. ForR∞,

two cases need to be considered:

• If {x : V0(x) ≥ R0} 6= ∅, pick any elementx∗ in {x : V0(x) ≥ R0}. Since the functionV∞

is proper, it yields that{x : V∞(x) ≤ V (x∗)} is a compact set andmin{x :V0(x)≥R0} V∞(x) =

min{x :V0(x)≥R0,V∞(x)≤V (x∗)} V∞(x). Therefore in this case,R∞ can be defined.

• In the case where{x : V0(x) ≥ R0} = ∅ let R∞ be any positive real number such that

R∞ > r∞.

Note that with the Covering assumption, it yields that:

r0 < R0 , r∞ < R∞ . (12)

Indeed if one of two inequalities in (12) is not satisfied thenthis would imply the existence

of x∗ in R
n such thatV∞(x∗) ≤ r∞ and V0(x

∗) ≥ R0 and consequentlyx∗ is not in the set

{x : V∞(x) > r∞} ∪ {x : V0(x) < R0} which contradicts the Covering assumption.

The functionV0 being positive definite and the functionV∞ being proper, it can be checked

that V is positive definite and proper. Moreover it satisfies the local and asymptotic properties

given in Equations (5) and (6). It remains to show thatV satisfies the Artstein condition for all

x in R
n \ {0}.

Note that the functionsV0 and V∞ satisfying the implications (2) and (3), it yields that the

function V satisfies the Artstein condition on the set{x : V0(x) ≥ R0} ∪ {x 6= 0 : V∞(x) ≤
r∞}. It remains to show that the Artstein condition is also satisfied on the set{x : V0(x) <

R0 , V∞(x) > r∞}. First of all, note that in this set, the following inequality holds:

R0 V∞(x) − r∞ V0(x) > 0 . (13)

Furthermore,
LfV (x) = A(x) LfV0(x) + B(x) LfV∞(x) ,

LgV (x) = A(x) LgV0(x) + B(x) LgV∞(x) ,

where the continuous functionsA : R
n → R+ andB : R

n → R+ are defined as, for allx in R
n,

A(x) = [R0 V∞(x) − r∞ V0(x)] ϕ′
0(V0(x)) + r∞ [1 − ϕ0(V0(x)) − ϕ∞(V∞(x))] ,
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B(x) = [R0 V∞(x) − r∞ V0(x)] ϕ′
∞(V∞(x)) + R0 [ϕ0(V0(x)) + ϕ∞(V∞(x))] .

In the set{x : V0(x) < R0 , V∞(x) > r∞} it holds thatA(x) > 0 andB(x) > 0. Suppose

there existsx∗ in this set such thatLgV (x∗) = 0. Two cases have to be considered:

• If LgV0(x
∗) = 0, thenLgV∞(x∗) = 0, and sinceV0 andV∞ satisfy the Artstein condition,

this implies thatLfV (x∗) < 0;

• If LgV0(x
∗) 6= 0, this implies:

LgV0(x
∗) = −B(x∗)

A(x∗)
LgV∞(x∗) , (14)

and

A(x∗) =
B(x∗) |LgV∞(x∗)|

|LgV0(x∗)| .

Consequently,

LfV (x∗) =
B(x∗)

|LgV0(x∗)|
[

LfV0(x
∗) |LgV∞(x∗)| + LfV∞(x) |LgV0(x

∗)|
]

,

and with (14) and Assumption 2, it yieldsLfV (x∗) < 0.

This concludes the proof of Theorem 2.1. 2

Note that this result is applied for linear systems in Section III below and on a non-linear

example to give prescribed optimal behavior of the trajectories around the equilibrium in Section

V.

C. About Assumption 2

Note that a way to relax this assumption is to restrict the sufficient condition in Theorem 2.1

to λx = B(x)
A(x)

, whereA and B are the continuous functions defined in the proof of Theorem

2.1.

Another way to relax Assumption 2 is to suppose that the implication (7) is valid only for

all x in {x : V∞(x) > r̃∞, V0(x) < R̃0} where R̃0 and r̃∞ are two positive real numbers

satisfying:

r̃∞ ≥ r∞ , R̃0 ≤ r0 ,

and

{x : V∞(x) > r̃∞} ∪ {x : V0(x) < R̃0} = R
n .
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In this case the positive real numbersr0 andR∞ and the functionsϕ0 andϕ∞ involved in the

construction of the global CLFV have to be redefined accordingly (i.e. with̃R0 instead ofR0

and r̃∞ instead ofr∞).

Another formulation of this assumption can be given in termsof existence for eachx of a

same controlux rendering negative the time derivative of bothV0 andV∞. This is expressed in

the following proposition.

Proposition 2.2: Given two continuously differentiable functionsV0 : R
n → R+ and V∞ :

R
n → R+, and a statex in R

n \ {0} such that Artstein condition is satisfied for both functions,

the implication (7) is equivalent to the existence of a control ux in R
p such that:

LfV0(x) + LgV0(x) ux < 0 , LfV∞(x) + LgV∞(x) ux < 0 . (15)

Proof: Proof of (15) ⇒ (7): Let x∗ in R
n \ {0} and λx∗ in R+ be such thatLgV0(x

∗) =

−λx LgV∞(x∗), and suppose there existsux∗ in R
p such that (15) is satisfied withx = x∗ and

u = ux∗. This implies:

LfV0(x
∗) < −LgV0(x

∗)ux∗ = λx∗ LgV∞(x∗)ux∗ ,

< −λx∗ LfV∞(x∗) .

Sinceλx∗ = |LgV0(x∗)|
|LgV∞(x∗)|

it yields (7).

Proof of (7)⇒ (15): For the converse, suppose (7) is satisfied. Several cases need to be distin-

guished. IfLgV0(x
∗) = 0, sincex 6= 0 and the functionV0 satisfies the Artstein condition, it yields

LfV0(x
∗) < 0. Consequently each control inputux∗ such thatLfV∞(x∗) + LgV∞(x∗) ux∗ < 0

ensures that (15) is satisfied. The caseLgV∞(x∗) = 0 can be dealt with in a similar way. Hence,

suppose thatLgV0(x
∗) 6= 0 andLgV∞(x∗) 6= 0 and letux∗ be defined by:

ux∗ = −k

(

LgV0(x
∗)T

|LgV0(x∗)| +
LgV∞(x∗)T

|LgV∞(x∗)|

)

,

wherek is a positive real number. Using the fact that

LgV0(x
∗)T LgV∞(x∗) = |LgV0(x

∗)| |LgV∞(x∗)| cos(LgV0(x
∗), LgV∞(x∗)) ,

it yields:

LfV0(x
∗) + LgV0(x

∗) ux∗ = LfV0(x
∗) − k(1 + cos(LgV0(x

∗), LgV∞(x∗)) |LgV0(x
∗)| ,

LfV∞(x∗) + LgV∞(x∗) ux∗ = LfV∞(x∗) − k(1 + cos(LgV0(x
∗), LgV∞(x∗)) |LgV∞(x∗)| .

November 16, 2009 DRAFT



8

Supposecos(LgV0(x
∗), LgV∞(x∗)) > −1. In this case, the result is obtained takingk suffi-

ciently large. Whencos(LgV0(x
∗), LgV∞(x∗)) = −1 (i.e the upper condition in (7) is satisfied),

by Assumption 2 a real numberµx∗ can be selected such that:

LfV∞(x∗)

|LgV∞(x∗)|2 < µx∗ < − LfV0(x
∗)

|LgV0(x∗)| |LgV∞(x∗)| . (16)

If the control inputux∗ is defined as:

ux∗ = −µx∗ LgV∞(x∗)T ,

the second inequality of (16) yields

LfV∞(x∗) + LgV∞(x∗) ux∗ = LfV∞(x∗) − µx∗ |LgV∞(x∗)|2 ,

< 0 .

Employing the first inequality of (16), it yields:

LfV0(x
∗) + LgV0(x

∗) ux∗ = LfV0(x
∗) − µx∗ LgV0(x

∗)LgV∞(x∗)T ,

= LfV0(x
∗) + µx∗ |LgV0(x

∗)| |LgV∞(x∗)| ,

< 0 .

This concludes the proof of Proposition 2.2. 2

Remark 2.3: Note that if Assumption 2 is satisfied for system (1) then it isalso satisfied for

any system which can be written as :

ẋ = f̃(x) + g(x) u , (17)

with f̃(x) = f(x) + g(x)k(x) wherek : R
n → R

p is any locally Lipschitz function.

Indeed, forx in R
n the following equality holds :

Lf̃V0(x)|LgV∞(x)| + Lf̃V∞(x)|LgV0(x)| =

LfV0(x)|LgV∞(x)| + LfV∞(x)|LgV0(x)| + N(x)k(x) ,

with

N(x) = LgV0(x)|LgV∞(x)| + LgV∞(x)|LgV0(x)| .
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It can be checked that for allx∗ such that there existsλx∗ > 0 satisfying

LgV0(x
∗) = −λx∗ LgV∞(x∗) ,

it yields

N(x∗) = 0 .

Consequently if Assumption 2 is satisfied for system (1), then

Lf̃V0(x
∗)|LgV∞(x∗)| + Lf̃V∞(x∗)|LgV0(x

∗)| < 0 ,

and Assumption 2 is satisfied for system (17).

Moreover note that each CLF for (1) is also a CLF for (17) and thus Assumption 1 for system

(1) is equivalent to Assumption 1 for system (17).

This remark will be useful for the proof of Propositions 3.1 and 3.2 below.

In the next section the sufficient condition is expressed when considering linear systems. This

study will be useful for the non-linear example of Section V below when considering first order

approximation.

III. U NITING TWO CLFS IN THE LINEAR CASE

In this section, the system (1) is supposed to be linear, i.e.there exist two matricesF in R
n×n

andG in R
n×p such that the system (1) can be rewritten as:

ẋ = Fx + G u . (18)

In the linear framework, the CLFs are defined asV0(x) = xT P0x and V∞(x) = xT P∞x

whereP0 andP∞ are symmetric positive definite matrices inR
n×n such that:

xT P0G = 0 , x 6= 0 ⇒ xT
(

F T P0 + P0F
)

x < 0 ,

xT P∞G = 0 , x 6= 0 ⇒ xT
(

F T P∞ + P∞F
)

x < 0 .
(19)

Despite the fact that for linear systems all local quadraticCLFs are global, for robustness

issue or qualitative behavior, it may be interesting to unita pair of CLFs (see Section IV for an

illustration).
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A. Case of a second order system

As a first illustration of Theorem 2.1, system (18) is supposed to be controllable withn = 2

and m = 1 (systems of higher dimension are considered in Section III-B). By a change of

coordinates, the system can be written in canonical controllability form with F andG given as

F =





0 1

aF bF



 , G =





0

1



 , (20)

whereaF andbF are two real numbers. LetP0 andP∞ be two symmetric matrices inR2×2 with

entriesP0 =





a0 b0

⋆ c0



, P∞ =





a∞ b∞

⋆ c∞



.

For i = 0 and i = ∞, the functionx 7→ xT Pix defines a quadratic CLF if and only if

ai > 0 , bi > 0 , ci > 0 , ai ci − b2
i > 0 . (21)

The interest of this system is that Assumptions 1 and 2 of Theorem 2.1 hold provided both

real numbersR0 and r∞ are selected in an appropriate way. Indeed, for this particular system,

the following result holds.

Proposition 3.1: Consider system (18) whenn = 2, m = 1 and with (20). For all matrices

P0 and P∞ in R
2×2 satisfying (21), and for all positive real numbersR0, r∞ satisfying

r∞P0 − R0P∞ ≤ 0 , (22)

Assumption 2 holds for the functionsV0(x) = xT P0x and V∞(x) = xT P∞x, and a solution to

the uniting CLF problem can be computed.

Proof: As noticed in Remark 2.3, without loss of generality, it can be assumed for the system

(18) the two real numbersaF and bF are zero since it is equivalent to work on the system

ẋ = F̃x + Gu, with F̃ =





0 1

0 0



. whereF̃ = F −G[ aF bF ]. So, in the following,aF = 0

and bF = 0 but the result will hold for the more general case (with the same CLF V ). Let

V0(x) = xT P0x andV∞(x) = xT P∞x. Using theS-procedure (see [4, Chapter 2]), Condition

(22) is equivalent to the Covering assumption in Assumption1.

A simple computation gives, for allx = (x1, x2) in R
2, LgV0(x)LgV∞(x) = (x1b0+x2c0)(x1b∞+

x2c∞). If b0
c0

− b∞
c∞

= 0 then LgV0(x)LgV∞(x) ≥ 0. Hence, for allx, there does not exist any

positiveλx such thatLgV0(x) = −λxLgV∞(x) and thus Assumptions 1 and 2 of Theorem 2.1

are satisfied.
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Suppose now thatb0
c0

− b∞
c∞

6= 0. it is first proved that for allx = (x1, x2) in R
2 \ {0},

LgV0(x)LgV∞(x) < 0 is equivalent to the fact that there exists0 < µx < 1 such that

x2 = −
(

µx

b∞

c∞
+ (1 − µx)

b0

c0

)

x1 . (23)

Indeed, if there exists0 < µx < 1 such that (23) is satisfied, then it yields directly:

LgV0(x)LgV∞(x) = −c0 c∞µx(1 − µx)

∣

∣

∣

∣

b∞

c∞
− b0

c0

∣

∣

∣

∣

x2
1 < 0 .

Conversely, supposex is such thatLgV0(x)LgV∞(x) < 0 then − b0
c0

x1 < x2 < − b∞
c∞

x1 or

− b0
c0

x1 > x2 > − b∞
c∞

x1 andx1 6= 0. Note also that ifµx is selected as:

µx =
x2 + b0

c0
x1

x1

(

b0
c0
− b∞

c∞

) ,

then (23) is satisfied. Since0 < µx < 1 the equivalence is obtained.

Consequently, consideringx∗ = (x∗
1, x

∗
2) 6= (0, 0) such that

x∗
2 = −

(

µx

b∞

c∞
+ (1 − µx)

b0

c0

)

x∗
1 , 0 < µx < 1 ,

it yields:

LgV0(x
∗) =

1 − µx

c0
|c0b∞ − b0c∞| |x∗

1| ,

LgV∞(x∗) =
µx

c∞
|c0b∞ − b0c∞| |x∗

1| ,

LfV0(x
∗) = 2

x∗2
1

c2
0c

2
∞

(µxb∞c0 + (1 − µx)b0c∞)[−a0c0c∞ + b0(µxb∞c0 + (1 − µx)b0c∞)] ,

LfV∞(x∗) = 2
x∗2

1

c2
0c

2
∞

(µxb∞c0 + (1 − µx)b0c∞)[−a∞c0c∞ + b∞(µxb∞c0 + (1 − µx)b0c∞)] .

Hence, it gives:

LfV0(x
∗)|LgV∞(x∗)| + LfV∞(x∗)|LgV0(x

∗)|

= − 2
c2
0
c2
∞

|x∗
1|3(µxb∞c0 + (1 − µx)b0c∞) |c0b∞ − b0c∞|M

where

M = (1 − µx)a0c∞ − 2(1 − µx)µxb0b∞ − (1 − µx)
2b2

0

c∞

c0
+ µxa∞c0 − µ2

xb
2
∞

c0

c∞
.

But with (21), it yields that:

M > µx(1 − µx) (a0c∞ − 2
√

a0c∞
√

a∞c0 + a∞c0) ≥ 0 .
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Consequently, for allx such thatLgV0(x)LgV∞(x) < 0,

LfV0(x)|LgV∞(x)| + LfV∞(x)|LgV0(x)| < 0 ,

and therefore Assumptions 1 and 2 are satisfied. Applying Theorem 2.1 a uniting CLF which

satisfies (4), (5) and (6) is obtained. This concludes the proof of Proposition 3.1. 2

B. System of higher dimension

For system of higher dimension, Assumption 2 might be difficult to check. Nevertheless, a

stronger sufficient condition can be expressed in terms of LMI.

Proposition 3.2: Consider system (18). LetP0 and P∞ be two symmetric positive definite

matrices defining two quadratic CLFs. If there exists a matrix K in R
n×p such that the following

LMIs are satisfied






(F + GK)T P0 + P0(F + GK) < 0 ,

(F + GK)T P∞ + P∞(F + GK) < 0 ,
(24)

then, for all positive real numbersR0 andr∞ satisfying (22), Assumption 2 holds for the functions

V0(x) = xT P0x and V∞(x) = xT P∞x, and a solution to the uniting CLF problem can be

computed.

Proof: The proof of this result follows from Proposition 2.2. Indeed, if the matrix inequality

(24) is satisfied, for allx in R
n, taking ux = K x gives inequalities (15). Consequently (7) is

satisfied. For anyR0 andr∞ satisfying (22), the Covering assumption is satisfied and Theorem

2.1 applies. 2

As an illustration of Proposition 3.2, consider system (18)when it is controllable withn = 3

and m = 1. Without loose of generalities (up to a change of coordinates), this system can be

supposed to be in canonical controllable form:

F =











0 1 0

0 0 1

aF bF cF











, G =











0

0

1











, (25)
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whereaF , bF andcF are three real values. For this system, a pair of symmetric positive definite

matrices defining two quadratic CLFs can be selected as

P0 =











5 8 1

⋆ 37 7

⋆ ⋆ 11











, P∞ =











2 2.5 2

⋆ 4 3

⋆ ⋆ 3











.

Employing theYalmippackage ([8]) inMatlab in combination with the solverSedumi([16]), it

can be checked that for allaF , bF and cF (recall Remark 2.3), the functionsx 7→ xT P0x and

x 7→ xT P∞x are two CLFs for (18) such that the LMIs (24) are satisfied withthe vector

K =
(

−0.6621 − aF −2.0181 − bF −2.0702 − cF

)

,

whereaF , bF and cF define the matrixF . Therefore, for allR0 and r∞ satisfying (22) (pick

e.g.R0 ≥ ν andr∞ ≤ 81 ν for all positive real numberν), Assumption 2 holds and associated

uniting CLF problem is solved by applying Proposition 3.2. Analogous examples can be found

for systems of order4.

However, considering the following pair of symmetric positive definite matrices

P0 =











73 −70 30

⋆ 121 10

⋆ ⋆ 48











, P∞ =











3 1 1

⋆ 5 3

⋆ ⋆ 2











. (26)

Defining two CLFs for the system (18) withF andG defined in (25), the LMIs (24) fails to be

satisfied for any matrixK. Consequently Proposition 3.2 cannot be applied.

Moreover, for this pair (26) of matrices, Assumption 2 does not hold for anyR0 and r∞

satisfying (22). Indeed, for all real valuesaF , bF and cF , picking f(x) = Fx and g(x) = Gx

for all x in R
3, it can be checked that for allx∗ = ν (−1.5, 1,−0.5)T whereν is a real number,

the following inequalities hold:LgV∞(x∗)LgV0(x
∗) < 0 and

LfV∞(x∗) |LgV0(x
∗)| + LfV0(x

∗) |LgV∞(x∗)| > 0 .

Therefore, given anyR0 andr∞ satisfying (22), Assumption 2 is not satisfied for the pair of

quadratic CLFs defined with (26).

F =











1.1 −0.76 −1.1

1.6 0.44 0.20

1.4 0.91 0.76











, G =











−1.3

−0.95

0.78











.
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However, for all controllable third order linear systems, there exists a pair of CLFs such

that, for all R0 > 0 and r∞ > 0, Assumption 2 is not satisfied. Indeed consider the following

symmetric positive definite matrices:

P0 =











73 −70 30

⋆ 121 10

⋆ ⋆ 48











, P∞ =











3 1 1

⋆ 5 3

⋆ ⋆ 2











.

Due to Remark 2,P0,Pinfty.

for third order controllable systems, Proposition 3.2 cannot be applied for all pairs of quadratic

CLFs, since Assumption 2 may not be satisfied. For instance, the following symmetric positive

definite matrices:

P0 =











73 −70 30

⋆ 121 10

⋆ ⋆ 48











, P∞ =











3 1 1

⋆ 5 3

⋆ ⋆ 2











,

are such thatx 7→ xT P0x and x 7→ xT P∞x are two CLFs3. It can be checked that forx∗ =

(−1.5, 1,−0.5)T , LgV∞(x∗)LgV0(x
∗) < 0 and that:

LfV∞(x∗) |LgV0(x
∗)| + LfV0(x

∗) |LgV∞(x∗)| > 0 .

Therefore Assumption 2 is not satisfied.

F =











1.1 −0.76 −1.1

1.6 0.44 0.20

1.4 0.91 0.76











, G =











−1.3

−0.95

0.78











.

IV. A PPLICATION TO THE DESIGN OF A UNITING CONTROLLER

Theorem 2.1 can be used to design stabilizing controllers with a prescribed behavior around

the equilibrium, and another behavior for large values of the state. In other words Theorem 2.1

gives a solution to the uniting control problem. This problem has been introduced in [17] and

further developed in [11]. In the present context, the following theorem is obtained.

3Both are computed as solution of a Riccati equation.
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Theorem 4.1: Consider two functionsV0 : R
n → R+ and V∞ : R

n → R+ and two positive

real numbersR0 and r∞ satisfying Assumptions 1 and 2. Assume thatV0 is proper. For any

continuous functionφ0 : R
n → R

p satisfying, for allx in {x : 0 < V0(x) ≤ R0},

LfV0(x) + LgV0(x) φ0(x) < 0 , (27)

and any continuous functionφ∞ : R
n → R

p satisfying for allx in {x : V∞(x) ≥ r∞}

LfV∞(x) + LgV∞(x) φ∞(x) < 0 , (28)

there exists a continuous functionφ : R
n → R

p which solves the uniting controller problem, i.e.

such that

1) φ(x) = φ0(x) for all x such thatV∞(x) ≤ r∞ ;

2) φ(x) = φ∞(x) for all x such thatV0(x) ≥ R0 ;

3) the origin of the systeṁx = f(x) + g(x) φ(x) is a globally asymptotically stable

equilibrium.

The functionφ : R
n → R

m obtained from Theorem 4.1 and which is a solution to the uniting

controller problem is defined as

φ(x) = H(x) − k c(x) LgV (x) , ∀x ∈ R
n , (29)

whereV : R
n → R+ is the Control Lyapunov Function obtained from Theorem 2.1,and with

H(x) = γ(x) φ0(x) + [1 − γ(x)] φ∞(x) whereγ is any continuous function4 such that

γ(x) =







1 if V∞(x) ≤ r∞ ,

0 if V0(x) ≥ R0 ,

and the functionc is any continuous function such that5

c(x)







= 0 if V0(x) ≥ R0 or V∞(x) ≤ r∞ ,

> 0 if V0(x) < R0 andV∞(x) > r∞ ,

andk is a positive real number sufficiently large.

4For instance, a possible choice is:

γ(s) = min



1, max



R∞ − s

R∞ − r∞
, 0

ffff

(30)

with R∞ is the positive real number defined previously.

5For instance, a possible choice isc(x) = max {0, (R0 − V0(x))(V∞(x) − r∞)} (31)
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Proof: Note that the functionφ satisfies item 1) and 2) of Theorem 4.1. It remains to show

item 3). Taking the functionV as a candidate Lyapunov function obtained in (8), the continuous

function V̇ can be introduced as, for allx in R
n,

V̇ (x) =
∂V

∂x
(x)f(x) +

∂V

∂x
(x)g(x)H(x) − k c(x)

∣

∣

∣

∣

∂V

∂x
(x)g(x)

∣

∣

∣

∣

2

.

With the local and global properties of the functionV (as stated in (5) and (6) respectively), for

all x in {x 6= 0 : V∞(x) ≤ r∞ or V0(x) ≥ R0}:

V̇ (x) < 0 . (32)

It is now shown that ifk is selected sufficiently large then this control law ensuresthe nega-

tiveness ofV̇ on the whole domain. To prove that, suppose the assertion is wrong and suppose

for eachk in N, there existsxk in R
n \ {0} such that

V̇ (xk) ≥ 0 , ∀ k ∈ N . (33)

With (32),(xk)k∈N is a sequence living in a compact set{x : V∞(x) ≥ r∞}∩{x : V0(x) ≤ R0}.

This subset being compact there exists a converging subsequence(xkℓ
)ℓ∈N which converges to

a point denotedx∗. The functionx 7→ V̇ (x) being continuous, it yieldṡV (x∗) ≥ 0. With (32),

this yields thatx∗ is in {x : V∞(x) > r∞} ∩ {x : V0(x) < R0}, and by the definition of the

functionc it givesc(x∗) > 0. Consequently, this implies that,∂V
∂x

(x∗)g(x∗) = 0. The functionV

being a CLF, this contradicts Assertion (33) and establishes that (32) is satisfied for allx 6= 0.

Hence, item 3) is also satisfied. 2

This theorem shows that as soon as the uniting CLF problem is solved, a continuous solution

to the uniting controller problem is obtained. Note also, that if discontinuous controllers with

discrete dynamics (not only continuous static controllers) are allowed, the existence of a hybrid

controller solving the problem is obtained under Assumption 1 only (see [11], [13]).

Combining Proposition 3.1 and Theorem 4.1, it yields that for all linear second order control-

lable systems, each pair of linear stabilizing controller can be united, as stated in the following

Proposition 4.2: Consider system (18) whenn = 2, m = 1 and withF and G given in (20).

Let K0 and K∞ in R
1×2 be such that the origin of the systems:

ẋ = (F + G K0) x , ẋ = (F + G K∞) x .
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is globally asymptotically stable. Then there exists a continuous functionφ : R
n → R

p such that

the origin of the systeṁx = Fx + G φ(x) is globally asymptotically stable and such that

φ(x) = φ0(x) in a neighborhood of the origin andφ(x) = φ∞(x) outside of a compact set.

V. ILLUSTRATION ON AN EXAMPLE

To illustrate the interest of the uniting controller solution developed in this paper, a numerical

example is provided in this section. Consider the non-linear system (1) whenn = 3, p = 1, and

the vector fieldsf andg defined by:

f(x) =











−x1 + x3

x2
1 − x2 − 2x1x3 + x3

−x2











, g(x) = G x , G =











0

0

1











, (34)

for all x = (x1, x2, x3) in R
3.

Let V∞ be the continuously differentiable positive definite and proper function defined by

V∞(x1, x2, x3) =
1

2

[

x2
1 +

(

x2
1 + x2

)2
+ x2

3

]

, ∀x ∈ R
3 .

Along the vector fieldsf andg defined in (34), the Lie derivatives of the functionV∞ is

LfV∞(x) = −x2
1 −

(

x2
1 + x2

)2
+ x3

(

x2
1 + x1

)

, LgV∞(x) = x3 , ∀x ∈ R
3 .

Note that for allx in R
3 \ {0} Artstein condition is satisfied (i.e.LgV∞(x) = 0 ⇒ LfV∞ < 0).

Consequently,V∞ is a global CLF and the control lawu = φ∞(x) with

φ∞(x) = −x2
1 − x1 − x3 , ∀x ∈ R

3 , (35)

is such that, along the trajectories of the system (1) in closed-loop withφ∞,

˙︷ ︷

V∞(x) ≤ −x2
1 −

(

x2
1 + x2

)2 − x2
3 , ∀x ∈ R

3 .

Hence the functionφ∞ defined in (35) ensures global asymptotic stability of the origin of the

system defined in (1) and (34).

Note however that despite the global asymptotic stability of the origin is obtained with this

control law, there is no guarantee that the performance obtained is satisfactory. For instance, it

may be interesting that the controller locally minimizes a criterium defined as the limit, when

November 16, 2009 DRAFT



18

t → ∞, of the operatorJ : L2 (R+; R3)×L2 (R+; R)×R+ → R+ defined by, for all(x, u, t) in

L2 (R+; R3) × L2 (R+; R) × R+,

J(x, u, t) =

∫ t

0

x(s)T Qx(s) + Ru(s)2 ds , (36)

whereQ is a symmetric positive definite matrix inR3 andR is a positive real number.

The techniques developed in this paper may be instrumental to modify the stabilizing controller

u = φ∞ such that the criteriumJ is minimized around the origin. A similar problem has

been addressed in [10] where a general cost function depending on exogenous disturbances is

considered. In [10], using a backstepping approach for upper triangular systems, a controller,

which matches the optimal control law up to a desired order, is extended to a global stabilizer.

In the uniting CLF approach, the global controller is computed independently from the optimal

problem and an upper triangular structure is not required. However an assumption (namely

Assumption 2) is needed. Using the first order approximation, this assumption can be rewritten

in terms of an LMI (see Proposition 5.1 below).

The first order approximation around the origin of system (1)with f andg defined in (34) is

ẋ = F x + G u , F =











−1 0 1

0 −1 1

0 −1 0











. (37)

The system (37) being linear, an LQ controller minimizing the criterium defined in (36), is

given byφ0(x) = R−1GT P0 x, whereP0 is the symmetric positive definite solution of the Riccati

equation:

P0F + F T P0 − P0GR−1GT P0 + Q = 0 . (38)

The tools developed in this paper provides a sufficient condition guaranteeing the existence

of a continuous state feedbacku = φ(x) which unites the optimal local controllerφ0 and the

global oneφ∞ while ensuring global asymptotic stability of the origin:

Proposition 5.1: Assume there exists a matrixK in R
3 satisfying the following LMI:







(F + GK)T P0 + P0(F + GK) < 0 ,

(F + GK)T P∞ + P∞(F + GK) < 0 ,
(39)

where P∞ = 1
2
diag(1, 1, 1). Then there exists a continuous functionφ : R

3 → R such that

the control lawu = φ(x) makes the origin of the system (1) a globally asymptoticallystable

equilibrium and such thatφ(x) = φ0(x) in a neighborhood of the origin.
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Proof: The matrix P0 being the solution of the Riccati equation (38), it yields, along the

trajectories of system (37) with the control lawu = φ0,

˙︷ ︷

V0(x) = −xT Qx ,

where V0(x) = xT P0x for all x ∈ R
3. The matrixQ being symmetric positive definite and

system (37) being the first order approximation of the systemdefined in (1) and (34), it implies

that, for allR0 sufficiently smallV0 is a local CLF. Moreover,V∞ being a (global) CLF, it yields

that for all R0 sufficiently small, Assumption 1 is satisfied providedr∞ is selected sufficiently

small to guarantee that the covering assumption is satisfied.

Also, note that the functionV∞ andP∞ are such that

V∞(x) = xT P∞x + x2
1x2 +

1

2
x4

1 ,

= xT P∞x + o
(

|x|2
)

.

In other words,xT P∞x is the quadratic approximation around the origin of the global CLF

V∞. Moreover the Lie derivative ofV∞ along the vector fieldsf andg satisfy :

LfV∞(x) = xT
(

P∞F + F T P∞

)

x + o
(

|x|2
)

,

and

LgV∞(x)Kx = 2xT P∞GKx + o
(

|x|2
)

,

whereK is the obtained solution of the LMI (39). Consequently, with(39), the time derivative

of the functionV∞ along the trajectory of the system withu = Kx satisfies :

˙︷ ︷

V∞(x) = xT S∞x + o
(

|x|2
)

,

where the matrixS∞, defined as

S∞ = (F + GK)T P∞ + P∞(F + GK) ,

is symmetric negative definite due to (39).

Hence, the control lawu = Kx renders the time derivative of the CLFV∞ and the local CLF

V0 negative definite for allx sufficiently small. With Proposition 2.2, this implies thatAssumption

2 is satisfied providedR0 andr∞ are selected sufficiently small. Hence, with Theorem 4.1, taking

R0 and r∞ sufficiently small and satisfying (22), the control lawu = φ(x) with φ defined in

(29) is such that
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1) φ(x) = φ0(x) for all x such thatV∞(x) ≤ r∞ ;

2) φ(x) = φ∞(x) for all x such thatV0(x) ≥ R0 ;

3) the origin of the systeṁx = f(x) + g(x) φ(x) is a globally asymptotically stable

equilibrium.

This concludes the proof of Proposition 5.1. 2

For the numerical illustration, the matrixQ is randomly selected as :

Q =











0.8 0.6 0.3

⋆ 0.6 0.5

⋆ ⋆ 1











, (40)

and R = 1. The matrixP0 and the optimal local controllerφ0 = K0 x obtained solving the

associated Riccati equation can be computed employing thecare routine inMatlab :

P0 =











0.3389 0.1412 0.3496

⋆ 0.3870 −0.0912

⋆ ⋆ 1.2316











, K0 =











0.3496

−0.0912

1.2316











. (41)

Employing theMatlab packageYalmip ([8]) in combination with the solverSedumi([16]),

it can be checked6 that the LMI condition (39) is satisfied for a particularK. Consequently,

Proposition 5.1 applies and a controller which unites the optimal local oneφ0 and the global

oneφ∞ can be constructed.

The uniting controller is given in (29) where the uniting CLFV is obtained from Theorem

2.1, and the functionsϕ0, ϕ∞, γ, andc are respectively defined by (9), (10), (30) and (31), with

the following tuning parameters

R0 = 0.88 , r∞ = 0.35 , r0 = 0.4739 , R∞ = 0.65 , k = 1 .

Figure 1 compares the time-evolution of the costJ defined in (36) when considering the

nominal control lawu = φ∞ and the uniting oneu = φ, with the initial conditionx(0) = [1 1 1]T .

Figure 2 shows the time-evolution of the control valuesu = φ.

On Figures 1 and 2 the times the statex crosses the level sets{x : V0(x) = R0} and

{x : V∞(x) = r∞} are shown. These time instants define the time interval in which the

6The Matlab file can be downloaded fromhttp://homepages.laas.fr/ ∼vandrieu/Publication.htm
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99K V0(x(t)) = R0

99K V∞(x(t)) = r∞

u = φ(x)
u = φ∞(x)

time

J

Fig. 1. Time-evolution of the cost functionJ with the controls

φ (in plain line) andφ∞ (in dashed line).

0 0.5 1 1.5 2 2.5 3
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

99K V0(x(t)) = R0

99K V∞(x(t)) = r∞

time

φ

Fig. 2. Time-evolution of the uniting controllerφ.

interpolation between both controllers occurs. In other words, before this time interval, the

controllerφ equalsφ∞ and after the local controller is employed.

However, there is no guarantee that, for all initial conditions, the cost obtained employing the

uniting controller will be lower than the one obtained usingthe global one. More precisely, there

exist initial conditions for which the use of the interpolation between both controllers affects

too strongly the cost. To check if the uniting controller is statistically better than the global one,

a set of initial conditions uniformly distributed on a sphere have been considered. For77% of

initial conditions the cost is lower with the uniting controller. On this particular example, the

uniting controller seems to give better result (in terms of the considered cost) than the global

one.

VI. CONCLUSION

In this paper, the problem of piecing together two Control Lyapunov Functions is considered.

Solving this one provides a simple solution to the uniting controllers problem. Two character-

izations of a sufficient condition guaranteeing the solvability of the united CLF problem are

given. Moreover, this sufficient condition is always satisfied in the case of a second order linear

controllable system. When dealing with linear systems, a stronger version of this sufficient

condition can be formulated in terms of LMIs. As shown on a numerical illustration, it allows to

exhibit a sufficient condition to improve the qualitative behavior of the trajectories of a non-linear
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system around the equilibrium.
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