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Abstract

| tackle the problem of partitioning a sequence into homeges seg-
ments, where homogeneity is defined by a set of Markov modéis.prob-
lem is to study the likelihood that a sequence is divided angiven number
of segments. Here, the moments of this likelihood are coetptiirough
an efficient algorithm. Unlike methods involving Hidden Mav Models,
this algorithm does not require probability transitionsween the models.
Among many possible usages of the likelihood, | present damax a pos-
teriori probability criterion to predict the number of homogenesegments
into which a sequence can be divided, and an applicationi®ftlethod to

find CpG islands.



1 Introduction

An important element in analysing a sequence of letters fntbout whether
the sequence has a structure, and if so, how it is structukially, looking
for structure in a sequence implies a partition — or segntienta: in which each
segment can be considered “homogeneous”, on the basis @cdisgriterion.

There are two main approaches to tackle this problem (Bradrivaillet, [T998).

A commonly used methodology is to model the sequence wittkdamod-
els. A Markov model gives, for each word of a given length, pnebabilities
of letters conditionally following this word — called emigs probabilities. The
likelihood of a segment of letters is the product of theseébphilities at all the
positions of the segment. Various models give differerglifoods for a given
segment, some of them greater than others. Looking for a eseigtion of a se-
guence means dividing it into segments, so that a model oheséhe best from
amongst a set of models is attributed to each segment. Ondonstydy the
structure of a sequence is to analyse the set of its segnursat

To make this task possible, the set of models is usually azgdrto form a
Markov meta-model in which there are transition probakgitbetween the mod-

els. Thisis known as a Hidden Markov Model (HMM). In this cextt the models



are usually called states, but for the sake of consistenegp khe same vocab-
ulary as before. In an HMM, a run of models is a Markov procegh & prob-
ability, and, given a run of models, the sequence has ali&el. If a segment
is defined as a range of positions modelled by a unique madslpossible to
compute the probability of a segmentation given the sequand the HMM. As
this method permits efficient (i.e. with linear complexi&gorithms for sequence

analysis and partitionind (Rabihdr, 1989), it is used in ewons applications,

for example in bioinformaticqd (Churchill, T980; Baldi e1,d1994; Lukashin and

Borodovsky [1998[ Peshkin and Geltand, 1999, Nicolas E&DI{Z; Boys and
Henderson 2004) and in speech recognitjon (Ostendorf, &6).

However, since in an HMM the chain of the models is markovihaa,lengths

of the segments defined by the models are expected to follamegeic laws,
which may be a false hypothesis for real data segments. (Masolutions have

been proposed to overcome this problem, such as using semkeMchains[(Guedpn,

%) or macro-state$ (Ephraim and Methav, 2002), but ihtfaey make the

modelling task more complex, since more parameters aretosautain a better
modelling of the lengths of the segments. Moreover, in tlodlam of sequence
segmentation using a set of models, the inter-model tiangirobabilities used

in an HMM correspond to aa priori on the distributions of the segments, and



are superfluous parameters if we consider that the modetsstiees should be
sufficient to segment the sequence, as in the approach legdrelow. Finally,

in an HMM, the models modelling and the length modelling carsben as two
competing modellings, because in the parts of the sequeheswthe models do
not discriminate clearly, the length parameters will hapeeadominant influence.
This is even more problematic when the lengths of the reainseds are very

different along the sequence.

A way to avoid these “extra” parameters is to establish a lgamneity criterion
for a segment (such as the variance of its composition, onagsimum likelihood
given specific models), and to determine a set of segmentgivide the se-
guence and minimize — or maximize — this criterion. This jpeob— also known
as the changepoint problem — can be solved by an optimaliddgoBellman,
f[961), but its time-complexity is quadratic with the lengftthe sequence, which
prohibits the analysis of very long sequences. Alterngtivthis problem can

be tackled linearly using hierarchical segmentatjon (Lalg{200p;Li,[2001), or

with approximations about the limits of the segmefts (Bamy Hartigan] 1993;

Braun et al.[2000), but these approaches do not ensurehthaest partition is

found. Moreover, when the homogeneity criterion is monotewith the num-

ber of segments (such as the maximum likelihood of markopracesses), these



methods need an additional criterion to stop the segmentatiocess. For each
number of segments, the calculation of the criterion is dasethe built partition
and is very dependent on the choice of this partition. Witlaogtopping criterion,
these methods produce multi-level descriptions of thecgire of the sequences
that may be quite interesting, but | am not aware of any practisage of such

sets of segmentations.

Between those two approaches, | described in (Gugdued]) 200algorithm

— known as MPP, or Maximal Predictive Partitioning — that pores the most
likely segmentation of a sequencekrsegments given a set of Markov models.
This algorithm is optimal and has a time-complexity linedthvthe length of the
sequence. As with the previous segmentation methods, viges a multi-level
description of the structure of a sequence, and it needs ditiawhl criterion to

select the “best” partition, such as the number of segments.

Bayesian methods are a different approach to work on segsagmentation,

since they propose to simulate tagosteriori distribution of the segmentations

of a sequence, given a criteridn (Liu and Cawrérnce, 199mEakivi et al.[2002;

Makeev et dl.[ 2001]; KeitH, 2006). Even though they do nostrokt the best

segmentation, they indicate the relative significance ef sgagmentations, and

the structuring of the sequence. Nonetheless, as the segofentations is very
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large, the convergence of the simulated distribution tdwahne right one can be

extremely slow.

| would now like to look at the problem of estimating the sturing of a se-
guence given a set of Markov models. In contrast to the sita&r an HMM, | do
not want to put any constraint on the transitions betweemtbeels. This article
presents an algorithm that computes the moments of theéhdad of a sequence
under the set of all partitions with a given number of segsiefhe maximum of

this likelihood was already computable with the MPP aldonit{Guégugr, 20D1).

Since the time-complexity of this new algorithm is lineatiwihe length of the
sequence, it can also be applied to very long sequences.

The distribution of this likelihood may be useful for manwtsttical analy-
ses of sequences, for example in an HMM modelling to testhferrélevance of
inter-model transition probabilities, or in a change ppirttblem to test the signif-
icance of partitions and stop the partitioning, or in a baeapproach to perform
more efficient simulations of the posteriori distribution of the segmentations of
a sequence. As an example, | propose a maxiraposteriori estimator of the

numbers of segments in a sequence.



2 Method

2.1 Computing thelikelihood of the sequence

The method computes the moments of the likelihood that aesexpuis parti-
tionned in exactlyt segments given a set of Markov models. The algorithm that
is presented permits the computation of the mean of thigldiston. Generalizing

this to the computation of all moments is straightforward.

First, we introduce some notations and concepts.

The studied sequencé, consists of letters, and has a lengthFor alli €
0,1 — 1], we denote by, the i-th letter of S, andS; the segment of from
position0 to position:, inclusive.S = §;_;.

A k-partition is a partition ink segments. A predictivé-partition is ak-
partition in which a model is associated with each segmemd, reeighbouring
segments have different models. The set of the prediétipartitions ofS is
denotedP,. From here on, all partitions will be predictive partitions

Let us call the set of modelS; for all d € D we denote byr,(i) = pr(s;|S;—1,d)
the probability of thei-th letter given the model and the previous — 1 letters
of the sequence. The likelihood of a segment S given a modell € D is the

product of the likelihoods of its letters (ar|d) = []. ., 74(é). Forp in Py, the

S; €0



likelihood of S givenp, pr(S|p, D), is the product of the likelihoods of the pre-
dictive segments of defined by the partition. We have defined a distribution of
the likelihoods ove®, (pr(S|p, D)),cp,, @nd we are looking for the expectation
of this distribution p(S|Py, D) = > s PI(S|Ps, D).pr(p|Ps).

We denoteny (i) the expectation of the likelihoods & under the set of the
k-partitions ofS;, andm¢{ (i) is the expectation of the likelihoods 6f under the
set of thek-partitions ofS; whose model of the last segmentdis These values
can be computed with a dynamic programming algorithm (theatestration of

which is appended):

Vi > 0,mi(i) = pr(Si|d)
Vk>1,Vi <k—1,m(i) = 0

VEZ>1L,Vizk—1,mg(i) = —= > mg(i)

VE>2,¥i>k—1,mi() = ﬁd(@')(“ki“.mg(@ —1)

As pr(S;|d) is the likelihood of a segment given a specific model, it is eom
putable. We can see that wher:- k& — 1, the first term inside the brackets equals

0, which means that:{() can be recursively computed.



For eachk, pr(S|Py, D) = my(l — 1) is the mean likelihood of under the

set of thek-predictive partitions.

When, in the previous formula, we changgi) by 7§ (i), the expectation of
the ath power of the likelihood o8, E,cp, (pr(S|p, D)*), is computed, which is
the a-th moment around of this distribution. When is a natural, it is then easy

to compute thev-th moment around the mean, such as the variance.

This algorithm has a linear time-complexity with the protlatthe number
of models and the length of the sequence. Hence these bkeléhare quite com-

putable, even for very long sequences.

2.2 Estimating the a posteriori probabilities

Considering the segmentation problem, we are actuallyasted in thea pos-
teriori probability of the number of segments given the sequenge NsaWe
hypothesize hereafter that the probability of this numbemual to piPx|S, D),
even though this hypothesis deserves a closer examinatawever, it is reason-
able to assume that @¥|S, D) and p(Py|S, D) have the same modes, and that
a maximala posteriori estimator of pfPy|S, D) will be a maximala posteriori
estimator of ptN|S, D).

Owing to the bayesian formula {@y|S, D) o« pr(S|Px, D)pr(Py|D), ana
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priori on the distribution of piiP | D) has to be set. If thia priori is uniform with
k, thea posteriori probability is directly proportional to the likelihood cquted
in the previous section: Py_x|S, D) x pr(S|Pyx, D).

Anothera priori is analogous to the HMM modelling: we consider that the
segment length follows a geometrical distribution withaegi mean, say. Then
apriori N — 1 follows a binomial distribution of paramet%r, and if we define a
random variableX ~ Bin(l, 2), pr(Py—x|S, D) o pr(S|Px, D).pr(X = k — 1).

A more experimental approach is to consider théPptS, D) follows a given
law with some parameters, and to simulate sequences geténgt-partitions to
fit at best these parameters, considering an optimizatiderion. An obvious
criterion is to minimize the mean square error of the maxinauposteriori esti-

mation of the numbers of segments.

2.3 Implementation

This algorithm has been implemented in C++, and is freelylavie via python

modules in Sarmenf (Guéglién, 2P05) at the URL:

http://pbil.univ-1yonl.fr/software/sarnment/
The examples of the next section are described in the tutatrithe same

location.
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3 Maximum a posteriori estimation

3.1 Theapriori distribution

To build a goodh posteriori estimator, we still need to look for a relevanpriori
probability on theP,. To test this, | have generated random sequences made up
of an alphabet of two letterg\(andB), from several Markov models and random
k-partitions, for several values éf We denote Berfar) the model where the
emission probability of ar\ is « (and that of @B is 1 — «). The positions of the
limits of the segments were uniformly generated, so thdt sagment was at least
50 positions long, and the models were uniformly assignedith segment so that
no two neighbouring segments shared the same model. Forked€l® random
k-partitions and sequences 10,000 letters in length haweliben generated. To
understand how the algorithm performs on more or less sy@agmented se-
quences, the next examples present sequences generatechdaels Ber(0.3)
and Berri0.7), and sequences generated from more similar models @éjrand
Bern(0.6). The same models have been used to compute the likelihoods. ig.[ F
First, | searched for the number of segmentfor which the sequence has the
highest likelihood. It is equivalent to the uniforarpriori distribution.

The examples of log-likelihoods in Fi. 1 show a typical babar: the neigh-
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bourhood of the maximum likelihood can be reached very duiand there are
several numbers of segments with a likelihood “near” thiximam. If in the left

example, the maximum is reached on the exact number of segnikis maxi-

mum is reached for a higher number in the right example.

Actually, overall, the predicted numbers of segments argctordance with
the simulated numbers (Fig. 2). However, as the segmentiemore difficult
to discriminate (when the average size of the simulated satgrdecreases or
when the models generating the segments are more similapyédicted number
tends to over-estimate. This means that the number of segmh the highest
likelihood is not in fact the one most relevant for this prtigin, and anothea
priori than the uniform distribution should be chosen.

The a priori can be based on the length of the segments, as it is done in
HMM modelling. Since in the simulations the inter-segmepdsitions of the
random partitions were uniformly taken along the sequetie® lengths of the
simulated segments followed a geometric distribution,cltshould favour the
analysis through HMM.

| have studied these sequences with the likelihood algaoriimd with an
HMM. The HMM used had the exact Markov models and an additipagameter

p on the probability transitions between the states, so tleaverage length of

13
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the segments i$/p. To get the resulting partition, | have applied the forward-
backward algorithm on the sequences and successive pasitiere clustered in
a segment when their most likely state was identical. Siheesequences were
10,000 letters long, the number of predicted segments nanadollows the bi-
nomial law Bin9999, p). | usedp = 0.001 (10 segments) and = 0.005 (50
segments), and again models B@A) versus Ber(0.7) and Berri0.4) versus
Bern(0.6) (Fig.[3). Fig.[3
Figure[B shows that when the models are distant (Beshversus Ber(0.7)),
the forward-backward algorithm performs rather well. Hoerewithp = 0.005
the number of segments is more over-estimated thanpwth).001, since it tends
to increase the number of segments. When the models areifiesertt, as with
Bern(0.4) versus Ber(0.6), the influence op becomes critical. In this example,
p = 0.001 under-estimates the number of segments when the real nusniesr
10, since this parameter means thairiori on average the sequence hasseg-
ments. Withp = 0.005 the predictions over-estimate slightly for small numbers
of segments, and they tend to under-estimate as the realarundpeases.
We can see that when this estimator is biased, the bias depenthe value
of the inter-state probability and on the real number of sagsiin the sequence,

which is not known beforehand. Fig.[4

14



Nonetheless, to study the effect of tlaigriori on the maximuna posteriori
estimator, | have set the same binonaapriori distribution on p(Py|D), with
p = 0.001 andp = 0.005. We can see in Fid] 4 the same behaviour as with the
HMM modelling, but with a much more important over-estinoatof the number
of segments whep = 0.005. It means that the tendency of tlagriori to “drag”
the maximuma posteriori towards 50 segments is here more influential. When
the real number of segments is near 50, the over-estimatiower than in Fig]2,
for the same reason. Then, even though it corresponds todtellimg of HMM,

a binomiala priori is not relevant for maximuna posteriori estimation of the
number of segments.

An experimental way to set up apriori distribution is to define it through a
set of parameters, that will be optimized by simulationse ©ptimization func-
tion is the minimization of the mean square error betweemthrimuma poste-
riori estimation and the real numbérof segments, summed for d@llfrom 1 to
50.

A first way would be to optimize the parameter of the binonaigkiori dis-
tribution. Indeed, the poor efficiency of these exampleddatba due to a bad pa-
rameter value. In these simulations, the optimal valige0.00098 (resp.0.0021)

for the models Berf0.3) versus Ber(D.7) (resp. Berif0.4) versus Ber(D.6)).
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The first optimization is quite efficient (Fifj. 5) but when gegments are less dif-

ferent there is an over-estimation of the number of segnfentsmall £, and an

under-estimation for largg, as in the previous section. The correct estimations

are around 25 segments, a balance between over-estimatingder-estimating

all the k between 1 and 50. Then even with an optimization processiarbala

priori does not give an efficiera posteriori estimator. Fig[]5
| tried the same kind of optimization with a geometadgriori distribution

G(0): pr(Py=x|D,S) x pr(S|Px, D).0%. | have performed twice the same round

of sequence simulations as before, one set for the optiloizaf the parame-

ter, and one set to test it on the obtained estimator. On tem@ples, when

the models are distant enough, as in Berd) versus Ber(0.7), the estimator is

quite accurate, and it is unbiaised, even with Ber) versus Ber(0.6) models

(Fig.[8). Fig.[6
This example shows that this approach can give good reswks though it

is up to now only experimental. A theoretical study may befuld® set up an

even more efficiend priori, and to prevent the cost of simulations as well as the

numerical optimization process. We can expect this distioin to depend on the

set of models and on the length of the sequence, and it woulgiibe interesting

to study it thoroughly.
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3.2 CpGidands

In vertebrate genomes, CpG dinucleotides are mostly metinyland this methy-
lation entails an hypermutability of these nucleotidesnfrCpG to TpG or CpA.
A usual measure of this feature is to compute the ratio of bsewed CpG dinu-

cleotides over the expected number when the nucleotidesdependent:

B frequency of CpG
CpGole= frequency of Cx frequency of G

In some stretches of DNA, known as CpG islands, the CpG dauticles are

hypomethylated. These islands are often associated vathqter regions (Ponger

et al..[200[L). They show a higher CpGo/e than surroundingesezs, at least6.

Moreover, a CpG island is expected to be at least 300 basgsllaranted to seg-

ment a sequence of the mouse genome to reveal the occurdrep& aslands.
The CpGol/e ratio on this sequence is shown in 1,000 basésplichdows (Fig[]7
middle). Fig.[7

Fig.
As described bjy Durbin et l. (1998), | defined two first-orslarkov models,

built by maximum likelihood on known data: the first is traghen CpG islands,
and the other on segments that are between the CpG islanded ltilose mod-
els to compute the segmentation likelihood on a sequendeeahnbuse genome

(Fig.[8), for up to 50 segments.
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| looked for the maximuna posteriori estimator of the number of segments,
with a geometri@ priori distribution, and | simulated random sequences through
the same process as described in segtign 2.3. The optionizztthe maximuna
posteriori estimator giveg = 0.546, and the result of this optimization is shown
in Fig.[8. We can see that this estimator is still unbiased 66tsegments, and
quite precise.

With thisa priori, the maximuna posteriori estimator on the mouse sequence
gives 17 segments, and CpG-islands predicted in the medy lik-partition are

shown in Fig[J7 bottom.

18



4 Discussion

In this article, | propose an algorithm to compute the momehthe likelihood of
segmentation of a sequence in a number of segments, givéonfh\darkov mod-
els. This algorithm has a time-complexity linear with thedth of the sequence
and the number of models, and it can be used on very long segslen

From this likelihood, it should be possible to compare thenbers of seg-
ments to partition a sequence, either through statises#sd tor through a bayesian
approach. In a bayesian approach, #priori distribution of the numbers of
classes must be defined, and | give some examples where atgeapeiori dis-
tribution gives a quite precise maximumposteriori estimator. This has been only
validated with simulations, and a full theorerical studyés to be undertaken on
thea priori distribution. Moreover, it would be quite interesting tdfide some
statistical tests to assess the relative significance —dmde intervals and p-
values — of the numbers of segments, given the models anddouesce. The fact
that the moments of the distribution of the likelihood cancbenputed could be
useful for this, as well as for an improvement of the previestsmator.

This algorithm does not put any constraint on the successionodels, but
works as if the transition graph between the models werecueli It is easy

to see from the Appendix that it can be adapted to any kindawfsition graph,

19



which means that it may be useful in the context of HMM analyfr example
to check — or determine — the inter-model probabilities & thodels, given a
sequence. In this context, it could also be interesting ®the likelihood to
enhance the efficiency of methods related to HMM modelliog,eixample for
post-analysis of forward-backward algorithm. As in HMM nedlthg, one aim
would be to compute the probability that a position is prestidoy a model, given
a set of models, and possibly given a number of segmentse KPP algorithm
is equivalent to the Viterbi algorithm for HMM, computingstprobability would
be the equivalent of the forward-backward algorithm in ttaatext.

Even if model inference is out of the topic of this articleisita very impor-
tant feature in sequence analysis, and it will be intergstiinuse the likelihood

for this. In[PolansKy[(2007), there is an example of infeeeatMarkov models

from a sequence, out of the context of HMM, but it is practichimited with the
numbers of segments in the sequence and, since it uses th@unaxkelihood,
an additional penalization criterion (AIC or BIC) is necassto handle this num-
ber. It should be possible to use the calculation of the geeli&elihood to get
rid of these problems. Another inference process is the miaation, among a
set of models, of the average likelihood. Moreover, it wolddrelevant to use

the bayesian approach to estimate and simw@adesteriori probabilities for the

20



parameters of the models, given the sequence.

Finally, as | said in the introduction, to my knowledge migtwvel segmenta-
tions of sequences are not used for sequence analysisgltlts relevance. An
important barrier to this is the lack of evaluation criteioa these levels. Com-
puting the likelihood for the successive numbers of segamraty then be a quite
useful tool to develop this kind of methodology. It wouldrgiout a much richer

modelling of the sequence.
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Appendix

Here is a demonstration of the formula described in sedljde&ping the same
notations:

We define
P, (7) the set of the:-partitions ofS;
P4(i) the set of thek-partitions ofS; whose model of the last segmentiis

my (i) is the likelihood ofS; underP. (i), V& > 0,Vi > k — 1,my(i) =
pr(S;|Px(i)), andmi (i) is the likelihood ofS(i) underP¢ (i), Vk > 0,Vi > k —
1,mi(i) = pr(Si|PE(i))

If the a priori on the last model is uniform:

my(i) = PSIPL(i) = Y mi(0).pr(PL(i)[Py())
deD
_ ka (1)
dED

We follow a bayesian approach, in which, for edgchall the k-partitions are
equiprobable irP.

If we noted,(i) the model used in partitiop at positioni, we have for all

22



k>2andi >k —1,

mi(i) = pr(SilPy(i))

= 3 pr(Silp).pr(p/PL(i))

pePL(3)
= ) pr(Silp) #PLi)
pePL(3)
= ) (Sl AP T+ D pr(Silp) #PEE)
peP{ (i) pePL(d)
dp(i—1)=d dp(i—1)#d

If p € P¢(:) andd,(i — 1) = d, pis like ak-partitionp’ of S;_; whose last
model,d, is used to emit;. So pKS;|p) = m4(7).pr(S;_:1[p’) with p’ € P4(i — 1).

If p € P(i) andd,(i — 1) # d, pis like ak — 1-partitionp’ of S;,_; whose
last model,d’, is different fromd. So p(S;|p) = mq().pr(S;—1|p’) with p’ €
P¢ (i —1).

Hence

mi(i) = Wd(i)-( Z Pr(Si—1lp) #Pi (i)~

pePY(i—1)

+3003 pr(Sialp) #PLG) (2)

d'#Fd pepd  (i-1)
In a partition ofP{ (i), the last model ig, the one before any of thé D — 1 other
ones, and so on for the—2 remaining models. So there gt D —1)%~! possible
sets of models for this partition. Moreover, the limits of #egments are defined

23



by k — 1 positions in the possible, so there a@ ! possible sets of positions.

So
#PL(i) = G (#D -1
- i .
= GGk P DT
_ ¢ do;
= e
and
#PL(i) = L #D— 1

k—Di—k+1)
= #D - D#PLL G- 1)

24



If we replace#P¢ (i) in @):

mi(i) = ( > prSealp) - 1)

peP(i—1)

+Y 0> pr(Siaalp). <#D >#IP’ (=17

aFdper! (i)

= m(d). (”Hl > pr(Sizalp).pr(plp € Pi(i — 1))

?
peP(i—1)

#D_ 72 > PrSalp)prplp € PG - 1)

d'#d E]P’d (2 1)

]

Zpr i— 1|]P) 2_1))>

d’;éd

mi(i) = ma(i). (i_k%l.mi(z’—l #D— Zm z—l)

d'#d

= i), (M—.“.pr(si_lmz(i 1))

And to make the algorithm faster, fronfi] (1),

> miy (i — 1) = #D.my_y (i — 1) —mi_, (i — 1)

d'#d

gives the formula.
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Bern(0.3) versus Bern(0.7) = Bern(0.4) versus Bern(0.6)
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Figure 1: Log-likelihood of two random sequences generate®0 segments

from two models. The dashed vertical line represéfitsegments.
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Figure 2: Boxplots of the numbers of segmentseaching the maximum likeli-
hood of the sequence, for a simulated number of segnieb&tween 1 and 50.

The oblique line represents the right number of segmevts:- (k).
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Bern(0.3) versus Bern(0.7) with p=0.001 Bern(0.4) versus Bern(0.6) with p=0.001
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Figure 3. Boxplots of the numbers of segmentspredicted by the forward-
backward algorithm, for a simulated number of segmeénbetween 1 and 50.

The oblique line represents the right number of segmevts:- (k).
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Bern(0.3) versus Bern(0.7) with p=0.001 Bern(0.4) versus Bern(0.6) with p=0.001
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Figure 4. Boxplots of the numbers of segmentsvith the maximuma posteriori
probability, with a binomiaka priori distribution on p(Py|D), for a simulated
number of segmentk between 1 and 50. The oblique line represents the right

number of segments\ = k).
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Bern(0.3) versus Bern(0.7) with p = 0.000879 Bern(0.4) versus Bern(0.6) with p = 0.002109
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Figure 5: Boxplots of the numbers of segmentsvith the maximuma posteriori
probability, with a binomiah priori distribution on p(Py|D) and an optimized
parametep, for a simulated number of segmehitbetween 1 and 50. The oblique

line represents the right number of segmenis k).
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Bern(0.3) versus Bern(0.7) with= 0.295 Bern(0.4) versus Bern(0.6) with= 0.701
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Figure 6: Boxplots of the numbers of segmentsvith the maximuma posteriori
probability, using am priori distributionG (#) with an optimized), for a simulated
number of segments between 1 and 50. The oblique line represents the right

number of segments\ = k).
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Figure 7: Analysis of the CpG islands from a Mouse genomiaisege. The
sequence is shown on the x-axis. Top: Partitioning up to §ineats. A row of
arcs labelled by a numbér represents the begtpartition (only even numbers
are shown, for clarity). Each arc represents a segment. €mreav, the relative
height of an arc corresponds to the r&@o CpGo/e on the segiMétdle; CpGole
in 1,000 bases sliding windows. Bottom: Predicted CpG tanf the best 17-

partition of the sequence.
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Figure 8: Study of a mouse sequence under the set of-fhetitions, given the
CpG island vs non-Cpg island models. Left: Log-likelihoddle sequence, for

k numbers of segments, withbetween 1 and 50. Right: Boxplots of the numbers
of segmentsV with the maximuma posteriori probability, with a geometria
priori distributionG (0.546), for a simulated number of segmentbetween 1 and
50. The simulated sequences were the same length than thedstune (176973),
and the segments were at least 300 long. The oblique linesepts the right

number of segments\ = k).
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