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Asymptotics of the odometer function for the

internal Diffusion Limited Aggregation model
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Abstract: We present precise asymptotics of the odometer function for the

internal Diffusion Limited Aggregation model. These results provide a better

understanding of this function whose importance was demonstrated by Levine

and Peres [3]. We derive a different proof of a time-scale result by Lawler,

Bramson and Griffeath [2].

Keywords: asymptotic shape, divisible sandpile, Green’s function,
internal diffusion limited aggregation.

1 Introduction

The internal Diffusion Limited Aggregation model was first introduced by
Diaconis and Fulton in [1] gives a protocol for building a random set recur-
sively. At each step, the first vertex visited outside the cluster by a simple
random walk started at the origin is added to the cluster. The resulting
limit shape is the euclidian ball, as proved in 1992 by Lawler, Bramson and
Griffeath in [2].

More recently, however, Levine and Peres [3], [4] have shown that this
model is related to the rotor-router and divisible sandpile models. In the
former, random walkers are replaced by eulerian walkers. In the latter, each
vertex can hold 1 unit of mass, and the excess is divided equally among
its neighbors when the vertex topples. Thus an initial mass at the origin
becomes a stable shape after a suitable infinite series of topplings.

For each of these three models, one can define an odometer function,
which will be the total number of times a walker passes through a given
point (counting multiple passages of the same walker) for the internal DLA
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Défense,
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and rotor-router model, and the total mass emitted from a given point
in the construction of the cluster for the divisible sandpile model. This
function plays a comparable role in all three models and turns out to be
instrumental in their relation. While the limiting shape of these models is
known to be the Euclidian ball, the behavior of their odometer functions
in the particular case where all the mass is started at the origin remains to
be studied.

This paper provides a closer look at the odometer function in the case of
the internal DLA model, with an almost sure convergence of the normalized
functions and asymptotics of this function near the origin. These results
provide in turn a new proof of the time scale of the cluster introduced in
[2].

2 Definitions, main results

Let (Sj)j∈N a sequence of independent simple random walks on Z
d, and

let us define the cluster A(n) and stopping times (σk)k∈N recursively in the
following way:

σ0 = 0,

A(0) = {0} = {S0(σ0)}, and for all j > 0,

∀j > 0, σj = inf{t ≥ 0 : Sj(t) 6∈ A(j − 1)},

A(j) = A(j − 1) ∪ {Sj(σj)}.

Let ||.|| denote the Euclidean norm on R
d, Br the Euclidean ball of

radius r of Z
d, and ωd the volume of the unit ball of R

d. We will consider the
cluster A(ωdn

d), which has the same volume as Bn. Lawler, Bramson and
Griffeath proved in [2] that the normalized cluster 1

n
A(
⌊

ωdn
d
⌋

) converges
to the Euclidean unit ball with probability one. Lawler then improved this
result, defining the inner and outer errors as follows:

δI(n) = n − inf
z 6∈A(⌊ωdnd⌋)

||z||,

δO(n) = sup
z∈A(⌊ωdnd⌋)

||z|| − n.

to get the following bounds, with probability 1:

lim
n→∞

δI(n)

n1/3(lnn)2
= 0, and

lim
n→∞

δO(n)

n1/3(lnn)4
= 0. (2.1)

An important part in the study of this model is played by Green’s
functions for the simple random walk, which we introduce now, as defined
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in [5]. Let Sx be a simple random walk started from a point x ∈ Z
d, and

ξn be the time at which S exits Bn, that is :

ξn = inf{t : St /∈ Bn}.

Then we define for all y ∈ Z
d

Gn(x, y) =

ξn
∑

t=0

1Sx(t)=y .

This is zero if either x or y lies outside Bn. For d ≥ 3 we define, for all
x, y ∈ Z

d,

G(x, y) =

∞
∑

t=0

1Sx(t)=y.

Let z ∈ R
d be a non-zero point in the open unit ball. Let us write

z = (x1, · · · , xd)
Let us define zn := (⌊nx1⌋, · · · ⌊nxd⌋) .
The odometer function un(z) at rank n measures the number of walkers

passing through zn in the process of building the cluster A(⌊ωdn
n⌋). It is

defined as follows:

un(z) :=

⌊ωdnd⌋
∑

i=0

σi
∑

t=0

1Si(t)=zn

Our results are as follows:

Theorem 2.1 For all non-zero points of the open unit ball z, when n goes

to infinity,

un(z)

n2
→||z||2 − 1 − 2 ln(||z||) almost surely if d = 2,

un(z)

n2
→||z||2 +

2

(d − 2)||z||d−2
−

d

d − 2
almost surely if d ≥ 3. (2.2)

Remark: In [2], the authors estimate the time it takes to build a clus-
ter of radius n, that is to say the total number of steps done by random
walks during the construction of the cluster. The authors count these steps
by estimating the number of steps for each given random walk. Our con-
vergence result 2.1 allows us to take a different perspective on the problem,
and count the total number of steps as the sum over all points in the cluster
of the number of steps through this point.

This leads to a different proof of the result of Lawler, Bramson and
Griffeath on the time scaling of the cluster, which is presented in section 5.
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The functions in 2.2 vanish when ||z|| tends to 1, and tend to infinity
when ||z|| tends to 0. To understand this behavior around the origin, we can
use a different scaling. Consider a sequence of non-zero points yn such that
yn

n
converges to 0 as n tends to infinity. If we now consider the following

sequence of values takes by the n-th odometer at point yn

n
:

un

(yn

n

)

=

⌊ωdnd⌋
∑

i=0

σi
∑

t=0

1Si(t)=yn

We get the following result:

Theorem 2.2 Let yn be a sequence of non-zero points such that yn

n
con-

verges to 0.

• If yn converges to a point a ∈ Z
d, d ≥ 3, when n tends to infinity,

un(
yn

n
) ∼ ωdn

dG(0, a) almost surely

• If ||yn|| tends to infinity, when n goes to infinity,

un(yn

n
)

n2
∼ 4 ln

(

n

||yn||

)

almost surely, if d = 2,

un(yn

n
)

n2
∼

2

d − 2

(

||yn||

n

)2−d

almost surely, if d ≥ 3.

Remark: The question of the asymptotics of the odometer function
near the boundary remains open, and is presumably linked to the difficult
problem of the fluctuations of the cluster around its limiting shape.

Let us comment further on Theorem 2.1, and give a heuristic of it when
d ≥ 3 based on the work of Levine and Peres ([3]) (the two-dimensional
case is similar if a little more technical). In the case of the divisible sandpile
model, each site of Z

d contains a continuous amount of mass. A site with
an amount greater than 1 can topple, that is to say keep mass 1 and
distribute the rest equally between its neighbors. With any sequence of
topplings that topples each full site infinitely often, the mass approaches a
limiting distribution, which does not depend on the sequence.

The odometer function u for this model is defined as the total mass
emitted from a given point. Since each neighbor y of a given point x
divides mass equally between its 2d neighbors, the total mass received
by x is 1

2d

∑

y∼x u(y). If we define the discrete Laplacian ∆ as ∆f(x) =
1
2d

∑

y∼x f(y) − f(x), we get that

∆u(x) = ν(x) − σ(x),
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where σ and ν are the initial and final amounts of mass at x, respectively.
In our case, the initial mass ωdn

d is concentrated at the origin, and the
final mass is 1 in each fully occupied site of the cluster. Hence:

∆un(x) =











n − 1 if x = 0,

−1 if x is a non-zero point in the cluster,

0 outside the cluster.

To solve this equation, we first introduce a function γn that has discrete
Laplacian σn − 1, in our case:

γn(z) = −||z||2 − ωdn
dG(0, z).

Then the odometer function un is given by lemma 3.2 of [4] as the
difference between the least superharmonic majorant of γn and γn:

un = sn − γn,

where sn = inf{f(x) such that f is superharmonic and f ≥ γn}.
Recalling the notations z = (x1, · · · , xd) and zn = (⌊nx1⌋, · · · ⌊nxd⌋),

we get:
1

n2
γn(zn) → γ(z) := −||z||2 −

2

d − 2
||z||2−d

The function γ is radial, and its particular shape makes it easy to determine
its superharmonic majorant s, as one can see on Figure 1:

s(z) =

{

− 2
d−2

if ||z|| ≤ 1,

γ(z) if ||z|| ≥ 1.

Since γn converges to γ, sn should converge to s. This would mean that
un converges to s − γ. This method is in fact made rigorous in [3], with
the noticeable difference that in the case considered the starting mass has
a bounded density, as opposed to our case where all of the mass is started
at the origin. The authors then prove that the odometer function for the
divisible sandpile model is the expected value of the odometer function
for the internal DLA model, which gives a heuristic proof of the following
result:

E

(

un(z)

n2

)

→||z||2 − 1 − 2 ln(||z||) if d = 2,

E

(

un(z)

n2

)

→||z||2 +
2

(d − 2)||z||d−2
−

d

d − 2
if d ≥ 3.

This analytic method could probably be rendered rigorous, but we prefer a
more probabilistic approach based on the convergence of the cluster, which
gives us an almost sure convergence result.
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Figure 1: The functions s and γ as radial functions of z.

3 Proof of Theorem 2.1

The main idea of this proof is to use the fact that the cluster is very
similar to a disc when n is large enough to get two inequalities framing
un(z) between random valuations which do not depend on the shape of the
cluster.

Lawler’s theorem proves that the following set inequality holds for n
large enough with probability one:

Bn−n1/3(ln n)2 ⊂ A(
⌊

ωdn
d
⌋

) ⊂ Bn+n1/3(ln n)4 ,

Let us define:

ηI(n) = n1/3(lnn)2

ηO(n) = n1/3(lnn)4

Let us define the stopping time ξj
k as the time at which Sj leaves a ball

Bk. As a consequence of the set inequality, we get the following inequality
on stopping times for k large enough, for all j such that

⌊

ωd(k − 1)d
⌋

≤
j ≤

⌊

ωdk
d
⌋

, with probability one:

ξj
(k−1)−ηI (k−1) ≤ σj ≤ ξj

k+ηO(k) (3.1)
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We get the following framing of un(z):

n−1
∑

k=0

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=zn
≤ un(z) ≤

n
∑

k=1

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξj
k+ηO(k)
∑

t=1

1Si(t)=zn

This inequality holds for n large enough with probability one because
||zn|| − n||z|| is smaller than a constant. This ensures that the inequality

(3.1) will start to hold as soon as k becomes greater than n||z||
2

for instance.
All the other terms of the sum are asymptotically zero.

We will now show that the left and right bounds on un(z), which we
will call un(z)− and un(z)+, once normalized, converge almost surely to the
same function. In order to do this, we take a look at the following family
of random variables:

χj
k,n(z) =

ξk
∑

t=1

1Sj(t)=zn

A direct application of the Markov property shows that for i ≥ 1, there
exists p0 and p depending on k, n and z such that:

P(χj
k,n(z) = i) = p0p

i−1(1 − p)

Since we know that P(χj
k,n(z) = 0) = P(τzn > ξk) where τzn is the

reaching time of zn, and that E(χj
k,n(z)) = Gk(0, zn), where Gn is Green’s

stopped function, a simple computation shows that:

p0 = P(ξk < τzn)

p = 1 −
P(ξn < τzn)

Gk(0, zn)

This determines the parameter of the geometric distribution χj
k,n(z)

follows.
We will need the following lemma which gives an estimate of Gn(0, z):

Lemma 3.1 If z ∈ Bn, z 6= 0, we have

Gn(0, z) =
2

ω2
ln

n

||z||
+ O(

1

||z||
) + O(

1

n
) if d = 2, and

Gn(0, z) =
2

d − 2

1

ωd
(||z||2−d − n2−d) + O(||z||1−d),

where the O are uniform on the unspecified variables.

This lemma is due to Lawler and can be found in section 1.6 of [5].
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We will now prove that 1
n2 un(z) converges almost surely to the limit of

its mean value. We first compute the mean value of un(z)−, then we will
bound its variance.

Consider the left side of (3):

un(z)− =

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

ξk−ηI (k)
∑

t=1

1Sj(t)=zn

un(z)− =
n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

χj
k−ηI(k),n(z)

E(un(z)−) =

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, zn)

=
n−1
∑

k=⌊||z||n⌋

(
⌊

ωd(k + 1)2
⌋

−
⌊

ω2k
2
⌋

)Gk−ηI(k)(0, zn)

(3.2)

Let us consider separately the case d = 2. In that case, we have:

E(un(z)−) =

n−1
∑

k=⌊||z||n⌋

(
⌊

ω2(k + 1)2
⌋

−
⌊

ω2k
2
⌋

)
2

ω2

(

ln
k − ηI(k)

n||z||
+ O(

1

n
)

)

E(un(z)−) =

n−1
∑

k=⌊||z||n⌋

(

4k ln
k

n||z||

)

+ O(n5/3)

1

n2
E(un(z)−) =

1

n

n−1
∑

k=⌊||z||n⌋

(

4
k

n
ln

k

n||z||

)

+ O(n−1/3)

(3.3)

We recognize a Riemann sum, thus :

1

n2
E(un(z)−) →

∫ 1

||z||

4t ln(
t

||z||
)dt = ||z||2 − 1 − 2 ln(||z||)

When d ≥ 3, we get instead the following estimate for E(un(z)−) :

n−1
∑

k=⌊||z||n⌋

(
⌊

ωd(k + 1)d
⌋

−
⌊

ωdk
d
⌋

)
2

d − 2

1

ωd

((n||z||)2−d−(k−ηI(k))2−d)+O(n1−d)
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E(un(z)−) =
1

n

n−1
∑

k=⌊||z||n⌋

(

2d

d − 2
kd−1((n||z||)2−d − (k)2−d)

)

+ O(n8/3−d)

1

n2
E(un(z)−) =

1

n

n−1
∑

k=⌊||z||n⌋

(

2d

d − 2
((

k

n
)d−1||z||2−d −

k

n
)

)

+ O(n2/3−d)

1

n2
E(un(z)−) →

∫ 1

||z||

2d

d − 2
(td−1||z||2−d − t)dt = ||z||2 +

2

(d − 2)||z||d−2
−

d

d − 2

The same arguments show that 1
n2 E(un(z)+) has the same limit as its

counterpart.
We will now give a bound on the variance of these variables. Let us

first state the following lemma:

Lemma 3.2 The random valuations χj
k,n(z) have the following variance,

for all j, k, n ∈ N, z ∈ Z
d provided that ||z||n ≤ k:

Var(χj
k,n(z)) =

(

1 −
P(ξk < τzn)

Gk(0, zn)

)

Gk(0, zn)Gk(zn, zn)

(

2 +
1

Gk(zn, zn) − 1

)

−Gk(0, zn)2

The proof of this lemma is a straightforward calculation which relies
only on the knowledge of the law of χj

k,n(z).
We will need bounds for Gk(zn, zn). Provided that ||z||n ≥ k, zn is in

the ball of radius k centered at the origin, and it has at least one neighbor
in this same ball, which proves that Gk(zn, zn) ≥ 1 + 1

4d2 .
When d ≥ 3, we can use the simple upper bound given by Gk(zn, zn) ≤

G(0, 0) < ∞.
However, when d = 2, we will use the following bound: Gk(zn, zn) ≤

Gn+k(0, 0). This bound comes from the fact that a random walk started in
zn will exit the ball of radius k centered in 0 before it exits the ball of radius
n + k centered in zn. When k ≤ n, we will even use Gk(zn, zn) ≤ G2n(0, 0).

We are now ready to bound the variance of un(z)−.

Var

(

un(z)−

n2

)

=
1

n4

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Var(χj
k−ηI(k),n(z))

≤
1

n4

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, zn)Gk−ηI(k)(zn, zn)

(

2 +
1

Gk−ηI (k)(zn, zn) − 1

)

When d ≥ 3, naming Kd a suited constant depending only on the
dimension d, we get:

Var

(

un(z)−

n2

)

≤
1

n4

n−1
∑

k=0

Kdk
d−1Gk(0, zn)
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This formula is the same as in the estimation of E(un(z)−) and yields:

Var

(

un(z)−

n2

)

≤
g(||z||, d)

n2
,

where g is a function of ||z|| and d only.
When d = 2, taking a suited constant K2 gives us:

Var

(

un(z)−

n2

)

≤
1

n4

n−1
∑

k=0

K2kGk(0, zn) ln(n)2,

which yields:

Var

(

un(z)−

n2

)

≤
ln(n)2h(||z||)

n2
,

where h is a function of ||z||.

In both cases, the sum
∑

Var
(

un(z)−

n2

)

is finite, which means un(z)−

n2

converges almost surely to limn→∞
E(un(z)−)

n2 . The same set of arguments can

be used to prove that un(z)+

n2 converges almost surely to limn→∞
E(un(z)+)

n2 .

Since limn→∞
E(un(z)−)

n2 = limn→∞
E(un(z)+)

n2 and u−
n (z) ≤ un(z) ≤ u+

n (z)
for all n large enough, we have proved our result.

4 Proof of Theorem 2.2

The proof of the first assertion relies only on the fact that the following
framing holds for n large enough:

n−1
∑

k=⌊ln n⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn
≤

⌊ωdnd⌋
∑

i=⌊ωd(ln n)d⌋

σi
∑

t=0

1Si(t)=yn

≤
n
∑

k=1+⌊ln n⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξj
k+ηO(k)
∑

t=1

1Si(t)=yn

This is true because the equation (3.1) holds as soon as k is large enough,
which happens eventually since k ≥ ln n.

The difference to the relevant quantity can be bounded using this in-
equality which holds for n large enough:

⌊ωd(ln n)d⌋
∑

i=0

σi
∑

t=0

1Si(t)=yn
≤

⌊ωd(ln n)d⌋
∑

i=0

ξln n−ηI (ln n)
∑

t=1

1Si(t)=yn
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It is a consequence of the calculations in the proof of Theorem 2.1 that
the right side tends to zero almost surely once divided by n2.

Just like in the proof of Theorem 2.1, we estimate the expected value
of our lower bound:

E







n−1
∑

k=⌊lnn⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

dωdk
d−1G(||yn||) + O(n2)

= ωdn
dG(a) + O(n2)

The calculation for the upper bound yields the same result.
To finish the proof, we just need to bound the variance of these two

random variables, using lemma 3.2:

Var

(

un

(yn

n

)−
)

=

n−1
∑

k=0

⌊ωd(k+1)2⌋
∑

j=⌊ωdk2⌋

Var(χj
k−ηI(k),n(

yn

n
))

≤

n−1
∑

k=0

⌊ωd(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, yn)Gk−ηI(k)(yn, yn)

(

2 +
1

Gk−ηI(k)(yn, yn) − 1

)

When d ≥ 3, naming Kd a suited constant depending only on the
dimension d, we get:

Var
(

un

(yn

n

))−

≤

n−1
∑

k=0

Kdk
d−1G(||yn||)

Hence we get:

Var

(

un

(

yn

n

)−

nd

)

≤
K ′

dG(a)

nd

When d = 2, taking a suited constant C2 gives us:

Var
(

un

(yn

n

))

≤
n−1
∑

k=0

K2kG(||yn||) ln(n)2,

which yields:

Var

(

un(z)−

n2

)

≤
ln(n)2K ′

2G(a)

n2
,

where C ′
2 is a suited constant.
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In both cases, the sum
∑

Var

(

un( yn
n )

−

nd

)

is finite. Since the same cal-

culation can be applied to u+
n , we can use the same argument as in the

proof of Theorem 2.1 to say that almost surely, as n tends to infinity,

un(
yn

n
)

nd
→ ωdG(a).

The proof of the second assumption is similar to that of the first one
and relies on the following estimate: for d = 2,

E







n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ω2k2⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

4k ln

(

||yn||
d−2

k − ηI(k)

)

+ O

(

1

||yn||
+

1

n

)

= 4n2 ln

(

n

||yn||

)

+ O

(

1

||yn||
+

1

n

)

And for d ≥ 3,

E







n−1
∑

k=0

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

2d

d − 2
kd−1

(

1

||yn||d−2
−

1

(k − ηI(k))d−2

)

+ O

(

nd−1

||yn||d−1

)

=
2n2

d − 2

(

(

n

||yn||

)d−2

−
1

2

)

+ O

(

nd−1

||yn||d−1
+

1

n

)

The computations of the variances yield, for d = 2,

Var
(

un

(yn

n

))

≤ J2n
2 (ln n)2 ln

(

n

||yn||

)

,

and for d ≥ 3,

Var
(

un

(yn

n

))

≤ Jdn
2

(

||yn||

n

)2−d

,

where J2 and Jd are suitable constants depending only on d. It follows that

Var





(

un

(

yn

n

))

n2 ln
(

n
||yn||

)



 ≤
J2 ln2(n)

n2 ln
(

n
||yn||

)

Var





un

(

yn

n

)

n2 ln
(

n
||yn||

)



 ≤
Jd

n2

(

||yn||

n

)d−2

These quantities have finite sums, which proves our result.
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5 Back to a result of Lawler, Bramson and

Griffeath

The result in Theorem 2.1 can be used to derive a different proof of an
existing time-scale result by Lawler, Bramson and Griffeath.

In [2], the authors are interested in the time it takes to build a cluster
of radius n, that is to say the total number of steps done by random walks
during the construction of the cluster. They define Ã(t) as the internal
DLA cluster on the time scale of individual random walks. Namely, if

χ(t) = max{k such that σ1 + · · ·+ σk ≤ t}

then Ã(t) = A(χ(t)).

Theorem 5.1 (Lawler, Bramson, Griffeath, 1992) Let Ã(t) be the in-

ternal DLA cluster on the time scale of individual random walks, then for

all ǫ > 0, almost surely,

Bn(1−ǫ) ⊂ Ã(tn) ⊂ Bn(1+ǫ),

where

tn = nd+2 dωd

d + 2
.

While the original proof of this theorem studies the time spent by a
given random walk inside the cluster, we have studied the time spent in
a given point by all the random walks. This leads naturally to a different
approach of the problem, in which we will sum the odometer function over
all the points in the cluster.

Let us call t′n the time taken to build the cluster A(n). Then

t′n =
∑

z:nz∈Zd∩A(n)

un(z)

Then for all n,

∑

z, nz ∈Bn−ηI (n)

un(z) ≤ t′n ≤
∑

z, nz ∈Bn+ηO(n)

un(z)

We can compute the following asymptotics, as n tends to infinity:

∑

z, nz ∈Bn−ηI (n)

un(z) =

n
∑

k=1

dωdk
d−1un

(

k

n

)

+ o(nd+2)

= d ωdn
2

n
∑

k=1

kd−1f

(

k

n

)

+ o(nd+2), almost surely.
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where f is defined by (2.2). Hence:

∑

z:nz∈Bn−ηI (n)

un(z) = d ωdn
d+2

∫ 1

0

xd−1f(x)dx + o(nd+2)

= nd+2

(

d ωd

d + 2

)

+ o(nd+2)

The same asymptotics hold for
∑

z, nz ∈Bn+ηO(n)
un(z), so that we have,

almost surely,

lim
n→∞

t′n
nd+2

=
d ωd

d + 2
.
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