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Abstract

I tackle the problem of partitioning a sequence into homogeneous seg-

ments, where homogeneity is defined by a set of Markov models.The prob-

lem is to study the likelihood that a sequence is divided intoa given number

of segments. Here, the moments of this likelihood are computed through

an efficient algorithm. Unlike methods involving Hidden Markov Models,

this algorithm does not require probability transitions between the models.

Among many possible usages of the likelihood, I present a maximum a pos-

teriori probability criterion to predict the number of homogeneoussegments

into which a sequence can be divided, and an application of this method to

find CpG islands.
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1 Introduction

An important element in analysing a sequence of letters is tofind out whether

the sequence has a structure, and if so, how it is structured.Usually, looking

for structure in a sequence implies a partition – or segmentation – in which each

segment can be considered “homogeneous”, on the basis of a specific criterion.

There are two main approaches to tackle this problem (Braun and Müller, 1998).

A commonly used methodology is to model the sequence with Markov mod-

els. A Markov model gives, for each word of a given length, theprobabilities

of letters conditionally following this word – called emission probabilities. The

likelihood of a segment of letters is the product of these probabilities at all the

positions of the segment. Various models give different likelihoods for a given

segment, some of them greater than others. Looking for a segmentation of a se-

quence means dividing it into segments, so that a model chosen as the best from

amongst a set of models is attributed to each segment. One wayto study the

structure of a sequence is to analyse the set of its segmentations.

To make this task possible, the set of models is usually organized to form a

Markov meta-model in which there are transition probabilities between the mod-

els. This is known as a Hidden Markov Model (HMM). In this context, the models
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are usually called states, but for the sake of consistency I keep the same vocab-

ulary as before. In an HMM, a run of models is a Markov process with a prob-

ability, and, given a run of models, the sequence has a likelihood. If a segment

is defined as a range of positions modelled by a unique model, it is possible to

compute the probability of a segmentation given the sequence and the HMM. As

this method permits efficient (i.e. with linear complexity)algorithms for sequence

analysis and partitioning (Rabiner, 1989), it is used in numerous applications,

for example in bioinformatics (Churchill, 1989; Baldi et al., 1994; Lukashin and

Borodovsky, 1998; Peshkin and Gelfand, 1999; Nicolas et al., 2002; Boys and

Henderson, 2004) and in speech recognition (Ostendorf et al., 1996).

However, since in an HMM the chain of the models is markovian,the lengths

of the segments defined by the models are expected to follow geometric laws,

which may be a false hypothesis for real data segments. Various solutions have

been proposed to overcome this problem, such as using semi-Markov chains (Guédon,

2005) or macro-states (Ephraim and Merhav, 2002), but in fact they make the

modelling task more complex, since more parameters are usedto obtain a better

modelling of the lengths of the segments. Moreover, in the problem of sequence

segmentation using a set of models, the inter-model transition probabilities used

in an HMM correspond to ana priori on the distributions of the segments, and

4



are superfluous parameters if we consider that the models themselves should be

sufficient to segment the sequence, as in the approach described below. Finally,

in an HMM, the models modelling and the length modelling can be seen as two

competing modellings, because in the parts of the sequence where the models do

not discriminate clearly, the length parameters will have apredominant influence.

This is even more problematic when the lengths of the real segments are very

different along the sequence.

A way to avoid these “extra” parameters is to establish a homogeneity criterion

for a segment (such as the variance of its composition, or itsmaximum likelihood

given specific models), and to determine a set of segments that divide the se-

quence and minimize – or maximize – this criterion. This problem – also known

as the changepoint problem – can be solved by an optimal algorithm (Bellman,

1961), but its time-complexity is quadratic with the lengthof the sequence, which

prohibits the analysis of very long sequences. Alternatively, this problem can

be tackled linearly using hierarchical segmentation (Li etal., 2002; Li, 2001), or

with approximations about the limits of the segments (Barryand Hartigan, 1993;

Braun et al., 2000), but these approaches do not ensure that the best partition is

found. Moreover, when the homogeneity criterion is monotonous with the num-

ber of segments (such as the maximum likelihood of markovianprocesses), these
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methods need an additional criterion to stop the segmentation process. For each

number of segments, the calculation of the criterion is based on the built partition

and is very dependent on the choice of this partition. Without a stopping criterion,

these methods produce multi-level descriptions of the structure of the sequences

that may be quite interesting, but I am not aware of any practical usage of such

sets of segmentations.

Between those two approaches, I described in (Guéguen, 2001) an algorithm

– known as MPP, or Maximal Predictive Partitioning – that computes the most

likely segmentation of a sequence ink segments given a set of Markov models.

This algorithm is optimal and has a time-complexity linear with the length of the

sequence. As with the previous segmentation methods, it provides a multi-level

description of the structure of a sequence, and it needs an additional criterion to

select the “best” partition, such as the number of segments.

Bayesian methods are a different approach to work on sequence segmentation,

since they propose to simulate thea posteriori distribution of the segmentations

of a sequence, given a criterion (Liu and Lawrence, 1999; Salmenkivi et al., 2002;

Makeev et al., 2001; Keith, 2006). Even though they do not construct the best

segmentation, they indicate the relative significance of the segmentations, and

the structuring of the sequence. Nonetheless, as the set of segmentations is very
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large, the convergence of the simulated distribution towards the right one can be

extremely slow.

I would now like to look at the problem of estimating the structuring of a se-

quence given a set of Markov models. In contrast to the situation for an HMM, I do

not want to put any constraint on the transitions between themodels. This article

presents an algorithm that computes the moments of the likelihood of a sequence

under the set of all partitions with a given number of segments. The maximum of

this likelihood was already computable with the MPP algorithm (Guéguen, 2001).

Since the time-complexity of this new algorithm is linear with the length of the

sequence, it can also be applied to very long sequences.

The distribution of this likelihood may be useful for many statistical analy-

ses of sequences, for example in an HMM modelling to test for the relevance of

inter-model transition probabilities, or in a change pointproblem to test the signif-

icance of partitions and stop the partitioning, or in a bayesian approach to perform

more efficient simulations of thea posteriori distribution of the segmentations of

a sequence. As an example, I propose a maximuma posteriori estimator of the

numbers of segments in a sequence.
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2 Method

2.1 Computing the likelihood of the sequence

The method computes the moments of the likelihood that a sequence is parti-

tionned in exactlyk segments given a set of Markov models. The algorithm that

is presented permits the computation of the mean of this distribution. Generalizing

this to the computation of all moments is straightforward.

First, we introduce some notations and concepts.

The studied sequence,S, consists of letters, and has a lengthl. For all i ∈

[0, l − 1], we denote bysi the i-th letter ofS, andSi the segment ofS from

position0 to positioni, inclusive.S = Sl−1.

A k-partition is a partition ink segments. A predictivek-partition is ak-

partition in which a model is associated with each segment, and neighbouring

segments have different models. The set of the predictivek-partitions ofS is

denotedPk. From here on, all partitions will be predictive partitions.

Let us call the set of modelsD; for all d ∈ D we denote byπd(i) = pr(si|Si−1, d)

the probability of thei-th letter given the modeld and the previousi − 1 letters

of the sequence. The likelihood of a segmentσ ⊂ S given a modeld ∈ D is the

product of the likelihoods of its letters pr(σ|d) =
∏

si∈σ πd(i). For p in Pk, the
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likelihood of S givenp, pr(S|p, D), is the product of the likelihoods of the pre-

dictive segments ofS defined by the partition. We have defined a distribution of

the likelihoods overPk, (pr(S|p, D))p∈Pk
, and we are looking for the expectation

of this distribution pr(S|Pk, D) =
∑

p∈Pk
pr(S|Pk, D).pr(p|Pk).

We denotemk(i) the expectation of the likelihoods ofSi under the set of the

k-partitions ofSi, andmd
k(i) is the expectation of the likelihoods ofSi under the

set of thek-partitions ofSi whose model of the last segment isd. These values

can be computed with a dynamic programming algorithm (the demonstration of

which is appended):

∀i > 0, md
1(i) = pr(Si|d)

∀k > 1, ∀i < k − 1, mk(i) = 0

∀k > 1, ∀i > k − 1, mk(i) =
1

#D

∑

d∈D

md
k(i)

∀k > 2, ∀i > k − 1, md
k(i) = πd(i).

(

i − k + 1

i
.md

k(i − 1)

+
k − 1

i.(#D − 1)

(

#D.mk−1(i − 1) − md
k−1(i − 1)

)

)

As pr(Si|d) is the likelihood of a segment given a specific model, it is com-

putable. We can see that wheni = k − 1, the first term inside the brackets equals

0, which means thatmd
k(i) can be recursively computed.
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For eachk, pr(S|Pk, D) = mk(l − 1) is the mean likelihood ofS under the

set of thek-predictive partitions.

When, in the previous formula, we changeπd(i) by πα
d (i), the expectation of

theαth power of the likelihood ofS, Ep∈Pk
(pr(S|p, D)α), is computed, which is

theα-th moment around0 of this distribution. Whenα is a natural, it is then easy

to compute theα-th moment around the mean, such as the variance.

This algorithm has a linear time-complexity with the product of the number

of models and the length of the sequence. Hence these likelihoods are quite com-

putable, even for very long sequences.

2.2 Estimating the a posteriori probabilities

Considering the segmentation problem, we are actually interested in thea pos-

teriori probability of the number of segments given the sequence, say N . We

hypothesize hereafter that the probability of this number is equal to pr(PN |S, D),

even though this hypothesis deserves a closer examination.However, it is reason-

able to assume that pr(N |S, D) and pr(PN |S, D) have the same modes, and that

a maximala posteriori estimator of pr(PN |S, D) will be a maximala posteriori

estimator of pr(N |S, D).

Owing to the bayesian formula pr(PN |S, D) ∝ pr(S|PN , D)pr(PN |D), ana
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priori on the distribution of pr(PN |D) has to be set. If thisa priori is uniform with

k, thea posteriori probability is directly proportional to the likelihood computed

in the previous section: pr(PN=k|S, D) ∝ pr(S|Pk, D).

Anothera priori is analogous to the HMM modelling: we consider that the

segment length follows a geometrical distribution with a given mean, sayλ. Then

a priori N − 1 follows a binomial distribution of parameterλ
l
, and if we define a

random variableX  Bin(l, λ

l
), pr(PN=k|S, D) ∝ pr(S|Pk, D).pr(X = k − 1).

A more experimental approach is to consider that pr(PN |S, D) follows a given

law with some parameters, and to simulate sequences generated byk-partitions to

fit at best these parameters, considering an optimization criterion. An obvious

criterion is to minimize the mean square error of the maximuma posteriori esti-

mation of the numbers of segments.

2.3 Implementation

This algorithm has been implemented in C++, and is freely available via python

modules in Sarment (Guéguen, 2005) at the URL:

http://pbil.univ-lyon1.fr/software/sarment/

The examples of the next section are described in the tutorial at the same

location.
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3 Maximum a posteriori estimation

3.1 The a priori distribution

To build a gooda posteriori estimator, we still need to look for a relevanta priori

probability on thePk. To test this, I have generated random sequences made up

of an alphabet of two letters (A andB), from several Markov models and random

k-partitions, for several values ofk. We denote Bern(α) the model where the

emission probability of anA is α (and that of aB is 1 − α). The positions of the

limits of the segments were uniformly generated, so that each segment was at least

50 positions long, and the models were uniformly assigned toeach segment so that

no two neighbouring segments shared the same model. For eachk, 100 random

k-partitions and sequences 10,000 letters in length have thus been generated. To

understand how the algorithm performs on more or less strongly segmented se-

quences, the next examples present sequences generated from models Bern(0.3)

and Bern(0.7), and sequences generated from more similar models Bern(0.4) and

Bern(0.6). The same models have been used to compute the likelihoods. Fig. 1

First, I searched for the number of segmentsN for which the sequence has the

highest likelihood. It is equivalent to the uniforma priori distribution.

The examples of log-likelihoods in Fig. 1 show a typical behaviour: the neigh-
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bourhood of the maximum likelihood can be reached very quickly, and there are

several numbers of segments with a likelihood “near” this maximum. If in the left

example, the maximum is reached on the exact number of segments, this maxi-

mum is reached for a higher number in the right example. Fig. 2

Actually, overall, the predicted numbers of segments are inaccordance with

the simulated numbers (Fig. 2). However, as the segments become more difficult

to discriminate (when the average size of the simulated segments decreases or

when the models generating the segments are more similar), the predicted number

tends to over-estimate. This means that the number of segments with the highest

likelihood is not in fact the one most relevant for this prediction, and anothera

priori than the uniform distribution should be chosen.

The a priori can be based on the length of the segments, as it is done in

HMM modelling. Since in the simulations the inter-segmentspositions of the

random partitions were uniformly taken along the sequence,the lengths of the

simulated segments followed a geometric distribution, which should favour the

analysis through HMM.

I have studied these sequences with the likelihood algorithm and with an

HMM. The HMM used had the exact Markov models and an additional parameter

p on the probability transitions between the states, so that the average length of
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the segments is1/p. To get the resulting partition, I have applied the forward-

backward algorithm on the sequences and successive positions were clustered in

a segment when their most likely state was identical. Since the sequences were

10,000 letters long, the number of predicted segments minusone follows the bi-

nomial law Bin(9999, p). I usedp = 0.001 (10 segments) andp = 0.005 (50

segments), and again models Bern(0.3) versus Bern(0.7) and Bern(0.4) versus

Bern(0.6) (Fig. 3). Fig. 3

Figure 3 shows that when the models are distant (Bern(0.3) versus Bern(0.7)),

the forward-backward algorithm performs rather well. However, withp = 0.005

the number of segments is more over-estimated than withp = 0.001, since it tends

to increase the number of segments. When the models are less different, as with

Bern(0.4) versus Bern(0.6), the influence ofp becomes critical. In this example,

p = 0.001 under-estimates the number of segments when the real numberis over

10, since this parameter means thata priori on average the sequence has10 seg-

ments. Withp = 0.005 the predictions over-estimate slightly for small numbers

of segments, and they tend to under-estimate as the real number increases.

We can see that when this estimator is biased, the bias depends on the value

of the inter-state probability and on the real number of segments in the sequence,

which is not known beforehand. Fig. 4
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Nonetheless, to study the effect of thisa priori on the maximuma posteriori

estimator, I have set the same binomiala priori distribution on pr(PN |D), with

p = 0.001 andp = 0.005. We can see in Fig. 4 the same behaviour as with the

HMM modelling, but with a much more important over-estimation of the number

of segments whenp = 0.005. It means that the tendency of thisa priori to “drag”

the maximuma posteriori towards 50 segments is here more influential. When

the real number of segments is near 50, the over-estimation is lower than in Fig. 2,

for the same reason. Then, even though it corresponds to the modelling of HMM,

a binomiala priori is not relevant for maximuma posteriori estimation of the

number of segments.

An experimental way to set up ana priori distribution is to define it through a

set of parameters, that will be optimized by simulations. The optimization func-

tion is the minimization of the mean square error between themaximuma poste-

riori estimation and the real numbersk of segments, summed for allk from 1 to

50.

A first way would be to optimize the parameter of the binomiala priori dis-

tribution. Indeed, the poor efficiency of these examples could be due to a bad pa-

rameter value. In these simulations, the optimal valuep is 0.00098 (resp.0.0021)

for the models Bern(0.3) versus Bern(0.7) (resp. Bern(0.4) versus Bern(0.6)).
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The first optimization is quite efficient (Fig. 5) but when thesegments are less dif-

ferent there is an over-estimation of the number of segmentsfor smallk, and an

under-estimation for largek, as in the previous section. The correct estimations

are around 25 segments, a balance between over-estimating and under-estimating

all thek between 1 and 50. Then even with an optimization process, a binomiala

priori does not give an efficienta posteriori estimator. Fig. 5

I tried the same kind of optimization with a geometrica priori distribution

G(θ): pr(PN=k|D,S) ∝ pr(S|Pk, D).θk. I have performed twice the same round

of sequence simulations as before, one set for the optimization of the parame-

ter, and one set to test it on the obtained estimator. On theseexamples, when

the models are distant enough, as in Bern(0.3) versus Bern(0.7), the estimator is

quite accurate, and it is unbiaised, even with Bern(0.4) versus Bern(0.6) models

(Fig. 6). Fig. 6

This example shows that this approach can give good results,even though it

is up to now only experimental. A theoretical study may be useful to set up an

even more efficienta priori, and to prevent the cost of simulations as well as the

numerical optimization process. We can expect this distribution to depend on the

set of models and on the length of the sequence, and it would bequite interesting

to study it thoroughly.
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3.2 CpG islands

In vertebrate genomes, CpG dinucleotides are mostly methylated and this methy-

lation entails an hypermutability of these nucleotides, from CpG to TpG or CpA.

A usual measure of this feature is to compute the ratio of the observed CpG dinu-

cleotides over the expected number when the nucleotides areindependent:

CpGo/e=
frequency of CpG

frequency of C× frequency of G

In some stretches of DNA, known as CpG islands, the CpG dinucleotides are

hypomethylated. These islands are often associated with promoter regions (Ponger

et al., 2001). They show a higher CpGo/e than surrounding sequences, at least0.6.

Moreover, a CpG island is expected to be at least 300 bases long. I wanted to seg-

ment a sequence of the mouse genome to reveal the occurences of CpG islands.

The CpGo/e ratio on this sequence is shown in 1,000 bases sliding windows (Fig. 7

middle). Fig. 7

Fig. 8
As described by Durbin et al. (1998), I defined two first-orderMarkov models,

built by maximum likelihood on known data: the first is trained on CpG islands,

and the other on segments that are between the CpG islands. I used those mod-

els to compute the segmentation likelihood on a sequence of the mouse genome

(Fig. 8), for up to 50 segments.
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I looked for the maximuma posteriori estimator of the number of segments,

with a geometrica priori distribution, and I simulated random sequences through

the same process as described in section 2.3. The optimization of the maximuma

posteriori estimator givesθ = 0.546, and the result of this optimization is shown

in Fig. 8. We can see that this estimator is still unbiased until 50 segments, and

quite precise.

With thisa priori, the maximuma posteriori estimator on the mouse sequence

gives 17 segments, and CpG-islands predicted in the most likely 17-partition are

shown in Fig. 7 bottom.
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4 Discussion

In this article, I propose an algorithm to compute the moments of the likelihood of

segmentation of a sequence in a number of segments, given a set of Markov mod-

els. This algorithm has a time-complexity linear with the length of the sequence

and the number of models, and it can be used on very long sequences.

From this likelihood, it should be possible to compare the numbers of seg-

ments to partition a sequence, either through statistical tests or through a bayesian

approach. In a bayesian approach, thea priori distribution of the numbers of

classes must be defined, and I give some examples where a geometric a priori dis-

tribution gives a quite precise maximuma posteriori estimator. This has been only

validated with simulations, and a full theorerical study isyet to be undertaken on

the a priori distribution. Moreover, it would be quite interesting to define some

statistical tests to assess the relative significance – confidence intervals and p-

values – of the numbers of segments, given the models and the sequence. The fact

that the moments of the distribution of the likelihood can becomputed could be

useful for this, as well as for an improvement of the previousestimator.

This algorithm does not put any constraint on the successionof models, but

works as if the transition graph between the models were a clique. It is easy

to see from the Appendix that it can be adapted to any kind of transition graph,
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which means that it may be useful in the context of HMM analysis, for example

to check – or determine – the inter-model probabilities of the models, given a

sequence. In this context, it could also be interesting to use the likelihood to

enhance the efficiency of methods related to HMM modelling, for example for

post-analysis of forward-backward algorithm. As in HMM modelling, one aim

would be to compute the probability that a position is predicted by a model, given

a set of models, and possibly given a number of segments. If the MPP algorithm

is equivalent to the Viterbi algorithm for HMM, computing this probability would

be the equivalent of the forward-backward algorithm in thiscontext.

Even if model inference is out of the topic of this article, itis a very impor-

tant feature in sequence analysis, and it will be interesting to use the likelihood

for this. In Polansky (2007), there is an example of inference of Markov models

from a sequence, out of the context of HMM, but it is practically limited with the

numbers of segments in the sequence and, since it uses the maximum likelihood,

an additional penalization criterion (AIC or BIC) is necessary to handle this num-

ber. It should be possible to use the calculation of the average likelihood to get

rid of these problems. Another inference process is the maximization, among a

set of models, of the average likelihood. Moreover, it wouldbe relevant to use

the bayesian approach to estimate and simulatea posteriori probabilities for the
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parameters of the models, given the sequence.

Finally, as I said in the introduction, to my knowledge multi-level segmenta-

tions of sequences are not used for sequence analysis, although its relevance. An

important barrier to this is the lack of evaluation criteriafor these levels. Com-

puting the likelihood for the successive numbers of segments may then be a quite

useful tool to develop this kind of methodology. It would bring out a much richer

modelling of the sequence.
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Appendix

Here is a demonstration of the formula described in section 2, keeping the same

notations:

We define

Pk(i) the set of thek-partitions ofSi

P
d
k(i) the set of thek-partitions ofSi whose model of the last segment isd.

mk(i) is the likelihood ofSi underPk(i), ∀k > 0, ∀i > k − 1, mk(i) =

pr(Si|Pk(i)), andmd
k(i) is the likelihood ofS(i) underPd

k(i), ∀k > 0, ∀i > k −

1, md
k(i) = pr(Si|P

d
k(i))

If the a priori on the last modeld is uniform:

mk(i) = pr(Si|Pk(i)) =
∑

d∈D

md
k(i).pr(Pd

k(i)|Pk(i))

=
1

#D

∑

d∈D

md
k(i) (1)

We follow a bayesian approach, in which, for eachk, all thek-partitions are

equiprobable inPk.

If we notedp(i) the model used in partitionp at positioni, we have for all
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k > 2 andi > k − 1,

md
k(i) = pr(Si|P

d
k(i))

=
∑

p∈P d
k
(i)

pr(Si|p).pr(p|Pd
k(i))

=
∑

p∈P d
k
(i)

pr(Si|p).#P
d
k(i)

−1

=
∑

p∈P
d
k
(i)

dp(i−1)=d

pr(Si|p).#P
d
k(i)

−1 +
∑

p∈P
d
k
(i)

dp(i−1)6=d

pr(Si|p).#P
d
k(i)

−1

If p ∈ P
d
k(i) anddp(i − 1) = d, p is like ak-partitionp′ of Si−1 whose last

model,d, is used to emitsi. So pr(Si|p) = πd(i).pr(Si−1|p
′) with p′ ∈ P

d
k(i − 1).

If p ∈ P
d
k(i) anddp(i − 1) 6= d, p is like ak − 1-partitionp′ of Si−1 whose

last model,d′, is different fromd. So pr(Si|p) = πd(i).pr(Si−1|p
′) with p′ ∈

P
d′

k−1(i − 1).

Hence

md
k(i) = πd(i).





∑

p∈P
d
k
(i−1)

pr(Si−1|p).#P
d
k(i)

−1

+
∑

d′ 6=d

∑

p∈P
d′

k−1
(i−1)

pr(Si−1|p).#P
d
k(i)

−1






(2)

In a partition ofPd
k(i), the last model isd, the one before any of the#D− 1 other

ones, and so on for thek−2 remaining models. So there are(#D−1)k−1 possible

sets of models for this partition. Moreover, the limits of the segments are defined
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by k − 1 positions in thei possible, so there areCk−1
i possible sets of positions.

So

#P
d
k(i) = Ck−1

i (#D − 1)k−1

=
i!

(k − 1)!(i − k + 1)!
(#D − 1)k−1

=
i

i − k + 1
#P

d
k(i − 1)

and

#P
d
k(i) =

i!

(k − 1)!(i − k + 1)!
(#D − 1)k−1

=
i

k − 1
(#D − 1)#P

d
k−1(i − 1)
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If we replace#P
d
k(i) in (2):

md
k(i) = πd(i).





∑

p∈P
d
k
(i−1)

pr(Si−1|p).
i − k + 1

i
#P

d
k(i − 1)−1

+
∑

d′ 6=d

∑

p∈Pd′

k−1
(i−1)

pr(Si−1|p).
k − 1

i(#D − 1)
#P

d
k−1(i − 1)−1







= πd(i).





i − k + 1

i

∑

p∈P
d
k
(i−1)

pr(Si−1|p).pr(p|p ∈ P
d
k(i − 1))

+
k − 1

i(#D − 1)

∑

d′ 6=d

∑

p∈P
d′

k−1
(i−1)

pr(Si−1|p).pr(p|p ∈ P
d′

k−1(i − 1))







= πd(i).

(

i − k + 1

i
.pr(Si−1|P

d
k(i − 1))

+
k − 1

i(#D − 1)

∑

d′ 6=d

pr(Si−1|P
d′

k−1(i − 1))

)

md
k(i) = πd(i).

(

i − k + 1

i
.md

k(i − 1) +
k − 1

i(#D − 1)

∑

d′ 6=d

md′

k−1(i − 1)

)

And to make the algorithm faster, from (1),

∑

d′ 6=d

md′

k−1(i − 1) = #D.mk−1(i − 1) − md
k−1(i − 1)

gives the formula.
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Figure 1: Log-likelihood of two random sequences generatedby 30 segments

from two models. The dashed vertical line represents30 segments.
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Figure 2: Boxplots of the numbers of segmentsN reaching the maximum likeli-

hood of the sequence, for a simulated number of segmentsk between 1 and 50.

The oblique line represents the right number of segments (N = k).
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Figure 3: Boxplots of the numbers of segmentsN predicted by the forward-

backward algorithm, for a simulated number of segmentsk between 1 and 50.

The oblique line represents the right number of segments (N = k).
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Figure 4: Boxplots of the numbers of segmentsN with the maximuma posteriori

probability, with a binomiala priori distribution on pr(PN |D), for a simulated

number of segmentsk between 1 and 50. The oblique line represents the right

number of segments (N = k).
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Figure 5: Boxplots of the numbers of segmentsN with the maximuma posteriori

probability, with a binomiala priori distribution on pr(PN |D) and an optimized

parameterp, for a simulated number of segmentsk between 1 and 50. The oblique

line represents the right number of segments (N = k).
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Bern(0.4) versus Bern(0.6) with θ = 0.701

Figure 6: Boxplots of the numbers of segmentsN with the maximuma posteriori

probability, using ana priori distributionG(θ) with an optimizedθ, for a simulated

number of segmentsk between 1 and 50. The oblique line represents the right

number of segments (N = k).
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Figure 7: Analysis of the CpG islands from a Mouse genomic sequence. The

sequence is shown on the x-axis. Top: Partitioning up to 30 segments. A row of

arcs labelled by a numberk represents the bestk-partition (only even numbers

are shown, for clarity). Each arc represents a segment. On each row, the relative

height of an arc corresponds to the ratio CpGo/e on the segment. Middle: CpGo/e

in 1,000 bases sliding windows. Bottom: Predicted CpG islands of the best 17-

partition of the sequence.
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Figure 8: Study of a mouse sequence under the set of thek-partitions, given the

CpG island vs non-Cpg island models. Left: Log-likelihood of the sequence, for

k numbers of segments, withk between 1 and 50. Right: Boxplots of the numbers

of segmentsN with the maximuma posteriori probability, with a geometrica

priori distributionG(0.546), for a simulated number of segmentsk between 1 and

50. The simulated sequences were the same length than the studied one (176973),

and the segments were at least 300 long. The oblique line represents the right

number of segments (N = k).
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