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Asymptotics of the odometer function for the internal

Diffusion Limited Aggregation model

Cyrille Lucas ∗

November 16, 2009

Abstract: We present precise asymptotics of the odometer function for the internal Diffu-

sion Limited Aggregation model. These results provide a better understanding of this function

whose importance was demonstrated by Levine and Peres [3]. We derive a different proof of a

time-scale result by Lawler, Bramson and Griffeath [2].

Keywords: asymptotic shape, divisible sandpile, Green’s function, internal diffusion
limited aggregation.

1 Introduction

The internal Diffusion Limited Aggregation model was first introduced by Diaconis and
Fulton in [1] gives a protocol for building a random set recursively. At each step, the first
vertex visited outside the cluster by a simple random walk started at the origin is added
to the cluster. The resulting limit shape is the euclidian ball, as proved in 1992 by Lawler,
Bramson and Griffeath in [2].

More recently, however, Levine and Peres [3], [4] have shown that this model is related
to the rotor-router and divisible sandpile models. In the former, random walkers are
replaced by eulerian walkers. In the latter, each vertex can hold 1 unit of mass, and the
excess is divided equally among its neighbors when the vertex topples. Thus an initial
mass at the origin becomes a stable shape after a suitable infinite series of topplings.

For each of these three models, one can define an odometer function, which will be the
total number of times a walker passes through a given point (counting multiple passages
of the same walker) for the internal DLA and rotor-router model, and the total mass
emitted from a given point in the construction of the cluster for the divisible sandpile
model. This function plays a comparable role in all three models and turns out to be
instrumental in their relation. While the limiting shape of these models is known to be
the Euclidian ball, the behavior of their odometer functions in the particular case where
all the mass is started at the origin remains to be studied.

This paper provides a closer look at the odometer function in the case of the internal
DLA model, with an almost sure convergence of the normalized functions and asymptotics
of this function near the origin. These results provide in turn a new proof of the time
scale of the cluster introduced in [2].

∗Modélisation aléatoire de Paris 10 (MODAL’X)-Université Paris Ouest Nanterre La Défense,
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2 Definitions, main results

Let (Sj)j∈N a sequence of independent simple random walks on Z
d, and let us define the

cluster A(n) and stopping times (σk)k∈N recursively in the following way:

σ0 = 0,

A(0) = {0} = {S0(σ0)}, and for all j > 0,

∀j > 0, σj = inf{t ≥ 0 : Sj(t) 6∈ A(j − 1)},

A(j) = A(j − 1) ∪ {Sj(σj)}.

Let ||.|| denote the Euclidean norm on R
d, Br the Euclidean ball of radius r of Z

d,
and ωd the volume of the unit ball of R

d. We will consider the cluster A(ωdn
d), which has

the same volume as Bn. Lawler, Bramson and Griffeath proved in [2] that the normalized
cluster 1

n
A(
⌊

ωdn
d
⌋

) converges to the Euclidean unit ball with probability one. Lawler
then improved this result, defining the inner and outer errors as follows:

δI(n) = n − inf
z 6∈A(⌊ωdnd⌋)

||z||,

δO(n) = sup
z∈A(⌊ωdnd⌋)

||z|| − n.

to get the following bounds, with probability 1:

lim
n→∞

δI(n)

n1/3(ln n)2
= 0, and

lim
n→∞

δO(n)

n1/3(ln n)4
= 0. (2.1)

An important part in the study of this model is played by Green’s functions for the
simple random walk, which we introduce now, as defined in [5]. Let Sx be a simple random
walk started from a point x ∈ Z

d, and ξn be the time at which S exits Bn, that is :

ξn = inf{t : St /∈ Bn}.

Then we define for all y ∈ Z
d

Gn(x, y) =

ξn
∑

t=0

1Sx(t)=y.

This is zero if either x or y lies outside Bn. For d ≥ 3 we define, for all x, y ∈ Z
d,

G(x, y) =
∞
∑

t=0

1Sx(t)=y .

Let z ∈ R
d be a non-zero point in the open unit ball. Let us write z = (x1, · · · , xd)

Let us define zn := (⌊nx1⌋, · · · ⌊nxd⌋) .
The odometer function un(z) at rank n measures the number of walkers passing

through zn in the process of building the cluster A(⌊ωdn
n⌋). It is defined as follows:

un(z) :=

⌊ωdnd⌋
∑

i=0

σi
∑

t=0

1Si(t)=zn

2



Our results are as follows:

Theorem 2.1 For all non-zero points of the open unit ball z, when n goes to infinity,

un(z)

n2
→||z||2 − 1 − 2 ln(||z||) almost surely if d = 2,

un(z)

n2
→||z||2 +

2

(d − 2)||z||d−2
−

d

d − 2
almost surely if d ≥ 3. (2.2)

Remark: In [2], the authors estimate the time it takes to build a cluster of radius n,
that is to say the total number of steps done by random walks during the construction
of the cluster. The authors count these steps by estimating the number of steps for each
given random walk. Our convergence result 2.1 allows us to take a different perspective
on the problem, and count the total number of steps as the sum over all points in the
cluster of the number of steps through this point.

This leads to a different proof of the result of Lawler, Bramson and Griffeath on the
time scaling of the cluster, which is presented in section 5.

The functions in 2.2 vanish when ||z|| tends to 1, and tend to infinity when ||z|| tends to
0. To understand this behavior around the origin, we can use a different scaling. Consider
a sequence of non-zero points yn such that yn

n
converges to 0 as n tends to infinity. If we

now consider the following sequence of values takes by the n-th odometer at point yn

n
:

un

(yn

n

)

=

⌊ωdnd⌋
∑

i=0

σi
∑

t=0

1Si(t)=yn

We get the following result:

Theorem 2.2 Let yn be a sequence of non-zero points such that yn

n
converges to 0.

• If yn converges to a point a ∈ Z
d, d ≥ 3, when n tends to infinity,

un(
yn

n
) ∼ ωdn

dG(0, a) almost surely

• If ||yn|| tends to infinity, when n goes to infinity,

un(
yn

n
)

n2
∼ 4 ln

(

n

||yn||

)

almost surely, if d = 2,

un(
yn

n
)

n2
∼

2

d − 2

(

||yn||

n

)2−d

almost surely, if d ≥ 3.

Remark: The question of the asymptotics of the odometer function near the boundary
remains open, and is presumably linked to the difficult problem of the fluctuations of the
cluster around its limiting shape.

Let us comment further on Theorem 2.1, and give a heuristic of it when d ≥ 3 based
on the work of Levine and Peres ([3]) (the two-dimensional case is similar if a little more
technical). In the case of the divisible sandpile model, each site of Z

d contains a continuous
amount of mass. A site with an amount greater than 1 can topple, that is to say keep mass
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1 and distribute the rest equally between its neighbors. With any sequence of topplings
that topples each full site infinitely often, the mass approaches a limiting distribution,
which does not depend on the sequence.

The odometer function u for this model is defined as the total mass emitted from
a given point. Since each neighbor y of a given point x divides mass equally between
its 2d neighbors, the total mass received by x is 1

2d

∑

y∼x u(y). If we define the discrete

Laplacian ∆ as ∆f(x) = 1
2d

∑

y∼x f(y) − f(x), we get that

∆u(x) = ν(x) − σ(x),

where σ and ν are the initial and final amounts of mass at x, respectively.
In our case, the initial mass ωdn

d is concentrated at the origin, and the final mass is
1 in each fully occupied site of the cluster. Hence:

∆un(x) =











n − 1 if x = 0,

−1 if x is a non-zero point in the cluster,

0 outside the cluster.

To solve this equation, we first introduce a function γn that has discrete Laplacian
σn − 1, in our case:

γn(z) = −||z||2 − ωdn
dG(0, z).

Then the odometer function un is given by lemma 3.2 of [4] as the difference between
the least superharmonic majorant of γn and γn:

un = sn − γn,

where sn = inf{f(x) such that f is superharmonic and f ≥ γn}.
Recalling the notations z = (x1, · · · , xd) and zn = (⌊nx1⌋, · · · ⌊nxd⌋), we get:

1

n2
γn(zn) → γ(z) := −||z||2 −

2

d − 2
||z||2−d

The function γ is radial, and its particular shape makes it easy to determine its super-
harmonic majorant s, as one can see on Figure 1:

s(z) =

{

− 2
d−2

if ||z|| ≤ 1,

γ(z) if ||z|| ≥ 1.

Since γn converges to γ, sn should converge to s. This would mean that un converges
to s − γ. This method is in fact made rigorous in [3], with the noticeable difference that
in the case considered the starting mass has a bounded density, as opposed to our case
where all of the mass is started at the origin. The authors then prove that the odometer
function for the divisible sandpile model is the expected value of the odometer function
for the internal DLA model, which gives a heuristic proof of the following result:

E

(

un(z)

n2

)

→||z||2 − 1 − 2 ln(||z||) almost surely if d = 2,

E

(

un(z)

n2

)

→||z||2 +
2

(d − 2)||z||d−2
−

d

d − 2
almost surely if d ≥ 3.

This analytic method could probably be rendered rigorous, but we prefer a more proba-
bilistic approach based on the convergence of the cluster, which gives us an almost sure
convergence result.
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Figure 1: The functions s and γ as radial functions of z.

3 Proof of Theorem 2.1

The main idea of this proof is to use the fact that the cluster is very similar to a disc
when n is large enough to get two inequalities framing un(z) between random valuations
which do not depend on the shape of the cluster.

Lawler’s theorem proves that the following set inequality holds for n large enough with
probability one:

Bn−n1/3(ln n)2 ⊂ A(
⌊

ωdn
d
⌋

) ⊂ Bn+n1/3(ln n)4 ,

Let us define:

ηI(n) = n1/3(ln n)2

ηO(n) = n1/3(ln n)4

Let us define the stopping time ξj
k as the time at which Sj leaves a ball Bk. As a

consequence of the set inequality, we get the following inequality on stopping times for k
large enough, for all j such that

⌊

ωd(k − 1)d
⌋

≤ j ≤
⌊

ωdk
d
⌋

, with probability one:

ξj
(k−1)−ηI(k−1) ≤ σj ≤ ξj

k+ηO(k) (3.1)

We get the following framing of un(z):

n−1
∑

k=0

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=zn
≤ un(z) ≤

n
∑

k=1

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξj
k+ηO(k)
∑

t=1

1Si(t)=zn
(3.2)

This inequality holds for n large enough with probability one because ||zn|| − n||z||
is smaller than a constant. This ensures that the inequality (3.1) will start to hold as
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soon as k becomes greater than n||z||
2

for instance. All the other terms of the sum are
asymptotically zero.

We will now show that the left and right bounds on un(z), which we will call un(z)−

and un(z)+, once normalized, converge almost surely to the same function. In order to
do this, we take a look at the following family of random variables:

χj
k,n(z) =

ξk
∑

t=1

1Sj(t)=zn

A direct application of the Markov property shows that for i ≥ 1, there exists p0 and
p depending on k, n and z such that:

P(χj
k,n(z) = i) = p0p

i−1(1 − p)

Since we know that P(χj
k,n(z) = 0) = P(τzn > ξk) where τzn is the reaching time

of zn, and that E(χj
k,n(z)) = Gk(0, zn), where Gn is Green’s stopped function, a simple

computation shows that:

p0 = P(ξk < τzn)

p = 1 −
P(ξn < τzn)

Gk(0, zn)

This determines the parameter of the geometric distribution χj
k,n(z) follows.

We will need the following lemma which gives an estimate of Gn(0, z):

Lemma 3.1 If z ∈ Bn, z 6= 0, we have

Gn(0, z) =
2

ω2

ln
n

||z||
+ O(

1

||z||
) + O(

1

n
) if d = 2, and

Gn(0, z) =
2

d − 2

1

ωd
(||z||2−d − n2−d) + O(||z||1−d),

where the O are uniform on the unspecified variables.

This lemma is due to Lawler and can be found in section 1.6 of [5].
We will now prove that 1

n2 un(z) converges almost surely to the limit of its mean value.
We first compute the mean value of un(z)−, then we will bound its variance.

Consider the left side of (3.2):

un(z)− =
n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

ξk−ηI (k)
∑

t=1

1Sj(t)=zn

un(z)− =

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

χj
k−ηI(k),n(z)

E(un(z)−) =
n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, zn)

=

n−1
∑

k=⌊||z||n⌋

(
⌊

ωd(k + 1)2
⌋

−
⌊

ω2k
2
⌋

)Gk−ηI(k)(0, zn)

(3.3)
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Let us consider separately the case d = 2. In that case, we have:

E(un(z)−) =
n−1
∑

k=⌊||z||n⌋

(
⌊

ω2(k + 1)2
⌋

−
⌊

ω2k
2
⌋

)
2

ω2

(

ln
k − ηI(k)

n||z||
+ O(

1

n
)

)

E(un(z)−) =

n−1
∑

k=⌊||z||n⌋

(

4k ln
k

n||z||

)

+ O(n5/3)

1

n2
E(un(z)−) =

1

n

n−1
∑

k=⌊||z||n⌋

(

4
k

n
ln

k

n||z||

)

+ O(n−1/3)

(3.4)

We recognize a Riemann sum, thus :

1

n2
E(un(z)−) →

∫ 1

||z||

4t ln(
t

||z||
)dt = ||z||2 − 1 − 2 ln(||z||)

When d ≥ 3, we get instead the following estimate for E(un(z)−) :

n−1
∑

k=⌊||z||n⌋

(
⌊

ωd(k + 1)d
⌋

−
⌊

ωdk
d
⌋

)
2

d − 2

1

ωd
((n||z||)2−d − (k − ηI(k))2−d) + O(n1−d)

E(un(z)−) =
1

n

n−1
∑

k=⌊||z||n⌋

(

2d

d − 2
kd−1((n||z||)2−d − (k)2−d)

)

+ O(n8/3−d)

1

n2
E(un(z)−) =

1

n

n−1
∑

k=⌊||z||n⌋

(

2d

d − 2
((

k

n
)d−1||z||2−d −

k

n
)

)

+ O(n2/3−d)

1

n2
E(un(z)−) →

∫ 1

||z||

2d

d − 2
(td−1||z||2−d − t)dt = ||z||2 +

2

(d − 2)||z||d−2
−

d

d − 2

The same arguments show that 1
n2 E(un(z)+) has the same limit as its counterpart.

We will now give a bound on the variance of these variables. Let us first state the
following lemma:

Lemma 3.2 The random valuations χj
k,n(z) have the following variance, for all j, k, n ∈

N, z ∈ Z
d provided that ||z||n ≤ k:

Var(χj
k,n(z)) =

(

1 −
P(ξk < τzn)

Gk(0, zn)

)

Gk(0, zn)Gk(zn, zn)

(

2 +
1

Gk(zn, zn) − 1

)

− Gk(0, zn)
2

The proof of this lemma is a straightforward calculation which relies only on the
knowledge of the law of χj

k,n(z).
We will need bounds for Gk(zn, zn). Provided that ||z||n ≥ k, zn is in the ball of radius

k centered at the origin, and it has at least one neighbor in this same ball, which proves
that Gk(zn, zn) ≥ 1 + 1

4d2 .
When d ≥ 3, we can use the simple upper bound given by Gk(zn, zn) ≤ G(0, 0) < ∞.
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However, when d = 2, we will use the following bound: Gk(zn, zn) ≤ Gn+k(0, 0). This
bound comes from the fact that a random walk started in zn will exit the ball of radius k
centered in 0 before it exits the ball of radius n + k centered in zn. When k ≤ n, we will
even use Gk(zn, zn) ≤ G2n(0, 0).

We are now ready to bound the variance of un(z)−.

Var

(

un(z)−

n2

)

=
1

n4

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Var(χj
k−ηI(k),n(z))

≤
1

n4

n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, zn)Gk−ηI(k)(zn, zn)

(

2 +
1

Gk−ηI(k)(zn, zn) − 1

)

When d ≥ 3, naming Kd a suited constant depending only on the dimension d, we get:

Var

(

un(z)−

n2

)

≤
1

n4

n−1
∑

k=0

Kdk
d−1Gk(0, zn)

This formula is the same as in the estimation of E(un(z)−) and yields:

Var

(

un(z)−

n2

)

≤
g(||z||, d)

n2
,

where g is a function of ||z|| and d only.
When d = 2, taking a suited constant K2 gives us:

Var

(

un(z)−

n2

)

≤
1

n4

n−1
∑

k=0

K2kGk(0, zn) ln(n)2,

which yields:

Var

(

un(z)−

n2

)

≤
ln(n)2h(||z||)

n2
,

where h is a function of ||z||.

In both cases, the sum
∑

Var
(

un(z)−

n2

)

is finite, which means un(z)−

n2 converges almost

surely to limn→∞
E(un(z)−)

n2 . The same set of arguments can be used to prove that un(z)+

n2

converges almost surely to limn→∞
E(un(z)+)

n2 .

Since limn→∞
E(un(z)−)

n2 = limn→∞
E(un(z)+)

n2 and u−
n (z) ≤ un(z) ≤ u+

n (z) for all n large
enough, we have proved our result.

4 Proof of Theorem 2.2

The proof of the first assertion relies only on the fact that the following framing holds for
n large enough:

n−1
∑

k=⌊ln n⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn
≤

⌊ωdnd⌋
∑

i=⌊ωd(ln n)d⌋

σi
∑

t=0

1Si(t)=yn
≤

n
∑

k=1+⌊lnn⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξj
k+ηO(k)
∑

t=1

1Si(t)=yn

8



This is true because the equation (3.1) holds as soon as k is large enough, which
happens eventually since k ≥ ln n.

The difference to the relevant quantity can be bounded using this inequality which
holds for n large enough:

⌊ωd(ln n)d⌋
∑

i=0

σi
∑

t=0

1Si(t)=yn
≤

⌊ωd(ln n)d⌋
∑

i=0

ξln n−ηI (ln n)
∑

t=1

1Si(t)=yn

It is a consequence of the calculations in the proof of Theorem 2.1 that the right side
tends to zero almost surely once divided by n2.

Just like in the proof of Theorem 2.1, we estimate the expected value of our lower
bound:

E







n−1
∑

k=⌊ln n⌋

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

dωdk
d−1G(||yn||) + O(n2)

= ωdn
dG(a) + O(n2)

The calculation for the upper bound yields the same result.
To finish the proof, we just need to bound the variance of these two random variables,

using lemma 3.2:

Var

(

un

(yn

n

)−
)

=

n−1
∑

k=0

⌊ωd(k+1)2⌋
∑

j=⌊ωdk2⌋

Var(χj
k−ηI(k),n(

yn

n
))

≤

n−1
∑

k=0

⌊ωd(k+1)2⌋
∑

j=⌊ωdk2⌋

Gk−ηI(k)(0, yn)Gk−ηI(k)(yn, yn)

(

2 +
1

Gk−ηI(k)(yn, yn) − 1

)

When d ≥ 3, naming Kd a suited constant depending only on the dimension d, we get:

Var
(

un

(yn

n

))−

≤
n−1
∑

k=0

Kdk
d−1G(||yn||)

Hence we get:

Var

(

un

(

yn

n

)−

nd

)

≤
K ′

dG(a)

nd

When d = 2, taking a suited constant C2 gives us:

Var
(

un

(yn

n

))

≤

n−1
∑

k=0

K2kG(||yn||) ln(n)2,

which yields:

Var

(

un(z)−

n2

)

≤
ln(n)2K ′

2G(a)

n2
,

9



where C ′
2 is a suited constant.

In both cases, the sum
∑

Var

(

un( yn
n )

−

nd

)

is finite. Since the same calculation can be

applied to u+
n , we can use the same argument as in the proof of Theorem 2.1 to say that

almost surely, as n tends to infinity,

un(yn

n
)

nd
→ ωdG(a).

The proof of the second assumption is similar to that of the first one and relies on the
following estimate: for d = 2,

E







n−1
∑

k=0

⌊ω2(k+1)2⌋
∑

j=⌊ω2k2⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

4k ln

(

||yn||
d−2

k − ηI(k)

)

+ O

(

1

||yn||
+

1

n

)

= 4n2 ln

(

n

||yn||

)

+ O

(

1

||yn||
+

1

n

)

And for d ≥ 3,

E







n−1
∑

k=0

⌊ωd(k+1)d⌋
∑

j=⌊ωdkd⌋

ξk−ηI (k)
∑

t=1

1Si(t)=yn






=

n
∑

k=0

2d

d − 2
kd−1

(

1

||yn||d−2
−

1

(k − ηI(k))d−2

)

+ O

(

nd−1

||yn||d−1

)

=
2n2

d − 2

(

(

n

||yn||

)d−2

−
1

2

)

+ O

(

nd−1

||yn||d−1
+

1

n

)

The computations of the variances yield, for d = 2,

Var
(

un

(yn

n

))

≤ J2n
2 (ln n)2 ln

(

n

||yn||

)

,

and for d ≥ 3,

Var
(

un

(yn

n

))

≤ Jdn
2

(

||yn||

n

)2−d

,

where J2 and Jd are suitable constants depending only on d. It follows that

Var





(

un

(

yn

n

))

n2 ln
(

n
||yn||

)



 ≤
J2 ln2(n)

n2 ln
(

n
||yn||

)

Var





un

(

yn

n

)

n2 ln
(

n
||yn||

)



 ≤
Jd

n2

(

||yn||

n

)d−2

These quantities have finite sums, which proves our result.
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5 Back to a result of Lawler, Bramson and Griffeath

The result in Theorem 2.1 can be used to derive a different proof of an existing time-scale
result by Lawler, Bramson and Griffeath.

In [2], the authors are interested in the time it takes to build a cluster of radius n,
that is to say the total number of steps done by random walks during the construction of
the cluster. They define Ã(t) as the internal DLA cluster on the time scale of individual
random walks. Namely, if

χ(t) = max{k such that σ1 + · · ·+ σk ≤ t}

then Ã(t) = A(χ(t)).

Theorem 5.1 (Lawler, Bramson, Griffeath, 1992) Let Ã(t) be the internal DLA

cluster on the time scale of individual random walks, then for all ǫ > 0, almost surely,

Bn(1−ǫ) ⊂ Ã(tn) ⊂ Bn(1+ǫ),

where

tn = nd+2 dωd

d + 2
.

While the original proof of this theorem studies the time spent by a given random
walk inside the cluster, we have studied the time spent in a given point by all the random
walks. This leads naturally to a different approach of the problem, in which we will sum
the odometer function over all the points in the cluster.

Let us call t′n the time taken to build the cluster A(n). Then

t′n =
∑

z:nz∈Zd∩A(n)

un(z)

Then for all n,
∑

z, nz ∈Bn−ηI (n)

un(z) ≤ t′n ≤
∑

z, nz ∈Bn+ηO(n)

un(z)

We can compute the following asymptotics, as n tends to infinity:

∑

z, nz ∈Bn−ηI (n)

un(z) =

n
∑

k=1

dωdk
d−1un

(

k

n

)

+ o(nd+2)

= d ωdn
2

n
∑

k=1

kd−1f

(

k

n

)

+ o(nd+2), almost surely.

where f is defined by (2.2). Hence:

∑

z:nz∈Bn−ηI(n)

un(z) = d ωdn
d+2

∫ 1

0

xd−1f(x)dx + o(nd+2)

= nd+2

(

d ωd

d + 2

)

+ o(nd+2)

The same asymptotics hold for
∑

z, nz ∈Bn+ηO(n)
un(z), so that we have, almost surely,

lim
n→∞

t′n
nd+2

=
d ωd

d + 2
.
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