N
N

N

HAL

open science

Uniting two Control Lyapunov Functions for affine
systems (full version)

Vincent Andrieu, Christophe Prieur

» To cite this version:

Vincent Andrieu, Christophe Prieur. Uniting two Control Lyapunov Functions for affine systems (full

version). 2009. hal-00432607v1

HAL Id: hal-00432607
https://hal.science/hal-00432607v1

Preprint submitted on 16 Nov 2009 (v1), last revised 12 Mar 2010 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00432607v1
https://hal.archives-ouvertes.fr

Uniting two Control Lyapunov Functions for

affine systems (full version)

Vincent Andrieu and Christophe Prieur

Abstract

The problem of piecing together two Control Lyapunov Fuoresi (CLFS) is addressed. The first
CLF characterizes a local asymptotic controllability pedyp toward the origin, whereas the second
CLF is related to a global asymptotic controllability profyewith respect to a compact set. A sufficient
condition is expressed to obtain an explicit solution. Téugficient condition is shown to be always
satisfied for a linear second order controllable system. §e@ond part, it is shown how this uniting
CLF problem can be used to solve the problem of piecing tagedtho stabilizing control laws. Finally,
this framework is applied on a numerical example to impragal performance of a globally stabilizing

state feedback.

I. INTRODUCTION

Smooth Control Lyapunov Functions (CLFs) are instrumeimahany feedback control de-
signs and can be traced back to Artstein who introduced thigpunov characterization of
asymptotic controllability in [3]. For instance, one of theeful characteristic of smooth CLFs
is the existence afiniversal formulagor stabilization of non-linear affine (in the control) sgsts
(see [5], [7]). Numerous tools for the design of global CLE aow available (for instance by
backstepping [6], or by forwarding [9], [14]). On anothemdavia linearization (or other local
approaches), one may design local CLF yielding locallyisthg controllers. This leads to the

idea of uniting a local CLF with a global CLF.

The two authors are with CNRS; LAAS ; 7, avenue du Colonel Rp€k31077 Toulouse, France and Université de Toulouse;
UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France. Vinténdrieu is also with Universit de Lyon, Lyon, F-69003,
France; Universit Lyon 1; CNRS UMR 5007 LAGEP (Laboratoifautbmatique et de GEnie des Procds), 43 bd du 11 novembre,
69100 Villeurbanne, Franceincent.andrieu@gmail.com, cprieur@laas.fr

November 16, 2009 DRAFT



This issue is closely related to the ability to piece togethical controller and a global one.
This problem of unification of control laws was introduced[i7]. It has been subsequently
developed in [11] where this problem has been solved by denisig controllers with continuous
and discrete dynamics (namely hybrid controller). As shawiSection[TY below, solving the
uniting CLF problem provides a simple solution to the urgtaontrol problem without employing
discrete dynamics. Some related results concerning thecatmon of different controllers can
be found in [13], [18] where hybrid controllers are used, 1] where the patchy feedbacks
design has been studied.

The problem of piecing together two CLFs seems to be chahgnéndeed, in [11], it is shown
threw a topological obstruction that it may be impossiblgitce two arbitrary controllers when
restricting to continuous stabilizing feedbacks. Thusghwhe converse Lyapunov theory, this
implies that the uniting CLF problem may have no solutioheit This obstruction is a motivation
to look for a sufficient condition guaranteeing the exiseein a solution to the uniting CLF
problem.

In SectioT] a sufficient condition to piece together a p&iCbFs is given. For linear systems,
this sufficient condition can be formalized (in a strongersien) as a Linear Matrix Inequality
(LMI). This provides a simple and efficient test to show the proposed algorithm provides a
solution to the uniting control problem when dealing withear systems.

This result on linear systems is interesting also for naedr systems since it may be helpful to
change the local behavior of the trajectories based on thtecfider approximation. A numerical
example is given in Sectiop]V showing how this framework canulsed to modify the local
behavior of the trajectories of a non-linear system in otdaninimize a cost function. Again a
hybrid controller may be used (see e.g. [12] for the desiga stabilizer being locally optimal).

The paper is organized as follows. In Sectfdn Il, the unit@ig= problem is precisely stated
and a sufficient condition guaranteeing its solvability igeg. In Sectior{ 1lI, the linear case is
investigated through a simple example and a sufficient ¢@mdin terms of LMI is provided.
Section[1Y is devoted to the uniting control problem. In teection it is shown how a solution
can be obtained once the uniting CLF problem is solved. Arstithtion of the proposed result
on a non-linear example, in which a prescribed local opiitjwé obtained is given in Section
M Finally Section[V] contains some concluding remarks.

Notation: LV denotes the Lie derivative of a differentiable functidrwith respect to the vector
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field f. Given a symmetric matrix), the notationl) < 0 means that it is negative definite.

[I. PROBLEM STATEMENT AND MAIN RESULT
A. Problem formulation

In this section it is considered a control affine nonlineastesn described by:

&= f(z) +g(@)u, 1)

wherex in R™ is the stateu in R? is the control input, and : R® — R™ andg : R" — RP
are locally Lipschitz functions such thg{0) = 0.

For system[(1), two CLF$§; and V., satisfying the Artstein condition (see [3]) on specific
sets are given. More precisely, the following assumptiold$io

Assumption 1. There exist a positive definite and continuously diffeedié functionlj :
R™ — R, a positive semi-definite, proper and continuously difigeble functionV,, : R" —

R, and positive value$, and r., such that :

o Local CLF:{z : 0 < Vo(z) < Ry, L,Vo(z) =0} C {z : LiVy(x) < 0} ; (2)
o Global set-CLF{z : Vi (2) > 7o, LyV(z) =0} C {x : LiVo(z) < 0} ; (3)

« Covering assumptionfz : V(x) > 7o} U {2 : Vo(z) < Ry} = R™.

The functionV,, characterizes the global asymptotic controllability tedvehe set{z : V., <
Ry} for system [[1). Hence, this function is proper but not neaelyspositive definite.

Roughly speaking the Covering assumption means that thesét®in which the asymptotic
controllability property holds (the two sets in which eadtFZatisfies Artstein condition) overlap
and cover the entire domain.

The problem addressed in this paper can be formalized assill
Uniting CLF problem: The uniting CLF problem is to find a proper, positive definitada
continuously differentiable functiol” : R* — R, such that:

e Global CLF: {z:2 # 0, L,V (x) = 0} C{z:L;V(x) < 0} ; (4)
o Local property:{z : Vo(z) <71} C {x:V(x) = roo Vo(2)} ; (5)
« Global property:{z : Vi(z) > Ry} C {z:V(x) = RyVy(x)} . (6)
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If the local CLFVj, satisfies the small control property (see [15]), then, inwdé property [b),
the same holds for the functidr. In this case, the so-callaghiversal formulagsee [15], [7],
[5]) can be used to compute a controller which renders thggroa globally asymptotically stable
equilibrium. Furthermore, as shown in Sectfon 1V, solvihg uniting CLF problem provides a

way to piece together some specific stabilizing contrallers

B. A sufficient condition and a constructive theorem

The first result establishes that, with the following additil assumption, the existence of a
solution to the uniting CLF problem is obtained.
Assumption 2: Given two positive values,, and R, and two functiond/ : R* — R, and

Voo :R*" = Ry, forall zin {z : Vio(z) > ro, Vo(z) < Ry}, the following implication holds:

X, >0 L,Vo(x) = =Ny LyVio(z) = LiVo(2)|L,Veo(2)| + LfVio ()| LyVo(z)| <0 . (7)
The first result can now be stated.
Theorem 2.1: Under Assumptiong 1 arjdl 2, there exists a solution to théngn@LF problem.
More precisely, the functior : R” — R, defined, for allz in R™, by

V(z) = Ro|eo(Vo(#)) + poc(Voo(@)) | Vao(®) + Too [1 = 00(Vo(2)) — @oc(Vao(@)) | Vo(z) .
(8)
wherey, : R, — [0, 1] andy, : Ry — [0, 1] are two continuously differentiable non decreasing

functions satisfyirfy

=0 Vs <ry =0 Vs <re
0o(s) § >0  Vrg<s<Ry , Po(S) § >0 Vre<s<Rs (11)
= % VSzRo - % VSZROO

and wherery = max,.v._ () <r..} Vo(2) and] Ry = MiN (5.1, (2) > Re} Voo (), IS @ proper, positive

definite continuously differentiable function satisfyify, (&), and [p).

! For instanceo and p., can be defined as:

3 sS—1ro 2 s—1ro 3
@0(8) - 5 (RO — 7"0) - (RO — 7'0) ) ENS [T07 RO] ) (9)
(s) = S(S5zr= T (e ) 5 € [Foo; Roo] (10)
oo " 2\ Re —Too Roo — Too ’ ey el

%In the case wheréz : Vo(z) > Ro} = 0 let R be such thaiRe, > 7oo.
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The structure of the functiofr is inspired by the construction given in [2].

Proof: The first part of the proof is devoted to show that the positee numbers, and R,
are properly defined. Indeed, the functidl, being positive semi-definite and proper, the set
{z : Vo(x) < ry} is a non empty compact subset andcan be properly defined. Fa?,,
two cases need to be considered:
o If {z : Vo(x) > Ry} # 0, pick any element* in {x : Vj(x) > Ry}. Since the functioV,,
is proper, ityields thafz : Vo (x) < V(2*)}is a compact set anding, . v ) > ro} Voo(Z) =
MmN vy (2) > Ro,Veo (2) < V(*)} Voo (). Therefore in this case,, can be defined.
« In the case wherdz : Vy(z) > Ry} = 0 let R, be any positive real number such that
Ry > re.

Note that with the Covering assumption, it yields that:
ro < Ry , Too < Ro . (12)

Indeed if one of two inequalities i ([L2) is not satisfied thars would imply the existence
of z* in R™ such thatV(z*) < r and Vy(z*) > R, and consequently* is not in the set
{z : Vo(z) > roo} U {z : Vy(z) < Ro} which contradicts the Covering assumption.

The functionV; being positive definite and the functidn, being proper, it can be checked
that V' is positive definite and proper. Moreover it satisfies thel@nd asymptotic properties
given in Equations[{5) and](6). It remains to show thasatisfies the Artstein condition for all
x in R™\ {0}.

Note that the functiond/, and V,, satisfying the implications[]2) and](3), it yields that the
function V' satisfies the Artstein condition on the det : Vy(x) > Ro} U{z # 0 : Vo(z) <
T} It remains to show that the Artstein condition is also $i@iison the set{x : Vj(z) <

Ry, Vo(x) > 7o }. First of all, note that in this set, the following inequglitolds:
Ro Vo () =756 Vo(z) > 0. (13)

Furthermore,

LyV(z) = Alz) LVo(x) + B(x) LV (2)

where the continuous function$: R* — R, and B : R® — R, are defined as, for alt in R",
A(z) = [Ro Voo() = oo Vo(2)] g0 (Vo (2)) + oo [1 = 0(Vo(2)) — ¢oo(Vie(2))]
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B(x) = [Ro Vo) = 1oe Vo(2)] ¢l (Ve () + Ro [00(Vo(2)) + oo (Ve ()] -

In the set{z : Vy(z) < Ry, Voo(z) > 7} it holds thatA(z) > 0 and B(z) > 0. Suppose
there existsc* in this set such that,,1'(z*) = 0. Two cases have to be considered:
o If L,Vo(2*) = 0, thenL,V(z*) = 0, and sincel;, andV,,, satisfy the Artstein condition,
this implies thatL;V (z*) < 0;
o If L,Vo(z*) # 0, this implies:

L,Vo(z*) = _A(l'*) L,V (z") (24)
and
B(a") | Ly Voo (27)|
A(z") = z
@)= T )
Consequently,
LV() = o0 L V@) |y Vael)| 4+ LyVaela) L Vo)
! Vol L s Pt |
and with [I#) and Assumptiofj 2, it yields;V (z*) < 0.
This concludes the proof of Theorgm]2.1. O

Note that this result is applied for linear systems in Secfifl below and on a non-linear

example to give prescribed optimal behavior of the trajgesoaround the equilibrium in Section

M

C. About Assumptiofi 2

Note that a way to relax this assumption is to restrict théigeht condition in Theorerp 3.1

to \, = izg, where A and B are the continuous functions defined in the proof of Theorem

Az
£1.

Another way to relax Assumptiof] 2 is to suppose that the icagilon (T) is valid only for
all z in {z : Vio(z) > 7, Vo(x) < Ry} where R, and 7, are two positive real numbers
satisfying:

Toozroo ) ROSTOy

and
{2 : Vio(z) > Foo} U {z: Volz) < Ry} = R™.
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In this case the positive real numbegsand R, and the functionsy, and ¢, involved in the
construction of the global CLF have to be redefined accordingly (i.e. willy instead ofR,
andr., instead ofr,.).

Another formulation of this assumption can be given in tewh®xistence for each of a
same controk, rendering negative the time derivative of bdthand V.. This is expressed in
the following proposition.

Proposition 2.2: Given two continuously differentiable functiob : R* — R, and V, :
R" — R, and a stater in R™\ {0} such that Artstein condition is satisfied for both functions

the implication [[7) is equivalent to the existence of a cointr, in R? such that:

LiVo(x) + LyVo(x)u, <0, LiVio(z) + LgVoo(x) uy <0 . (15)

Proof: Proof of (Ip) = ([): Let z* in R™ \ {0} and A,« in R, be such thatl,Vy(z*) =
- L,V (2*), and suppose there exists- in R? such that[(I5) is satisfied with = 2* and

u = ug+. This implies:

LiVo(2*) < —L,Vo(x")upr = Mg Ly Vo (@) g
< e LVio(%) .

Since )\, = % it yields (7).
Proof of (T)= (3): For the converse, suppo$¢ (7) is satisfied. Severabaased to be distin-
guished. IfL,Vs(2*) = 0, sincex # 0 and the functiorl}, satisfies the Artstein condition, it yields
L;Vy(z*) < 0. Consequently each control input- such thatl V.. (z*) + L,Vao(2*) upe <0
ensures thaf (15) is satisfied. The cdgé’.(z*) = 0 can be dealt with in a similar way. Hence,
suppose thal,V;(z*) # 0 and L,V (z*) # 0 and letu,- be defined by:

= _k (Lg%(x*)T LgVoo(x*)T>

: [LgVo(z®)|  [LgVao(z)] )

wheref is a positive real number. Using the fact that

LyVo(a™)" LyVio(a®) = |LoVo(a")| | LgVio(x™)| cos(LgVo(z"), LgVeo(a))
it yields:
LVo(x®) 4 LgVo(a") uer = LyVo(a") — k(1 + cos(LgVo(x"), LgVao (")) [LgVo(z™)]|

LiVo(2) + LyVeo(a™) uge = LV (2) — k(1 4 cos(LyVo(2"), LyVeo(x™)) | Ly Voo ()] .
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Supposecos(L,Vy(z*), L,V (z*)) > —1. In this case, the result is obtained takihgsuffi-
ciently large. Whervos(L,Vy(z*), L,Voo(2z*)) = —1 (i.e the upper condition iff](7) is satisfied),
by Assumptior{]2 a real number,. can be selected such that:

LV (x*) LVo(z*)

LVal P < S L) Vo) 4o
If the control inputu,- is defined as:
Upe = —flg= LyVio(z*)T
the second inequality of (JL6) yields
LV (z*) 4+ LyVo () upe = LiVao(a*) — poe |LyVao(2®)?,
< 0.
Employing the first inequality of[(16), it yields:
LiVo(z*) + LyVo(a*)ug = LiVo(a*) — pae LyVo(2*) LyVao(a™)T |
= LVo(x") + prar [ LgVo(2")| |LgVio(27)]
< 0.
This concludes the proof of Propositipn]2.2. O

Remark 2.3: Note that if Assumptiofj 2 is satisfied for systén (1) thenalde satisfied for

any system which can be written as :

&= flz) + g9(x)u, 17)

with f(z) = f(z) + g(x)k(z) wherek : R™ — R” is any locally Lipschitz function.
Indeed, forz in R™ the following equality holds :

LiVo(@)| LgVoe (#)] + L Voo () | L Vo(a)| =
LyVo ()| LoVaol@)| + LyVao(@)|LeVo(@)| + N()k(x) ,

with
N(z) = LgVo(2)|Lg Voo (2)] + Lg Voo (2)|LgVo(2)] -
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It can be checked that for alt* such that there exists,- > 0 satisfying
LgVo(a™) = =X LgVoo(2")

it yields
N(z*)=0.

Consequently if Assumptigh 2 is satisfied for sys{¢m (1), the
LiVo(x*)|LgVoo (x7)| + L Voo (2")| LgVo(2")| <0,

and Assumptiof)] 2 is satisfied for systdnj (17).

Moreover note that each CLF fof](1) is also a CLF f¢r](17) andgssumptiofj 1 for system
(@) is equivalent to Assumptigh 1 for systgm (17).

This remark will be useful for the proof of Propositigns] 3rid43.2 below.

In the next section the sufficient condition is expressednadensidering linear systems. This
study will be useful for the non-linear example of Secfign &dw when considering first order

approximation.

[Il. UNITING TWO CLFS IN THE LINEAR CASE

In this section, the system](1) is supposed to be linearthieze exist two matrices’ in R"*"

and G in R™*? such that the systenfi] (1) can be rewritten as:
T = Fr+ Gu. (18)
In the linear framework, the CLFs are definedVagz) = 27 Pyx and V. (z) = 2T Pz
where P, and P,, are symmetric positive definite matriceslt¥*" such that:

PG =0, 2#0 = aT(F'h+ PRF)z <0, (19)
"’PG =0, z#0 = xT(FTPC><J + POOF)x < 0.

Despite the fact that for linear systems all local quadr@id-s are global, for robustness

issue or qualitative behavior, it may be interesting to anjtair of CLFs (see Sectidn]IV for an

illustration).
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10

A. Case of a second order system

As a first illustration of Theorerp 3.1, systeiin](18) is supplosebe controllable withh = 2
andm = 1 (systems of higher dimension are considered in SedtioB)lIIBy a change of

coordinates, the system can be written in canonical cdabitity form with /" and G given as

0 1 0
, G = : (20)

arp bp 1

F =

wherear andby are two real numbers. Ldt, and P,, be two symmetric matrices iR>*? with

i Qg bo a b
entriesP, = P, = ©
*x (O * Coo

Fori = 0 andi = oo, the functionz — 27 P,z defines a quadratic CLF if and only if

ai>0,bi>0,ci>0,aici—bg>0. (21)

7

The interest of this system is that Assumptiphs 1 fnd 2 of fdm¢.] hold provided both
real numbersRk, andr,, are selected in an appropriate way. Indeed, for this pdatigystem,
the following result holds.

Proposition 3.1: Consider systen{ (L8) when= 2, m = 1 and with [ZP). For all matrices
Py and P, in R?*? satisfying [2]L), and for all positive real numbeRs, ., satisfying

TOOPO_ROP()Ogov (22)

Assumptiorf]2 holds for the functioh§(z) = 27 Pyz and V. (z) = 27 P,,z, and a solution to

the uniting CLF problem can be computed.

Proof: As noticed in Remark 2.3, without loss of generality, it candssumed for the system

(8) the two real numbersr and bx are zero since it is equivalent to work on the system

_ - 0 1 ~
& = Fx+ Gu, with F' = . whereF' = F — G[ ap by ]. S0, in the followingar =0
00

and b = 0 but the result will hold for the more general case (with theneaCLF V). Let
Vo(z) = 2T Pyx and V. (z) = 2T P,z. Using theS-procedure (see [4, Chapter 2]), Condition
(£3) is equivalent to the Covering assumption in Assumgfjon

A simple computation gives, for all = (z1, 22) INR?, L,V (2) L, Ve (7) = (210042200 (21boo+
ToCoo). If Ic’—g - g%: = 0 then L, Vy(z) L,V (z) > 0. Hence, for allz, there does not exist any
positive \,, such thatL,Vy(z) = =\, L,V (x) and thus Assumptiong 1 affl 2 of Theorfn 2.1
are satisfied.
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11

Suppose now thaglo) — %’.Z # 0. it is first proved that for allz = (zy,27) in R?\ {0},
L,Vo(z)L,V(z) < 0 is equivalent to the fact that there exists< p, < 1 such that

Ty = — (uxiio +(1— ux)b—o) Ty . (23)

00 Co
Indeed, if there exist8 < u, < 1 such that[(33) is satisfied, then it yields directly:
b bo

i < 0.
Coo Co

LgVo(2) LgVeo(x) = —co Cooptz(1 — piz)

Conversely, suppose is such thatL,Vy(z)L,Ve(xz) < 0 then —I;—g:cl < Ty < —i’fml or

—g—g:):l > 19 > —%’:xl andz; # 0. Note also that ifu, is selected as:
i) + g—gl’l
He = ) " >
0 oS}
o (- t)

then (ZB) is satisfied. Sinde< p, < 1 the equivalence is obtained.
Consequently, considering = (x7, z3) # (0,0) such that

boo b
wéz—(w—~ﬂl—m%%xia 0<pe<l,
Coo Co
it yields:
]-_ x *
L,Vo(z") = . & |coboe — boCool 27]
0
o Ha "
L,Vy(z*) = C_|COboo — boCool 271

*2

x
LiVo(z*) = %%(M%%+u—uﬁw@}%w%+%wmwmwyﬁm%%ﬂ,
0~0c0

*2
LfVOO(x*) = Qx—lg(ﬂxbooco + (1 - ,Ux)bOCoo)[_aooCOCoo + bOO(:U:cbooCO + (1 - :Ux)bOCOO)] .

c5e3
Hence, it gives:
LyVo(@) | LgVao(@)] + LyVio(a*)| Ly Vi (a")|
= — 22 i Ppabooco + (1= pa)bocos) loboe — bococ| M
where
22 ﬂ.

Coo
M = (1= piz)aoCee — 2(1 = pie) przboboo — (1 — :U:c)zbgc_ + HalooCo — 05
0

(o, 9]

But with (21), it yields that:

M > p(1 — py) (@0Co0 — 24/G0Co0r/Ao0Co + GooCo) > 0 .
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12

Consequently, for alk such thatZ,V;(z)L,V(z) < 0,
LyVo(@)| Ly Voo ()| + Ly Vo (1) LgVo(x)| < 0,

and therefore Assumptiorj$ 1 apd 2 are satisfied. Applyingiime[Z.]L a uniting CLF which
satisfies [(4),[(5) and](6) is obtained. This concludes thefpob Proposition 3]1. |

B. System of higher dimension

For system of higher dimension, Assumptidn 2 might be diffito check. Nevertheless, a
stronger sufficient condition can be expressed in terms of. LM

Proposition 3.2: Consider systen{ ([L8). Le% and P, be two symmetric positive definite
matrices defining two quadratic CLFs. If there exists a nxakfiin R"*? such that the following

LMIs are satisfied

(F + GK)'Py + P(F + GK) < 0, (24)

(F + GK)TP,, + Po(F + GK) < 0,
then, for all positive real numbe®, andr, satisfying [2R), Assumpti¢h 2 holds for the functions
Vo(z) = 2T Pyxr and V. (z) = 2T Pyz, and a solution to the uniting CLF problem can be

computed.

Proof: The proof of this result follows from Propositign .2. Indeef the matrix inequality
(4) is satisfied, for alk: in R, taking u, = K x gives inequalities[(15). Consequently (7) is
satisfied. For any?, andr,, satisfying [2R), the Covering assumption is satisfied anelofém

E.1 applies. O

As an illustration of Proposition 3.2, consider systén] (A8pn it is controllable with = 3
andm = 1. Without loose of generalities (up to a change of coordslatiis system can be

supposed to be in canonical controllable form:

0O 1 0 0
F = 0 0 1 . G=10 , (25)
ar bp cp 1
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13

wherear, b andcy are three real values. For this system, a pair of symmetsdipe definite

matrices defining two quadratic CLFs can be selected as

5 8 1 2 25 2
Po=1|% 37T 7|, Pcs=|%x 4 3
* % 11 * % 3
Employing theYalmip package ([8]) inMatlab in combination with the solveedumi([16]), it
can be checked that for allr, by andcr (recall RemarK Z]3), the functions+— z” P,z and
x — o7 P,z are two CLFs for[(@8) such that the LMIE[24) are satisfied wihith vector

K = ( —0.6621 —ap —2.0181 —bp —2.0702 —cp ) 5

wherear, br and cr define the matrixF'. Therefore, for allR, andr., satisfying [2R) (pick
e.g. Ry > v andr,, < 81v for all positive real number), Assumption]2 holds and associated
uniting CLF problem is solved by applying Propositipn] 3.hatogous examples can be found
for systems of orded.

However, considering the following pair of symmetric po&tdefinite matrices

73 =70 30 3 1 1
Po=| % 121 10|, Pos=|x 5 3| . (26)
* * 48 * % 2

Defining two CLFs for the systenf (18) with and G defined in [2p), the LMIs[(24) fails to be
satisfied for any matrixs. Consequently Propositign B.2 cannot be applied.

Moreover, for this pair[(26) of matrices, Assumptifin 2 does hold for any R, and r.,
satisfying [2R). Indeed, for all real values, br andcr, picking f(z) = Fx andg(z) = Gz
for all z in R3, it can be checked that for alt = v/ (—1.5,1,—0.5)" wherev is a real number,

the following inequalities holdZ,V..(z*)L,Vs(2*) < 0 and
LiVeo(a™) [ LgVo(a*)] + LyVo(a™) |LgVao(z™)| > 0 .

Therefore, given anyk, andr,, satisfying [2R), Assumptiofj 2 is not satisfied for the pair of
quadratic CLFs defined with (26).

1.1 =076 —1.1 ~1.3
F=116 044 020 |, G=1| —0095
1.4 091 0.76 0.78
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However, for all controllable third order linear systemisere exists a pair of CLFs such
that, for all Ry, > 0 andr., > 0, Assumption[R is not satisfied. Indeed consider the follgwin

symmetric positive definite matrices:

73 =70 30 3 1 1
Phb=1 » 121 10|, Px=]|x 5 3
* *x 48 * * 2

Due to Remark 2/,Pinfty.
for third order controllable systems, Proposit[on 3.2 arive applied for all pairs of quadratic
CLFs, since Assumptiofj 2 may not be satisfied. For instaheefdllowing symmetric positive

definite matrices:

73 =70 30 3 1 1
Py = * 121 10 , Pox=1]% 53 ,
* * 48 * *x 2

are such thatr — 27 Pyz andx — 27 P,z are two CLF§. It can be checked that for* =
(=1.5,1,-0.5)", L,Vao(z*)L,Vo(z*) < 0 and that:

LyVoo (%) [LgVo(a™)| + LyVo(a") [LgVoo(27)[ > 0 .

Therefore Assumptio] 2 is not satisfied.

1.1 =076 —1.1 ~1.3
F=116 044 020 |, G=1| —0095
1.4 091 0.76 0.78

IV. APPLICATION TO THE DESIGN OF A UNITING CONTROLLER

Theorem[Z]1 can be used to design stabilizing controllets wiprescribed behavior around
the equilibrium, and another behavior for large values efgtate. In other words Theorgm]2.1
gives a solution to the uniting control problem. This probleas been introduced in [17] and

further developed in [11]. In the present context, the feitey theorem is obtained.

3Both are computed as solution of a Riccati equation.
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Theorem 4.1: Consider two function$; : R” — R, andV,, : R® — R, and two positive
real numbersR, and r,, satisfying Assumptior[3 1 arpfl 2. Assume thais proper. For any

continuous functiony, : R" — RP satisfying, for allz in {z : 0 < Vy(x) < Ry},
LiVo(z) + LgVo(x) go(z) < 0, (27)
and any continuous functiop,, : R* — RP? satisfying for allz in {z : Vio(z) > roo}
LiVo(x) + LyVoo(2) () < 0, (28)

there exists a continuous functign: R™ — R? which solves the uniting controller problem, i.e.

such that
1) ¢(x) = ¢o(x) for all z such thatV(z) < re ;
2) ¢(x) = ¢uoo(x) for all z such thatVy(z) > Ry ;
3) the origin of the systemi = f(x) + g(z)¢(x) is a globally asymptotically stable

equilibrium.
The function¢ : R™ — R™ obtained from Theorerp 4.1 and which is a solution to the ogiti

controller problem is defined as

o(x) = H(z) — ke(z) L,V (x) Ve € R", (29)
whereV : R — R is the Control Lyapunov Function obtained from Theorenh 2rid with
H(z) = v(x) do(z) + [1 —v(x)] ¢(x) Where is any continuous functiinsuch that

1 if Ve(z) < roe
v(x) = _
0 |if Vb(l’) > Ro s

and the functiore is any continuous function such tfat

( ) =0 Iif VE](.T) > RO or Voo(x) < Too s
c\T
> 0 if Vo(x) < Ry andV(z) > rs ,

and#k is a positive real number sufficiently large.

“For instance, a possible choice is:
Re — s
= mi 1
~(s) mln{ 7maX{Roo _TOO,O}} (30)

with R is the positive real number defined previously.

°For instance, a possible choiced&r) = max {0, (Ro — Vo(z)) (Voo (2) — 7o)} (31)
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Proof: Note that the functiony satisfies item 1) and 2) of Theorem]4.1. It remains to show
item 3). Taking the functior’ as a candidate Lyapunov function obtained[in (8), the cootiis

function V' can be introduced as, for all in R",

. ov ov
V(z) = %(x)f(x) + %(x)g(x)H(x) — k(o)
With the local and global properties of the functibn(as stated in[{5) and](6) respectively), for

alzin{z#0: Vio(z) < rooorVy(z) > Rp}:

2

T (gt

V(r)<0. (32)

It is now shown that ifk is selected sufficiently large then this control law ensuhes nega-
tiveness ofl” on the whole domain. To prove that, suppose the assertiomasgrand suppose

for eachk in N, there existsy, in R™ \ {0} such that
Viz,)) >0 , Vk € N. (33)

With B2), (zx)ren IS @ sequence living in a compact §et : Voo (x) > roo}N{x : Vo(z) < Ro}.
This subset being compact there exists a converging sueseg(ry, )<y Which converges to
a point denoted:*. The functionz — V() being continuous, it yield$ (z*) > 0. With 32),
this yields thatz* is in {z : Vo(z) > ro} N{z : Vo(z) < Ry}, and by the definition of the
functionc it givesc(z*) > 0. Consequently, this implies tha’ (z*)g(z*) = 0. The function/
being a CLF, this contradicts Assertidn](33) and estaldighat [3R) is satisfied for alt # 0.

Hence, item 3) is also satisfied. O

This theorem shows that as soon as the uniting CLF problemived, a continuous solution
to the uniting controller problem is obtained. Note als@tth discontinuous controllers with
discrete dynamics (not only continuous static controjlare allowed, the existence of a hybrid
controller solving the problem is obtained under Assumpfioonly (see [11], [13]).

Combining Propositiof 3.1 and Theorgm]4.1, it yields thatafiblinear second order control-

lable systems, each pair of linear stabilizing controll@n e united, as stated in the following

Proposition 4.2: Consider systen] (1L8) when= 2, m = 1 and with " and G given in (2D).

Let K, and K, in R'*2 be such that the origin of the systems:

t=F+GKy)zr, &= (F+GKy) .
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is globally asymptotically stable. Then there exists a icmatus functiony : R™ — R? such that
the origin of the systemt = Fz + G ¢(x) is globally asymptotically stable and such that

o(x) = ¢o(x) in a neighborhood of the origin and(z) = ¢..(x) outside of a compact set.

V. ILLUSTRATION ON AN EXAMPLE

To illustrate the interest of the uniting controller sotutideveloped in this paper, a numerical
example is provided in this section. Consider the non-lirsgatem [[L) whem = 3, p = 1, and

the vector fieldsf and g defined by:

—T1 + T3 0
f(x) = | 2% — 2y — 22133+ 73 , glx) = Gx G=10], (34)
—XT2 1

for all z = (xq, 29, 23) in R3.

Let V, be the continuously differentiable positive definite andgar function defined by

1
Vo1, X9, x3) = 3 [xfjt (xf+x2)2+x§} . Vo € R3.

Along the vector fieldsf and g defined in [3}), the Lie derivatives of the functidf, is
LiVoo(z) = —a7 — (2} +x2)2 + a3 (2] +11) , LiVoo(z) = 23, Vo € R®.
Note that for allz in R?\ {0} Artstein condition is satisfied (i.€L,V..(z) = 0 = L;V,, < 0).
Consequently}, is a global CLF and the control law = ¢, (z) with
o) = —x% —x1— T3 Ve e R? (35)

is such that, along the trajectories of the systgm (1) ineddsop with¢,.,

’ ) 2

Voo(z) < —2] — (F +x2)2 —a3 Vr € R® .

Hence the functionp,, defined in [3p) ensures global asymptotic stability of thigiorof the
system defined in}1) and (34).

Note however that despite the global asymptotic stabilftyhe origin is obtained with this
control law, there is no guarantee that the performanceir@atas satisfactory. For instance, it

may be interesting that the controller locally minimizesraecium defined as the limit, when
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t — oo, of the operator/ : L? (R, ;R?) x L? (R,;R) x R, — R, defined by, for all(x,u,t) in
L* (R4 R?) x L? (R R) x Ry,

J(x,u,t) = /tx(s)TQx(s) + Ru(s)*ds , (36)

where( is a symmetric positive definiote matrix iR* and R is a positive real number.

The techniques developed in this paper may be instrumentabtify the stabilizing controller
u = ¢ Such that the criteriuny is minimized around the origin. A similar problem has
been addressed in [10] where a general cost function depgmali exogenous disturbances is
considered. In [10], using a backstepping approach for upgengular systems, a controller,
which matches the optimal control law up to a desired ordeextended to a global stabilizer.
In the uniting CLF approach, the global controller is congalindependently from the optimal
problem and an upper triangular structure is not requirecwéver an assumption (namely
AssumptionR) is needed. Using the first order approximatilois assumption can be rewritten
in terms of an LMI (see Propositign .1 below).

The first order approximation around the origin of systgmwith f andg defined in [GR) is

-1 01
it =Fzr + Gu F = 0 —1 11| . (37)
0 —1 0

The system[(37) being linear, an LQ controller minimizing ttriterium defined in[(36), is
given by¢y(z) = R7'GT Py x, whereP, is the symmetric positive definite solution of the Riccati
equation:

PF + F'Py — PB,GR'G"Py + Q = 0 . (38)

The tools developed in this paper provides a sufficient dmrdiguaranteeing the existence
of a continuous state feedback= ¢(z) which unites the optimal local controllef, and the
global one¢., while ensuring global asymptotic stability of the origin:

Proposition 5.1: Assume there exists a matri in R? satisfying the following LMI:

(F + GK)TPy + Py(F + GK) < 0, (39)
(F + GK)'Py + P(F + GK) < 0,
where P,, = idiag(1,1,1). Then there exists a continuous function : R* — R such that

the control lawu = ¢(x) makes the origin of the systefj (1) a globally asymptoticsthple

equilibrium and such thab(z) = ¢o(z) in a neighborhood of the origin.
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Proof: The matrix /5 being the solution of the Riccati equatiop](38), it yield$org the

trajectories of systen] (B7) with the control law= ¢y,
‘/E](.T) = _'ITQ'I )

where Vy(z) = 2T Pyz for all z € R3. The matrix@Q being symmetric positive definite and
system [(37) being the first order approximation of the sysiefined in L) and[(34), it implies
that, for all Ry sufficiently smallV is a local CLF. Moreovery,, being a (global) CLF, it yields
that for all R, sufficiently small, Assumptiofi 1 is satisfied provided is selected sufficiently
small to guarantee that the covering assumption is satisfied

Also, note that the functiofv,, and P, are such that

Vo(z) = o' Pyx + 2izy + %x‘ll ,
= 2" Pz + o(|z]*) .
In other wordsx” Pz is the quadratic approximation around the origin of the glaBLF
V.. Moreover the Lie derivative oV, along the vector fieldg and g satisfy :
LiVe(z) = 2" (PP + F'Py)z + o (|z]’) |
and

LyVa(z)Kz = 22" PoGKz + o (|z]?) |
where K is the obtained solution of the LM[(B9). Consequently, wiB9), the time derivative
of the functionV,, along the trajectory of the system with= Kz satisfies :
Voo.(x) = 2SSz + O(|x|2) ,
where the matrixS,,, defined as
Seo = (F + GK)'Py + Py(F + GK) ,

is symmetric negative definite due 0 }(39).

Hence, the control law = Kz renders the time derivative of the CUE, and the local CLF
Vo negative definite for alt sufficiently small. With Propositioh 2.2, this implies thgsumption
B is satisfied provide®, andr, are selected sufficiently small. Hence, with Theoferh 4Kinta
R, andr,, sufficiently small and satisfyind (R2), the control law= ¢(x) with ¢ defined in
(£9) is such that
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1) ¢(x) = ¢o(x) for all = such thatV(z) < r.
2) ¢(x) = ¢uoo(x) for all z such thatly(z) > Ry
g(x

3) the origin of the systemi = f(x) + ) ¢(x) is a globally asymptotically stable
equilibrium.
This concludes the proof of Propositipn]5.1. O

For the numerical illustration, the matri® is randomly selected as :

0.8 0.6 0.3
Q=1 06 05|, (40)
* * 1

and R = 1. The matrix i, and the optimal local controllep, = K,z obtained solving the

associated Riccati equation can be computed employingahesroutine inMatlab :

0.3389 0.1412 0.3496 0.3496
P = * 0.3870 —0.0912 , Ky = | —0.0912 | . (42)
* * 1.2316 1.2316

Employing theMatlab packageYalmip ([8]) in combination with the solve6edumi([16]),
it can be checkddthat the LMI condition [[39) is satisfied for a particulai. Consequently,
Proposition[5]1 applies and a controller which unites thénogd local oneg, and the global
one ¢, can be constructed.

The uniting controller is given in[(29) where the uniting ClLFis obtained from Theorem
£.1, and the functiong,, ¢.., 7, andc are respectively defined bfj (9], {10, 30) apd (31), with

the following tuning parameters
Ry=088, 71,=035, ro=04739, R, =065, k=1.

Figure [1 compares the time-evolution of the cdstefined in [36) when considering the
nominal control law: = ¢, and the uniting one = ¢, with the initial conditionz(0) = [1 1 1]".
Figure[® shows the time-evolution of the control values: ¢.

On Figures[JL and] 2 the times the statecrosses the level setsc : Vy(z) = Ry} and

{z : Vi(z) = ro} are shown. These time instants define the time interval inchwithe

®The Matlab file can be downloaded fronttp://homepages.laas.fr/ ~vandrieu/Publication.htm
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-
-

“ =5 Voo(#(1)) = Toc =<2 Voo(# (1)) = 7o |
< fo Volal®) = Ry o

i+ e o

i i 1 Vola(®) = R

osff | —u=0¢x) |
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0 05 1 1f|me 2 25 3 730 0“5 ‘1 1‘- ‘2 2‘5 |

time

Fig. 1. Time-evolution of the cost functiohwith the controls . ) . .
Fig. 2. Time-evolution of the uniting controlles.

¢ (in plain line) and¢.. (in dashed line).

interpolation between both controllers occurs. In otherdsp before this time interval, the
controller ¢ equals¢,, and after the local controller is employed.

However, there is no guarantee that, for all initial cormfis, the cost obtained employing the
uniting controller will be lower than the one obtained usihg global one. More precisely, there
exist initial conditions for which the use of the interpatet between both controllers affects
too strongly the cost. To check if the uniting controller iatistically better than the global one,
a set of initial conditions uniformly distributed on a sphdrave been considered. Fot% of
initial conditions the cost is lower with the uniting cortes. On this particular example, the
uniting controller seems to give better result (in termstw tonsidered cost) than the global

one.

VI. CONCLUSION

In this paper, the problem of piecing together two Contrchjwynov Functions is considered.
Solving this one provides a simple solution to the unitingitcollers problem. Two character-
izations of a sufficient condition guaranteeing the solMgbof the united CLF problem are
given. Moreover, this sufficient condition is always saéidfin the case of a second order linear
controllable system. When dealing with linear systems,ranger version of this sufficient
condition can be formulated in terms of LMIs. As shown on a etioal illustration, it allows to

exhibit a sufficient condition to improve the qualitativehlagior of the trajectories of a non-linear
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system around the equilibrium.
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