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Abstract. In this article, we present a numerical analysis concerning ray propagation

in a multimode periodic segmented waveguide with a gaussian index segment profile.

We show that this simple waveguide configuration exhibits a complex ray dynamics

that can be regular or chaotic depending on the initial conditions.
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1. Introduction

Periodic Segmented Waveguide (PSW) is a waveguide formed by an array of high

index segments embedded in a low index substrate. It has been shown that this kind

of waveguides exhibits several interesting properties. They have been used in linear

applications to make tapers or mode filters [1, 2, 3], by exploiting the fact that the

mode size and the propagation constant can be adjusted by varying the duty-cycle

(defined as the ratio of the high index segment over the period ΛPSW ). Elsewhere, they

have been used to achieve efficient nonlinear guided wave interaction using the Quasi

Phase Matching (QPM) or Balanced Phase Matching (BPM) schemes [4, 5, 6] that

take advantage of a periodic reversal of the nonlinear coefficient associated with such

waveguides. More recently they have been shown to exhibit interesting properties that

can be useful for optical power limiting or managing applications [7, 8].

We have applied a ray analysis in the simple and ideal 2D case of a PSW

characterized by a transverse gaussian index profile. The choice of the gaussian

shaped index segment is motivated by the fact that such kind of profiles are naturally

encountered in standard waveguide fabrication such as the usual proton exchange

technic in LiNbO3 [9]. It will be shown in this paper that the ray dynamics induced

by a transverse gaussian index profile is a much more complex ray dynamics than

that encountered with the usually considered parabolic index profile [10, 12, 13]. In

particular, we show that the gaussian index profile is responsible for the emergence of

a genuine chaotic behavior of the ray dynamics. Such a complex behavior is actually

comparable to what has already been studied in a periodically perturbed waveguide

[14, 15].

After a description of the system used, preliminary numerical results will then be

discussed and finally, conclusions and perspectives will be drawn.

2. Numerical model

A schematic representation of a transverse gaussian index PSW is sketched in figure 1.

A step index profile is assumed along the propagation direction z as it has been done

in previous works [10]. Note that a smoother profile will not changed qualitatively our

results. A ray path in a 2D medium can be described by the following equation in

cartesian coordinates [16]:

d2x

dz2
=

1

2β2

dn2 (x)

dx
(1)

where, x and z are the transversal and longitudinal coordinates respectively, n(x) is the

transverse index profile, β = n (x0) cos θ0 is the invariant of the ray path, x0 being the

initial position of the ray and θ0 being the incident angle of the ray respect to z axis. The

ray path can be calculated by analyzing high and low index segments separately. We

consider here dielectric waveguides characterized by a low index contrast δn ≈ 0.02 � 1,
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which allows us to neglect the reflections of rays at each interfaces. In the low index

segment, n (x) = ns is constant, so that equation (1) is reduces to :

d2x

dz2
= 0 (2)

whose solution corresponds to (2) a straight ray. The high index segment is characterized

by the following transverse gaussian index profile :

n (x) = ns + δne−
x
2

ω
2 (3)

In the limit of usual classical assumption δn � 1 equation (1) then reads:

d2x

dz2
= −

2nsδn

β2ω2
xe−

x
2

ω
2 (4)

A numerical technic is required to integrate the ray path equation (4). The numerical

integration is performed using the classical Runge Kutta (RK) technic [17]. Starting

from initial conditions

x (0) = x0

dx
dz

(0) = θ0,
(5)

One can compute the ray path step by step by solving alternatively equation (2) and

equation (4) by using the law refraction of each interface.

It is important to note that the gaussian shape profile makes equation (4) nonlinear

respect to variable x, whereas for a parabolic index profile, equation (4) reduces to a

linear equation [18]. For a parabolic PSW, the presence of a linear term in the RHS

of equation (4) makes the system analogous to a parametric system [19] exhibiting

parametric resonances. These resonances are responsible for a ray divergence whatever

initials conditions, a feature that has already been pointed out in a previous work [10]

and extended to gaussian beams [12, 13] where a similar instability may occur. For a

gaussian index PSW, the situation is different because the nonlinear term in the RHS of

equation (4) saturates the parametric instability and makes happen nonlinear resonance.

Same phenomenon will arise for other index profiles as soon as the RHS of equation (4)

is nonlinear respect to x such as, for example, exponential, erfc or sech profiles. The

corresponding nonlinear resonance makes the ray dynamics much more complex as will

be shown in the next section. It has to be mentioned that such a dynamics of ray

propagation is comparable to the dynamics of an undamped nonlinear pendulum forced

by a periodic motion of the suspension point. In complete analogy with a parametrically

forced pendulum, we will show that a gaussian index PSW exhibits nonlinear resonances,

frequency locking, as well as a chaotic behavior [11].

3. Results

The numerical technic outlined in the previous section has been used to compute a

ray path in a gaussian profile PSW. It is worth noting that for a step [1, 20, 21]

or a parabolic [10, 12] index transverse profile, some relevant waveguide properties
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such as the propagation constant and the mode size, can be easily obtained from

an equivalent uniform waveguide model. The refractive index difference δneq of the

equivalent waveguide is defined as an average of high and low index segments:

δneq = δn×duty-cycle (6)

where, δn is the refractive index difference between the substrate and the guiding

segments and the duty-cycle is defined as duty-cycle = d/Λ where d is the segment

length and Λ is the period (figure 1). The ray path of a PSW with a gaussian index

profile and its equivalent uniform waveguide model are plotted on figure 2 [22]. One

can note that the ray paths coincide so that the focusing period Zp is almost identical

for both waveguide. However, it can be shown that for some waveguide configurations

the equivalent uniform waveguide approximation is no longer accurate. In figure 3, the

focusing period Zp is plotted as a function of the duty-cycle for a gaussian index PSW

and its equivalent uniform waveguide. The waveguide parameters are the same used as

in figure 2, except that the period is now Λ = 45µm. While the two curves are very close

for most of the duty-cycle values, one can note some well pronounced differences for some

particular values of duty-cycle. For duty-cycle taken between 0.55 and 0.6 the focussing

period for the PSW tends to infinite, a feature which signals a divergence of the ray

path. This is illustrated in figure 4, which represents the ray path for duty-cycle = 0.55.

After a short propagation distance, the focusing period Zp of the PSW deviate from the

period corresponding to the uniform waveguide one, the amplitude oscillations of the ray

increases and around z = 3500µm, the ray escapes from the guiding region. One can also

note in figure 3 that the PSW curve exhibits some steps in which the focussing period

Zp remains constant for a given range of duty-cycle values. This important feature could

not be describe with the equivalent uniform waveguide model. We are in the presence

of a parametric nonlinear resonance which manifests itself through a period-locking (or

frenquency-locking) between two characteristic periods of the system: the segmentation

period Λ and the focussing period Zp. Period-locking occurs when the two periods (or

the two frequencies) are commensurate with each other, i. e., when their ratio is a

rational number q = Zp/Λ. (One period is locked into being a rational number time q of

the other period). Period-locking can be clearly identified for a ratio equal to 8, 7, 6 and

5 on figure 3. Other nonlinear resonances may also be identified for non integer values of

q, but they are not clearly visible in figure 3. From a practical point of view interesting

features may occurs in terms of waveguide dispersion associated with those nonlinear

resonances. The average waveguide index has changed but Zp and then the optical path

length remain constant and, as a consequence, the transit time do not vary with the

waveguide parameters. It means that is a waveguide dispersion free configuration.

With the help of the Poincaré’s section, one can get an deeper insight of the

ray dynamics. Poincaré sections are a convenient and widely used representation of

a periodically perturbed nonlinear system. It consists of a projection of the trajectory

(x, θ, z) onto the phase plane (x, θ) at positions z = nΛ, n = 1, 2, 3, ... [22]. Figures

5, 6 and 7 represent Poincaré sections for duty-cycle = 0.3, duty-cycle = 0.55 and
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duty-cycle = 0.75 respectively for an ensemble of various initial conditions regularly

distributed in phase space. Poincaré sections reveal that the dynamics is characterized

by the coexistence of a regular or a chaotic behavior, depending on initial condition. A

stable trajectory is constructed on a 3D torus known as a KAM (Kolmogorov-Arnold-

Moser) torus which is characterized by a close curve circle on the Poincaré section.

The corresponding value of q is irrational so that the ray densely covers the closed

curve during its propagation. If an initial condition is taken on one of those closed

curves circle, the ray path remains confined on the waveguide. On the other hand,

initial conditions taken in the stochastic region surrounding the peripheral KAM torus

generate an unstable trajectory that leads to a quick divergence of the ray because there

is no more total internal reflection on a high index segment or the low index segment is

too long and the ray cannot be recoupled into an high index segment. A set of stable

islands results from a break up of one of the KAM tori in the case of a rational q value

and it is the trace of a single trajectory. This corresponds to a subharmonic resonance, in

which the period of the ray path Zp is larger that the waveguide period Λ. For example,

if the initial condition is taken in A (on figure 5), the next position at z = Λ is in the

other island (A1), the next one is in A2 at z = 2Λ. So that the ray path returns to the

first island at z = 8Λ. After a while the points closely cover the set of 8 islands. Then,

a rational q value generate 2q fixed points which corresponds to q pairs of hyperbolic

and q elliptic points. Elliptic points refer to nonlinear resonances in which the period

of the trajectory is synchronized with the period of the segmentation. For example, for

duty-cycle = 0.3 (figure 5), duty-cycle = 0.55 (figure 6) and duty-cycle= 0.75 (figure

7), 8, 6 and 5 elliptic points are visible on the Poincaré sections, which respectively

correspond to q = 8, q = 6 and q = 5. The corresponding islands arise from the

same initial condition noted A on the figures. The KAM torus acts as a barrier that

cannot be crossed by a ray trajectory which remains confined in a region delimited

by the torus. Thus, the stability of a nonlinear resonance depends on whether the

corresponding islands are surrounded or not by a KAM torus. Initial conditions noted

A on figure 5 and figure 7 generate respectively 8 and 5 nonlinear resonances whose

respective islands are surrounded by invariant tori. This makes the ray propagation

more robust with respect to external perturbations. For instance, a small change of the

duty-cycle values does not lead to a divergence of the ray. Conversely, the same initial

condition noted A on figure 6 generates 6 nonlinear resonances represented by stable

islands in the stochastic region. Those stable islands are not surrounded by a torus,

so that for a small duty-cycle change the ray becomes unstable and escapes from the

waveguide. This explains why the right part of the plateau duty-cycle = 0.55 on figure

3 is unstable.

4. Perpectives and conclusions

What has mainly interested us in this paper, concerns ray behavior in PSW characterized

by a gaussian index segment profile. A simple ray propagation model has been used to



Complex behavior of ray in gaussian index profile periodicaly segmented waveguide 6

provide a preliminary numerical study of the waveguide properties. The ideal 2D case

of investigation that was presented here concern first numerical results but, according to

previous work of ray and wave propagation in a chaotic optical fiber [23, 24], PSW seem

to be a promising and versatile system in which optical wave chaos could be observed

and studied experimentally. The analysis shows a complex dynamic that can be found

in usual nonlinear systems such as periodically forced nonlinear pendulum. For some

waveguide parameters, the ray trajectory may be stable or chaotic depending on initial

conditions. We also showed the limits of the equivalent uniform waveguide model, in

that it is inherently unable to describe a nonlinear resonance. Interesting feature may

also arise from the ray analysis of propagation, in particular regarding the properties

of waveguide dispersion. However, deeper analysis has to be performed in order to

fully investigate the potential of those waveguide. From a technological point of view,

no major difficulty seems to exist to achieve an experimental study of our theoretical

predictions considering the fact that the waveguide configuration proposed here is based

on well known and widely used fabrication process.
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Figure 1. Schematic of the investigated longitudinally periodic waveguide and the

transverse gaussian index profile
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Figure 2. Ray path in a gaussian index segmented waveguide (solid line) and in the

equivalent uniform waveguide (dotted line). Segmented waveguide parameters are the

following ones : duty-cycle = 0.5, Λ = 10µm, δn = 0.03, w = 4µm and the equivalent

uniform waveguide parameters are δn = 0.015, w = 4µm. Zp = 275µm represent the

focussing length which is almost identical for the both waveguides [22].
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Figure 3. Focussing period Zp as a function of duty-cycle for a gaussian index

segmented waveguide (solid line) and its equivalent waveguide (doted line). Same

waveguide parameters used as in figure 2 except the period is now Λ = 45µm.
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Figure 4. Ray path in a gaussian index PSW (solid line) corresponding to duty-cycle

= 0.55 and the equivalent uniform waveguide (dot line). The focussing period Zp of

the PSW quiclky shitf from the uniform waveguide one and the ray diverge after some

oscillations.
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Figure 5. Poincaré section for duty-cycle = 0.3. The point A represent initial

conditions used in figure 3. Initials conditions taken around the point A generate

8 fixed points which are surrounded by invariants tori.
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Figure 6. Poincaré section for duty-cycle = 0.55. The point A represent initial

conditions used in figure 3. Initials conditions taken around the point A generate 6

fixed points which are not surrounded by invariants tori.
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Figure 7. Poincaré section for duty-cycle = 0.75. The point A represent initial

conditions used in figure 3. Initials conditions taken around the point A generate 5

fixed points which are surrounded by invariants tori.


