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Triangulated Loop Quantum Cosmology:

Bianchi IX and inhomogenous perturbations

Marco Valerio Battisti,1, ∗ Antonino Marcianò,1, † and Carlo Rovelli1, ‡

1Centre de Physique Théorique, Case 907 Luminy, 13288 Marseille, EU

We develop the “triangulated” version of loop quantum cosmology, recently introduced in the liter-
ature. We focus on the “dipole” cosmology, where space is a three-sphere and the triangulation is
formed by two tetrahedra. We show that the discrete fiducial connection has a simple and appealing
geometrical interpretation and we correct the ansatz on the relation between the model variables
and the Friedmann-Robertson-Walker scale factor. The modified ansatz leads to the convergence
of the Hamiltonian constraint to the continuum one. We then ask which degrees of freedom are
captured by this model. We show that the model is rich enough to describe the (anisotropic) Bianchi
IX Universe, and give the explicit relation between the Bianchi IX variables and the variables of
the model. We discuss the possibility of using this path in order to define the quantization of the
Bianchi IX Universe. The model contains more degrees of freedom than Bianchi IX, and therefore
captures some inhomogeneous degrees of freedom as well. Inhomogeneous degrees of freedom can
be expanded in representations of the SU(2) Bianchi IX isometry group, and the dipole model cap-
tures the lowest integer representation of these, connected to hyper-spherical harmonic of angular
momentum j = 1.

PACS numbers: 04.60.Pp; 98.80.Qc; 04.60.Nc

I. INTRODUCTION

Loop quantum cosmology (LQC) [1] is the most remarkable application of the loop approach to quantum gravity. Its
main result is a robust indication that the cosmological singularity that appears in classical general relativity is removed
by quantum effects [2]. While the physical basis of this results is explicitly grounded on the physical discreteness of
quantum geometry which is predicted [3] by full loop quantum gravity (LQG) [4], the precise relation between LQC
and LQG, on the other hand, has not been fully clarified yet [5]. To shed light on this issue, a finite dimensional
truncation of LQG, which leads naturally to LQC in the Born-Oppenheimer approximation, was introduced in [6].
The idea is to fix a coarse triangulation of physical space and consider a discretization and a quantization of general
relativity on this triangulation. This procedure leads to a truncated version of LQG, interpreted as a description of
a finite number of large-scale (namely cosmological) degrees of freedom. In the simplest version of the theory, called
the “dipole” cosmology, compact physical space is triangulated with two tetrahedra. It was shown in [6] that this
model leads to a LQC-like dynamics in the Born-Oppenheimer approximation, where the scale factor plays the role
of the “heavy” degree of freedom. The discrete dynamics of LQC is recovered in this manner without recurring to
the “area gap” argument.
The main purpose of this work is to analyze this dipole cosmology more in detail, and in particular, interpret the

geometrical meaning of its other (“light”) degrees of freedom. It has been suggested that these could just capture
some space anisotropies. We show that the model captures indeed all the anisotropic degrees of freedom, that is, the
degrees of freedom of Bianchi IX. This may be of particular interest since Bianchi IX describes a generic space-time
near the cosmological singularity [7]. We write an explicit relation between the Bianchi IX degrees of freedom and
those of the model. We discuss the possibility of using this relation in order to construct a loop quantization of the
Bianchi IX cosmological model.
However, the model captures a richer dynamics than Bianchi IX: it includes inhomogeneous degrees of freedom

as well, and therefore truly represents a “first step towards inhomogeneity” in LQC. These degrees of freedom can
be identified as the lowest order term of a tensor harmonic expansion, in terms of Wigner functions, of the spatial
geometry (see Ref. [8]). The physical relevance of this expansion is of interest not only in cosmology, but also in
relation with the study of the LQG n-points correlation functions, which is based on a similar approximation [9, 10].
In the course of our analysis, we obtain also two other results. First, we show that the discrete version of the
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fiducial connection used to define the theory, which was defined in a rather ad-hoc manner in [6], has in fact a neat
and appealing geometrical interpretation on the triangulated space. Second, following [11], we correct the naive Bohr-
Oppenheimer ansatz used in [6] to relate the model variables to the scale factor. We show that using a different ansatz
the Friedman equation can be obtained explicitly in the appropriate limit, from the discrete Hamiltonian constraint.
Therefore the model agrees with the standard formulation of LQC both at the classical and quantum levels. The
triangulated Hamiltonian constraints can be interpreted as a different version of the LQC constraint.
We recall that although most of the LQC literature focuses on the isotropic sector [12, 13], homogeneous [14–16]

and inhomogeneous [17, 18] models have been studied as well.
The paper is organized as follows. In Section II we review the geometry of the Bianchi IX Universe. In Section III

we review the dipole cosmology model. In Section IV we relate the the dipole cosmology with Bianchi IX. In Section
V we study the classical limit of the model and show that it reproduces the classical theory at small curvature. In
Section VI, we study the way anisotropies are described in the model. Finally, inhomogeneous degrees of freedom are
introduced in Section VII.
We set 8πG/3 = 1 = c, where G is the Newton gravitational constant and c the speed of light. We use small

Latin letters a, b, c, ... as spatial indices on the three-dimensional surfaces, and capital Latin letters I, J,K... to label
internal indices of su(2)-algebra-elements, which are raised and lowered with the identity matrix. Sum over internal or
external indices is meant whenever those are repeated, even if they are not paired, and do not appear inside brackets.
When indices are within brackets, summation is not be intended. That is aIb

IcI ≡ ∑

I aIb
IcI , but a(I)b

(I)c(I) = dI .
We consider Euclidean gravity and we set for simplicity the Barbero-Immirzi parameter as β = 1.

II. BIANCHI IX IN A NUTSHELL

In this Section we recall the basic properties of the Bianchi IX cosmological model, which plays a central role in
the following. For a detailed discussion about the topology of this model we refer to the Appendix A.
The Bianchi IX model is the most general homogeneous model for a spatially compact Universe. It is also the basis

of the classical description of a generic inhomogeneous space-time near the singularity, via the Belinski-Khalatnikov-
Lifshitz (BKL) scenario [7]: as the cosmological singularity is approached spatial points (causal horizons) decouple
dynamically and each of them evolves essentially independently as a Bianchi IX model [7]. Thus classical physics is
well described in terms of this model near the cosmological singularity.
Consider a four-dimensional metric space-time M and let φ : M → R ⊗ Σt be a diffeomorphism, where Σt are

the Cauchy surfaces foliating space-time. This is defined to be spatially homogeneous if for any t ∈ R and any two
points p, q ∈ Σt there exists an isometry of the space-time metric which takes p into q. A Bianchi IX cosmology is a
homogeneous cosmology where Σt has the topology of the three sphere S3.
In order to write homogeneous fields on S3, it is convenient to have a homogeneous reference triad field. This can

be constructed by exploiting the fact that S3 can be identified with the group manifold of SU(2). This manifold
carries the natural Cartan (flat) connection

ω = g−1dg = ωIτI = ωIaτIdx
a , (1)

where g ∈ SU(2) and xa are three arbitrary coordinates on SU(2). Here τI = σI/(2i) is a basis in the su(2) Lie
algebra and σI are the Pauli matrices. This connection is left-invariant and satisfies the Maurer-Cartan structure
equation

dωI − 1

2
ǫI JK ω

J ∧ ωK = 0 , (2)

where ǫIJK is the completely antisymmetric tensor. Denote eI = eaI∂a the corresponding dual vector field, with values
in su(2), such that eaIω

J
a = δJI . The Lie brackets of these vector fields read

[eI , eJ ] = −ǫKIJ eK . (3)

By identifying su(2) with an internal space, we can take eI and ωI as the definition of a triad and co-triad in space,
which are invariant under the (left) action of SU(2) on itself. These fields can be used as “fiducial” co-frames and
frames, as they naturally carry information about the homogeneity symmetry group.
An explicit parametrisation for the co-frames can be given in terms of Euler angles as

ω1 = cosψ dθ + sinψ sin θ dφ , (4)

ω2 = sinψ dθ − cosψ sin θ dφ ,

ω3 = dψ + cos θ dφ .
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Here θ and φ are in the range θ ∈ [0, π), φ ∈ [0, 2π), while for the Euler angle ψ one must set ψ ∈ [0, 4π) in order
to achieve a simply connected covering space with the topology of S3. This parametrization allows us to make easily
contact with the definition of Cartan connections in terms of elements g ∈ SU(2). These latter can in fact written as

g =

(

α −β
β⋆ α⋆

)

, with

α = e
i
2
(φ+ψ) cos(θ/2) , β = e−

i
2
(φ−ψ) sin(θ/2) , (5)

from which the above expression for the co-frames follows by means of (1). One can also easily find the expression
for the left invariant frame eaI in this chart, as well as the right invariant vector fields (the Killing vector fields) which
Lie drag the above frame and co-frame.
Any homogeneous Riemannian metric qab on the Cauchy surfaces can be then written in terms of its triadic

projection qIJ on internal space as

qab(x, t) = qIJ(t)ω
I
a(x)ω

J
b (x), (6)

where qIJ is a 3 × 3 matrix, constant in space. In the isotropic case qIJ is a multiple of the identity, and it is
proportional to the Killing-Cartan metric on SU(2). The space-time line-element can then be written in the form
(taking the lapse function N = 1)

ds2 = −dt2 + qIJ ω
I ⊗ ωJ . (7)

The vacuum Einstein equations allow us to write qIJ (t) in diagonal form [19, 20]

qab = a2I ω
I
aω

I
b , (8)

where aI = aI(t) are the three (independent) scale factors which describe the anisotropy of the space slices Σt. Thus
homogeneity reduces the phase-space of general relativity to six dimensions. The inverse metric reads qab = a−2

I eaIe
b
I

and the spatial volume V is given in terms of the scale factors by V = 2π2a1 a2 a3. The closed Friedmann-Robertson-
Walker (FRW) cosmological model is recovered as the particular case a1 = a2 = a3.
The Ashtekar-Barbero variables for the Bianchi IX cosmological model are hence written in terms of the Maurer-

Cartan connection (2) and the dual triad, and are parametrized by three time-functions cI(t) and their duals pI(t) as
(see for instance [11, 16])

AIa = c(I) ω
(I)
a , EaI = p(I) ω ea(I) , (9)

in which enters the determinant of the co-triad ω ≡ det(ωIa), namely the square root of the determinant of the metric
of the three sphere. The connections cI and momenta pI parametrize the six-dimensional phase space, the symplectic
two-form being Ω = dcI ∧ dpI . The momenta are related to the metric variables by the relations

p1 = |a2a3|sgn(a1), p2 = |a1a3|sgn(a2), p3 = |a1a2|sgn(a3) , (10)

and the connections are given in terms of triadic projection of Christoffel symbol components ΓI and extrinsic curvature
components KI = −ȧI/2 as cI = ΓI −KI . The ΓI are here given in terms of the scale factors aI as

ΓI =
1

2

(

aJ
aK

+
aK
aJ

− a2I
aJaK

)

=
1

2

(

pK

pJ
+
pJ

pK
− pJpK

(pI)2

)

. (11)

In the closed FRW model [13] (a1 = a2 = a3) the triadic projection of the Christoffel symbols becomes the constant
Γ = 1/2 and one recovers the isotropic connection c = (ȧ + 1)/2 as well as the momentum |p| = a2. Thus the
cosmological singularity in Bianchi IX appears whenever aI = 0 for some I.

III. A MODEL FOR MERGING LQC IN LQG

We briefly recall the construction of the model [6].
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A. Classical theory

Fix an oriented triangulation ∆n of the topological three-sphere, formed by n tetrahedra t glued by their triangles.
Label the triangles with an index f (“f” for face) that runs from 1 to 2n (the number of faces is twice the number
of tetrahedra). A group element Uf ∈ SU(2) and a su(2) algebra element Ef are associated to each oriented triangle
f . Given the face f−1 obtained inverting the orientation of f , we take the convection that its associated group and
algebra elements read

Uf−1 = U−1
f , Ef−1 = − U−1

f EfUf . (12)

We use the notation Ef = EIf τI and take Uf and Ef as the phase space variables of a dynamical system. The phase

space of this model is that of a canonical lattice SU(2) Yang-Mills theory, i.e. the fundamental Poisson brackets are
given by

{Uf , Uf ′} = 0, {EIf , Uf ′} = δff ′ τIUf , {EIf , EJf ′} = − δff ′ ǫIJKEKf . (13)

In other words, the phase space is the cotangent bundle of SU(2)2n with its natural symplectic structure. The
dynamics of the system is defined by two sets of constraints. The Gauß (gauge) constraint (three constraints per
tetrahedron)

Gt ≡
∑

f∈t

Ef ≈ 0 , (14)

where the sum is over the four faces of the tetrahedron, and the Hamiltonian constraint

Ct ≡ V −1
t

∑

ff ′∈t

Tr[Uff ′Ef ′Ef ] ≈ 0 . (15)

In (15) the sum is over the couples of distinct faces at each tetrahedron, Uff ′ = UfU
−1
f ′ and V 2

t = Tr[EfEf ′Ef ′′ ] because

of (14). Here Vt can be interpreted as (proportional to) the volume of the tetrahedron t — thus we call V =
∑

t Vt
the total volume of space. The Hamiltonian constraint gives the good classical limit once the gauge constraint has
been taken into account. In fact, at the first order the holonomy is U ∼ exp

∫

γ A ∼ 11− |γ|2F +O(|γ|4A2), where F

is the curvature of the connection A and γ denotes a loop. By means of the holonomy expansion, equation (15) can
be formally recast as follows

VtCt =
∑

ff ′∈t

Tr[Ef ′Ef ]− |γ|2
∑

ff ′∈t

Tr[Fff ′ Ef ′Ef ] ≈ 0. (16)

The former term in relation (16) vanishes because of the Gauß constraint, i.e.
∑

ff ′∈tTr[Ef ′Ef ] =

Tr[(
∑

f∈tEf )(
∑

f ′∈tEf ′)] ≈ 0, and thus the second term undergoes the expected continuum limit. We stress that

this happens not only for small values of the length of the loop |γ|, but it does for large values of |γ| too, provided
that |γ|2F is small.
This model can be regarded as a lattice approximation of the geometrodynamics of a closed Universe. To see

this, consider real Ashtekar connection AIa and electric field EaI , with their standard Poisson algebra (see for instance
[4]), on a three-dimensional surface Σ with the S3 topology. Let ∆n be a triangulation of Σ and ∆∗

n a dual of the
triangulation. Then, Uf is the parallel transport of the Ashtekar-Barbero connection along the link ef of ∆∗

n dual
to the triangle f . In the same way, Ef is the flux Φf of the conjugate electric field across the triangle f (parallel
transported to the center of the tetrahedron). The Poisson brackets of Uf and Ef are thus exactly the ones in (13).
For instance, the third equality in (13) is motivated by the parallel transport of Φf to the center of each tetrahedron.
Of course these variables transform via the gauge constraint (14).
The constraint (15) corresponds to the non-graph-changing version of the Hamiltonian constraint. Its quantization

is an operator acting on an underlying spin-network state representing the graph dual to the triangulation taken in
consideration on the spatial manifold. Whenever the triangulation is sufficiently fine, constraint (15) represents an

approximation the to Euclidean part of the Hamiltonian constraint Tr[FabE
aEb]/

√
detE ≈ 0.

B. Quantum theory

The quantization of the model is straightforward. A quantum representation of the observable algebra (13) is
provided in the auxiliary Hilbert space Haux = L2[SU(2)2n, dUf ], where dUf is the Haar measure. That is, states
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have the form ψ(Uf ). The operators Uf are diagonal and the operators Ef are given by the left invariant vector
fields on each SU(2) element. Consistently, operators Ef−1 act as right invariant vector fields. Not surprisingly, the
operator associated to the volume Vt turns out to be the standard LQG volume operator [4].
States which are solutions of the Gauß constraint (14) are labeled by SU(2) spin networks on the graph ∆∗

n. The
dual triangulation ∆∗

n is characterized by a node for each tetrahedron and a link for each face of the triangulation ∆n.
In the dual triangulation only four-valent vertices appear, which intertwine spin-jf representations Djf (U) associated
to the holonomies around the links lf . The basis of these spin-network states is labeled by |jf , ιt〉, where ιt denotes
the intertwiner quantum number at the given node. The spin network basis states are explicitly given by

ψjf ιt(Uf ) = 〈Uf |jf , ιt〉 = ⊗f D(jf )(Uf ) · ⊗t ιt , (17)

in which “·” indicates the contraction of the indices of the D(jf )(U) matrices with the indices of the intertwiners ιt.
This constrained model can be directly quantized à la Dirac. The Hamiltonian constraint can be defined à la

Thiemann, rewriting (15) in the form

Ct =
∑

ff ′f ′′∈t

ǫff
′f ′′

Tr[Uff ′U−1
f ′′ {Uf ′′ , Vt}] ≈ 0 (18)

and then defining the corresponding quantum operator by replacing the Poisson bracket with the commutator. Oth-
erwise, there exists a second possibility: to implement directly as a quantum operator the constraint (15) rescaled by
the volume Vt

C̃t = VtCt =
∑

ff ′∈t

Tr[Uff ′Ef ′Ef ] ≈ 0 . (19)

This is exactly the early proposal to perform the quantization of the Hamiltonian constraint in LQG, see [21]. Physical

states are those annihilated by the quantum version of (19), i.e. we have to impose C̃tψ = 0. The Hamiltonian
constraint on the whole space Σ is obtained combining the set of n Hamiltonian constraints by means of the lapse
function N = {Nt} at each node. Namely, there is C̃(N)ψ ≡ ∑

tNtC̃t ψ = 0, ∀N .

IV. DIPOLE COSMOLOGY

A topological three-sphere can be constructed by gluing together the boundaries of two three-balls (more details in
Appendix A). The boundary of a three-ball is a two-sphere, and these two two-spheres are identified, with opposite
orientations. The boundaries of the two balls define then an “equator” of the three-sphere. Accordingly, a three-
sphere can be triangulated by gluing together two tetrahedra, along all their faces. The equator of the three-sphere
is then triangulated by four triangles f , where f = 1, 2, 3, 4. (This is a cellular complex decomposition [22], and not
a ∆-complex or a simplicial complex decomposition [23, 24].) The dual graph of this triangulation described above is
formed by two nodes joined by four links

∆∗
2 = ✣✢

✤✜s s .
From now we focus on the theory defined by this triangulation.
The unconstrained phase space of the theory defined by this triangulation has twenty four dimensions and is

coordinatized by (Uf , E
I
f ). At each node there are one Hamiltonian constraint C ≈ 0 and three Gauß ones GI ≈ 0.

But it is easy to verify that the constraints of the two nodes are in fact the same, giving a total of four constraints only.
This brings the number of degrees of freedom down to eight. The Poisson bracket algebra between the Hamiltonian
constraints closes in this case, as the Hamiltonian constraints at each node are actually the same one because of (12).
The Hilbert space of the quantum theory is L2[SU(2)4/SU(2)2]. The spin network states that solve the gauge

constraint are given by states |jf , ιt〉 = |j1, j2, j3, j4, ι1, ι2〉. The action of the single Hamiltonian constraint gives in

general C̃|jf , ιt〉 =
∑

ff ′ Cff ′ |jf , ιt〉. The Hamiltonian operator acts at each node. The action of the Hamiltonian
quantum constraint operator implies that

C12|j1, j2, j3, j4, ι1, ι2〉 =
∑

ǫ,δ=±1

C
ǫδι′1ι

′

2

jf ι1ι2
|j1 +

ǫ

2
, j2 +

δ

2
, j3, j4, ι

′
1, ι

′
2〉 , (20)
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in which matrix elements C
ǫδι′1ι

′

2

jf ι1ι2
can be computed using recoupling theory. In terms of the wave function components,

a more compact notation is given by

C̃ ψ(jf , ιt) =
∑

ǫj=0,±1

C
ǫf ι

′

t

jf ιt
ψ
(

jf +
ǫf
2
, ι′t

)

. (21)

Notice that C
ǫjι

′

t

jf ιt
vanishes unless ǫf = 0 for only two j. Matter fields can be simply added in this picture (see [6]).

In [6], a discrete fiducial algebra element ωIf associated to the triangulation was introduced, and used to compare
the variables of the dipole model with the FRW variables. Here we introduce a novel and more useful definition for
ωIf . Consider the Plebanski two-form of the connection ω

ΣI(ω) =
1

2
ǫI JK ω

J ∧ ωK =
1

2
ω eaIǫabc dx

b ∧ dxc , (22)

where ω = det(ωIa), and let ωIf be the surface integral of this two-form on the triangle f of the triangulation. Using

the Maurer-Cartan equation (2), we have

ωIf ≡
∫

f

ΣI =
1

2

∫

f

ǫI JK ω
J ∧ ωK =

∫

f

dωI =

∮

∂f

ωI . (23)

That is, the flux of the Plebanski two-form across a triangle is equal to the line integral of ωI along the boundary of
the triangle. An immediate consequence of this is that for each tetrahedron t

∑

f∈t

ωIf = 0 , (24)

where the sum is over the triangles that bound the tetrahedron t. This is because the boundary of a boundary
vanishes. The set of su(2) vectors ωIf form a natural background fiducial structure for the discrete theory, analogous

to the ωI fiducial connection in the continuous theory. Notice that integral of |Σ| =
√

ΣI ΣI on a triangle f is (twice)
the area of f determined by the background triad.
In the case of the dipole, the explicit properties of the ωIf can be found using the symmetries. The action of SU(2)

that transforms the triangles into one another preserves the equator of the three-sphere. The equator of SU(2) is
formed by the π rotations around a direction ~n. This set of rotations are transformed into one another by the adjoint
action of the group on itself (which rotates ~n preserving the rotation angle). A discrete subgroup of this adjoint action
sends therefore the triangles into one another. Under this adjoint action, ωI (which is in the algebra) transforms under
the adjoint representation, which is the fundamental representation of SO(3). That is, the four vectors ωIf are rotated

into each other by rotations (of the I index) of the same angles. Therefore they are proportional to the normals of
a regular tetrahedron in R3. The cosine of the angle between two such vectors is therefore 1/3. It is also convenient
to take ωI so that the norm of ωIf is one: ωIf ω

I
f ≡ |ωf |2 = 1. This characterizes entirely the ωIf , up to an overall

rotation.

V. ISOTROPY: CLOSED FRW MODEL

We now begin the analysis of the physics and geometry of the model. We start, in this section, with the restriction
of the model to the homogeneous and isotropic sector. This analysis was already presented in [6], but we show here
that it can be strongly ameliorated by using a different ansatz on the relation between the model variables and the
scale factor. Anisotropies and inhomogeneities are discussed in the following sections.

A. Classical framework

Let c(t) and p(t) denote the isotropic connection variables used in LQC [1, 13]. They are related to the scale factor
a and to its time derivative ȧ by c = (ȧ+1)/2 and |p| = a2 (see Section II). The phase space of an homogeneous and
isotropic cosmology is two-dimensional and the basic Poisson bracket is {c, p } = 1.
In [6], the isotropic phase space variables (c, p) are identified with a subspace of the dipole model phase space by

the relations

Uf = exp
(

c ωIfτI
)

, Ef = p ωIfτI . (25)
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These relations define an embedding of the isotropic geometries in the phase space of the model. Notice that this is
different from what is done in [15], where a projection of the anisotropic degrees of freedom of the Bianchi I model
to those ones of the FRW model was defined. (See also [25] for a discussion about superselection of isotropic FRW
states of LQC within the anisotropic Bianchi I setting.)
The second of the relations (25) follows immediatly from (9), (23) and the identification of Ef with the flux of the

electric field E though f (Section III). The discussion of the first relation is more delicate. Recall that Uf is the
holonomy of the connection along a dual link ef ,

Uf = P exp

∫

ef

AIa(ef )τI de
a
f . (26)

Let us assume for simplicity that the identity in the group G is identified with the center of one of the two tetrahedra.
Then the four dual links ef run along one-parameter subgroups of G. Now consider a point g on the SU(2) group
manifold. Because of the flatness of the Maurer-Cartan connection ω, the holonomy of ω from the identity to the
point xP does not depend on the particular path which has been chosen to connect the identity with g. We can write
g = exp(αIτI), in which αI = αI(g) is a vector in the internal space, and then parametrize the path γ from the
identity of the group to g by

g(s) = exp
(

s αIτI
)

, (27)

in which s ∈ [0, 1]. This particular path defines an abelian subgroup of SU(2), and thus the holonomy reads

Uf ≡ P exp

∫

11→g(s)

ωIτI = g(s) . (28)

That is: the holonomy of ω from the identity to g is precisely g. Consider now the tangent to the path γ at g, and
denote it va ∈ Tg (Tg is the tangent space of the group). Since we have a metric structure oqab = ωIaω

I
b defined on

the group manifold, we have also the corresponding one-form na = oqab v
b. The contraction of ω and vads is given by

ω(va ds) = nae
a
Iτ
I ds . (29)

On the other hand, by means of (1) and (27), we find

ω(va ds) = g−1dg(va ds) = αIτIds . (30)

Hence

eaIna = αI . (31)

Now, take g to be the intersection between the dual link ef and the triangle f . By symmetry, the link ef and the
triangle f are orthogonal. The last equation shows that αI(g) is nothing else than the the normal na to the triangle
f , with the index raised by the fiducial triad. But ωf is precisely the integral of eaIna on the triangle, and we expect
it to be proportional to the value of eaIna on g. Therefore we can conclude that

Uf = exp
(

kωIfτI
)

, (32)

for some k. Following [11], differently from what discussed in [6] we make the ansatz

Uf = exp
(

(c+ α)ωIfτI
)

, (33)

where α is a numerical constant determined by the spatial curvature, which we fix below. We refer to [11] for a
discussion of the rational of this identification.
The Gauß constraint reads

GI =
∑

f

EIf =
∑

f

p ωIf = 0 , (34)

and is automatically satisfied because of (24). The scalar constraint (15) reads

C̃ = p2
∑

ff ′

Tr
[

ec ω
I
fτIeαω

J
f τJ e−αω

K
f′τKe−c ω

L
f′τLωSf ′ ωMf τS τM

]

≈ 0. (35)
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Using the relation ec ω
I
fτI = cos(c/2) + 2ωIfτI sin(c/2) the expression above can be simplified. Firstly notice that the

term containing two τ -matrices is zero because of the Gauß constraint. The terms including the traces of three and
five τ -matrices are also zero because of the internal product of two equal vectors ωIf and of the Gauß constraint.

Moreover the term proportional to the trace of six τ -matrices identically vanishes. (See Appendix B for details about
traces of τ -matrices.) Finally, as already discussed, each ωIf identifies a normal to the center of the face f of the

tetrahedron, the angle between them given by cos θff ′ = ωIfω
I
f ′ = 1/3. Collecting these considerations and using the

relations

∑

ff ′

ωIfω
I
f ′ =

∑

ff ′

cos θff ′ = 0,
∑

ff ′

(ωIfω
I
f ′)(ωJf ω

J
f ′) =

∑

ff ′

cos2 θff ′ =
2

3
,

∑

ff ′

|ωf |2|ωf ′ |2 = 6, (36)

we obtain the final form of the scalar constraint

C̃ =
17

6
p2 (cos(c− α) − 1) ≈ 0. (37)

Such a constraint describes the dynamics of a (curved) triangulated closed FRW cosmological model. The ordinary
classical dynamics can be recovered as soon as the limit of small connection |c| ≪ 1 is taken into account. The
constraint (37) rewrites as

C̃ =
17

6
p2

(

c sinα− c2

2
cosα− 2 sin2(α/2)

)

+O(p2c3) ≈ 0. (38)

This is the FRW classical constraint C̃FRW ∝ −p2c(c − 1) as soon as α is fixed at a suitable value α⋆. In fact, the

canonical transformation c → ac + b, p → p/a (a, b ∈ R) with cosα⋆ = (9 −
√
17)/8 transforms the two constraint

into one another. The appearance of the ordinary dynamics for small values of the connection c is in agreement with
the claim that a coarse triangulation well approximates the classical theory for a low-curvature space-time.
The expression (37) can be regarded as the effective Hamiltonian constraint of the standard LQC. The effective

formulation of LQC is usually obtained by “polymerizing” the classical model: the connection is replaced by its
exponentiated version, to reflect the fact that the connection operator does not exist in the LQC Hilbert space
[26]. The effective LQC dynamics can be also obtained by using the methods of geometric quantum mechanics [27].
Replacing c → sin(νc)/ν (where ν denotes the polymer scale, fixed by the “minimal area gap” argument [26, 28])

in C̃FRW , one obtains the constraint (37) for α = α⋆. Here, instead, the “polymerization” is a consequence of the
existence of the triangulation, and a conventional quantization of the truncated theory. In the quantum theory, a
WDW difference equation arises without adding an input from LQG by hand: the lattice model leads directly to a
difference evolution equation, without recurring to the “minimal area gap” argument.

B. Quantum framework

The variable c multiplies the generator of a U(1) subgroup of the compact group SU(2)4. Therefore it is a periodic
variable: c ∈ [0, 4π]. The kinematic Hilbert space Hiso of the theory is thus L2(S1, dc/4π) of square integrable
functions on a circle. Eigenstates of p̂ (from now on we drop the hat in order to simplify the notation) are labeled
by an integer µ and read 〈c|µ〉 = eiµc/2. Wave functions ψ(c) are decomposed in a Fourier series of eigenstates of p,
labelled by an integer µ

ψ(c) =
∑

n

ψµe
iµc/2 . (39)

The fundamental operators on this representation are p and exp(ic/2), whose action on generic states reads

p |µ〉 = µ/2 |µ〉 , exp(ic/2) |µ〉 = |µ+ 1〉 . (40)

In particular, the operator sin(c/2) acts on |µ〉 as

sin(c/2)|µ〉 = 1

2i
(|µ+ 1〉 − |µ− 1〉) (41)

and it is then immediate to obtain the action of the composite operators sin(c/2) cos(c/2) and sin2(c/2).
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By following this path, we can construct the quantum constraint operator corresponding to (37). In particular, in
order for the states ψ(c) to be physical states, the coefficients ψµ = 〈c|µ〉 have to satisfy the recurrence relation

D+(µ) 〈c|µ+ 2〉+D0(µ) 〈c|µ〉 +D−(µ) 〈c|µ− 2〉 = 0 , (42)

where

D+(µ) =
17

6
µ2

(

−i sin(α/2) cos(α/2)− 1

2
sin2(α/2) +

1

2
cos2(α/2)

)

, (43)

D0(µ) =
17

3
µ2

(

1

2
− sin2(α/2)

)

,

D−(µ) =
17

6
µ2

(

i sin(α/2) cos(α/2)− 1

2
sin2(α/2) +

1

2
cos2(α/2)

)

.

In (42) we have chosen the simplest normal ordering of posing multiplicative operators on the left of derivative ones.
Equation (42) has the structure of the LQC difference equation.

VI. ANISOTROPY: BIANCHI IX MODEL

In this Section we free more degrees of freedom than the sole scale factor and we describe the triangulated version
of a homogeneous but non isotropic space-time. Since the space topology is S3, we are therefore dealing with the
Bianchi IX cosmological model. Bianchi IX (or the Mixmaster Universe [19]) is the most general homogeneous model
with this topology: its physical importance relies in describing a generic (classical) solution of the Einstein equations
toward a space-like singularity via the BKL scenario [7].

A. Classical framework

The dynamics of an anisotropic (homogeneous) cosmological model is described by three scale factors aI = aI(t),
which identify three independent directions (in the time evolution) of the Cauchy surfaces. In the connection for-
malism, relaxing the isotropy condition corresponds to consider three different connections cI = cI(t) and momenta
pI = pI(t). Our model can be then extended to an anisotropic setting by demanding that the variables of the theory
are given by

Uf = exp
(

cIωIfτI
)

exp
(

αωIfτI
)

, Ef = pIωIfτI . (44)

Notice that there is a main difference between the holonomies (44) and those used in LQC in the anisotropic context
[11, 16]. In the standard formulation of an anisotropic LQC model the basic holonomies hI , are directional objects,
computed along edges parallel to the three axis individuated by the anisotropies. They read

hI = exp(c(I)ω(I)) = cos(cI/2) + 2ωI sin(c
I/2). (45)

On the other hand, the variables Uf are non-directional objects, because the four faces of the triangolation do not
have any special orientation with respect to the three isotropy axes. The connection components are summed over
and they are thus independent on the I-direction. The Uf are in fact group element of SU(2) that depend on the
face f . Explicitly, they are given by

exp
(

cIωIfτI
)

= cos

∣

∣

∣

∣

∣

cIωIf
2

∣

∣

∣

∣

∣

+ 2
cIωIfτI

|cIωIf |
sin

∣

∣

∣

∣

∣

cIωIf
2

∣

∣

∣

∣

∣

= cos ρf + 2ρ̂IfτI sin ρf , (46)

where ρ̂If denotes the unit vector ρ̂If = ρIf/ρf defined by

ρIf ≡ 1

2
c(I)ω

(I)
f , ρf =

√

∑

I

(ρIf )
2 =

1

2
|cIωIf |. (47)

Let us now analyse the dynamics of the anisotropic model. As above, the Gauß constraint does not carry out any
information since it vanishes because of the construction of the vectors ωIf . Explicitly, it is given by

GI =
∑

f

EIf =
∑

f

p(I)ω
(I)
f = 0. (48)
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The scalar constraint of the triangulated Bianchi IX model reads

C̃ =
∑

ff ′

Tr
[

(cos ρf + 2ρ̂IfτI sin ρf )
(

cos(α/2) + 2ωJf τJ sin(α/2)
)

·

·
(

cos(α/2)− 2ωKf ′τK sin(α/2)
)

(cos ρf ′ − 2ρ̂Lf ′τL sin ρf ′)ξSf ′ξMf τSτM
]

≈ 0 , (49)

where the ξIf are defined by

ξIf ≡ p(I)ω
(I)
f . (50)

The difference with respect to the usual LQC constraint is evident. Let us note that, as a result of taking Uf as
defined above, no terms drop here in virtue of the Gauß constraint, as they did in the isotropic case. In fact, terms of
the kind gfgf ′ωfωf ′ (where gf are generic functions) appear and their sum in f, f ′ no longer vanishes. It is convenient
to define

χff ′ = ωIf ρ̂
I
f ′ , βff ′ = ωIfξ

I
f ′ , γff ′ = ρ̂Ifξ

I
f ′ , σff ′ = ξIfξ

I
f ′ , δff ′ = ρ̂If ρ̂

I
f ′ (51)

and

A = ρ̂ ∧ ξ ∧ ξ, B = ω ∧ ω ∧ ξ, C = ω ∧ ω ∧ ρ̂, (52)

D = ρ̂ ∧ ω ∧ ξ, E = ρ̂ ∧ ρ̂ ∧ ω, F = ω ∧ ξ ∧ ξ.

where the convention is Afff ′ = ρ̂f ∧ ξf ∧ ξf ′ = ǫIJK ρ̂
I
fξ
J
f ξ

K
f ′ and so on. The scalar constraint is given, in terms of all

these quantities, by

C̃ =
∑

ff ′

{

sin ρf ′ cos ρf

[

Aff ′f cos
2(α/2) + sin(α/2) cos(α/2)

(

βff ′γf ′f ′ − βf ′f ′γff ′ +
1

2
χf ′f ′σff ′ + βff ′γff ′+

−βffγf ′f ′ − 1

2
χff ′σff ′

)

+ 2 sin2(α/2)

(

1

4
γffBff ′f −

1

4
γff ′Bff ′f ′ + σff ′Cff ′f ′ + cos θff ′Af ′f ′f

)]

+

+ cos ρf cos ρf ′

[

2 sin(α/2) cos(α/2)Ff ′f ′f + sin2(α/2)

(

βff ′βff ′ − βffβf ′f ′ − 1

2
cos θff ′σff ′

)

− 1

2
σff ′ cos2(α/2)

]

+

+ sin ρf cos ρf ′

[

−1

2
Aff ′f cos

2(α/2) + sin(α/2) cos(α/2)

(

γff ′βff ′ − γffβf ′f ′ − γff ′βff + γffβff ′ − 1

2
χff ′σff ′+

+
1

2
χffσff ′

)

− sin2(α/2)

(

1

4
βf ′f ′Dfff −

1

4
βff ′Dfff ′ + σff ′Cfff ′ + χffFf ′f ′f

)]

+ sin ρf sin ρf ′

[

cos2(α/2)·

·
(

γff ′γff ′ − γffγf ′f ′ − 1

2
δff ′σff ′

)

+ sin(α/2) cos(α/2)

(

1

4
γf ′f ′Dff ′f −

1

4
γff ′Dff ′f ′ − 2σff ′Eff ′f ′ + χff ′Af ′f ′f+

+
1

4
γff ′Dfff ′ − 1

4
γf ′f ′Dfff − χffAf ′f ′f

)

+
1

2
sin2(α/2)

(

−1

2
Eff ′f ′Fff ′f −

1

2
Cfff ′Aff ′f + σff ′ (cos θff ′δff ′+

−χff ′χff ′) + χf ′f ′ (γff ′βff − γffβff ′) + χff (γf ′f ′βff ′ − γff ′βf ′f ′)− 4χffχf ′f ′σff ′

)]}

≈ 0 . (53)

The dynamics of the Bianchi IX model, in the triangulation formalism, is then expressed in terms of geometrical
quantities as angle-like (51) and volume-like (52) quantities. As can be checked by direct calculation, the isotropic
constraint (37) is recovered as soon as c1 = c2 = c3 and p1 = p1 = p3. In this case all the terms in (52) vanish because
the internal wedge product of two equal elements ωf . Furthermore the terms containing any single angle (51) are also
zero because of the Gauß constraint.
As in the isotropic case, the constraint (53) describes a discrete (triangulated) dynamics. Such a dynamics can be

regarded as an effective one in which all the outcomes of the triangulation are abridged. The standard Bianchi IX
model is recovered in the limit of small connections, i.e. as soon as |cI | ≪ 1. In this limit, which corresponds to take
|ρf | ≪ 1, the expression (53) is rewritten as

C̃ = pIpJ (const+ cK + cKcL) +O(p2c3) ≈ 0. (54)

In order to make the notation the easiest as possible, constants (depending also on α) are not written in (54) and
the contraction of the free indices is understood. The isotropic constraint (38) is recovered if a basic canonical
transformation is performed, i.e. cI → cI + dI and pI → pI + bI for dI , bI ∈ R3.
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Summarizing, the constraint (53) describes the effective LQG dynamics of an anisotropic homogeneous space-time
having the spatial topology of a three-sphere, i.e. the Bianchi IX cosmological model. In the triangulation formalism
the anisotropies (different scale factors or different connections) are described in terms of angles (51) and (internal)
volumes (52) characterizing a generic dynamical tetrahedron. The contact with the standard (classical) dynamics is
recovered as soon as the flat space-time limit |cI | ≪ 1 is taken into account.

B. Quantum framework

The fact that the dipole model includes Bianchi IX suggests that we may use it in order to construct a loop
quantization of Bianchi IX. We analyze this intriguing possibility in this section. There are two possible ways for
doing so. One is to start from the (cI , pI) variables, and define the dynamics with the Hamiltonian operator (53),
where all quantities are taken as functions of (cI , pI) via equations (47) and (50). The second possibility is to use
the full quantum theory of the dipole cosmology model, defined in Section VB. Neither of these approaches gives a
simple quantum model, as far as we can see, since the resulting dynamical equation is complicated in both cases.
Let us begin with a basis of states |cI〉 that diagonalize the variables cI , and write the quantum state as ψ(cI) in

this basis. The pI operator is then −i∂/∂cI. For each face f , consider the three scaled variables (47) and the three
scaled momenta (50). The Hamiltonian operator (53) is entirely written in terms of the four operators ξIf , sin ρf ,

cos ρf and ρIf/ρf . These operators are easily written in this representation. The first is

ξIf = −iω(I)
f

∂

∂c(I)
, (55)

while the others are diagonal. Thus, (53) yields a Hamiltonian constraint on this Hilbert space, and defines a
quantization of the Bianchi IX cosmological model.
Does this quantization yield discreteness? Fix for a moment one of the four faces, say f . Observe that ρIf enters the

dynamical theory only as an argument of the group element Uf in (44) via Uf = exp(2ρIfτI) exp(αω
I
f τI). Therefore

the physically relevant domain of ρIf appears to be given by

|ρIf | < 4π (56)

that is, adding 4π to |ρIf | gives back the same configuration of the Uf variable (for a fixed f). Accordingly, the
configuration space is compact, and we expect the conjugate variable pI to have discrete spectrum. This is reflected
in the fact that the norm of ρIf enters the Hamiltonian only via sin ρf (or cos ρf). It seems therefore reasonable to
expect that what is going on is something analogous to what happens in standard LQC, namely we can chose a scalar
product where momenta have discrete spectrum, the operator sin ρf is well defined while ρf is not, and the dynamics
is restricted to a discrete set of eigenstates. These observations are intriguing, but incomplete, because there are four
distinct faces f , and four distinct group elements Uf , and generically, there is no shift on the cI that gives back the
same value for all four group elements. In other words, the map cI → Uf defined in (44) maps R3 into the compact
space [SU(2)]4, but its image is not necessarily compact. We leave the development of these reasonings for future
investigations.
The second alternative is to use the dipole model Hilbert space Hd, formed by states ψ(Uf ), and spanned by the

discrete |jf , i〉 basis. The reduction of a quantum theory to a sector where some degrees of freedom are frozen (here
the inhomogeneous ones) is, in general, a rather non trivial step [5]. If we have given the Bianchi IX Hilbert space
HIX formed by functions ψ(cI) and the cI → Uf map (44), then a natural projection π : Hd → HIX is simply defined
by ψ(cI) = ψ(Uf (c

I)). But in order to map υ : HIX → Hd we need to choose a way to compute cI out of Uf . One
natural possibility is for instance to define

cI =
∑

f

ρ
(I)
f

2ω
(I)
f

. (57)

Using this, we can map any state in HIX to Hd. For instance, we can expand an eigenstate exp(iµIcI) =
∏

I〈cI |µI〉
of pI on the spin network basis, considering Uf = Uf (ρ

I
f ) and formula (17), via

∏

I

〈jf , i|µI〉 =
∫

SU(2)4
dUf

[

⊗fDjf (Uf ) · i · i
]

exp



i
∑

I

µI
∑

f

ρ
(I)
f

2ω
(I)
f



 . (58)
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Using these coefficients, the Bianchi IX Hamiltonian operator can be simply defined by C̃IX = πC̃υ, where C̃ is
the dipole Hamiltonian constraint operator, defined in the Section VII. This operator will be studied more in detail
elsewhere.

VII. INHOMOGENEITY: PERTURBATION OF BIANCHI IX

Let us finally come to the full geometrical interpretation of the “dipole model”. The remaining large-scale grav-
itational degrees of freedom captured by the dipole dynamics are necessarily inhomogeneous. The easiest way to
characterize them is to consider an expansion of the gravitational fields in tensor harmonics, and identify them with
the lowest order term of this expansion. In other words, we can imagine that we want to describe only some low order
term of a mode expansion of the geometry over the three sphere, and that the dipole variables read out these terms.
In [29], Regge and Hu considered a similar mode expansion around Bianchi IX, using Wigner D-functions. (See also
[30].) Here we follow their approach, adapting it to the first order formalism we are using.

We begin by recalling the Regge-Hu expansion [29]. The Wigner D-functions Dj
α′α(g(x)) determine a basis of

functions of the symmetry-group of the model. Recall that we can use group elements g(x) to coordinatize the physical
space that has the S3 topology. Let q0ab(x, t) be the metric of an homogeneous space. A general perturbations to the
three-metric hab(x, t) = qab(x, t)−q0ab(x, t) can first be translated into a matrix of space-scalars hIJ(x, t) by projecting
it on the invariant one-forms, that is

hab(x, t) = hIJ(x, t)ω
I
a(x)ω

J
b (x); (59)

Regge and Hu decompose these scalars in terms of definite angular-momentum components of the three-metric
hj αIJ (x, t), labelled by spin and magnetic numbers {j, α}.

hIJ(x, t) =
∑

j,α

hjαIJ(x, t) . (60)

These can be expressed in terms of Wigner D-functions Dj
α′α(g(x)) (whose form is recalled in Appendix C) via (see

[29])

hjαIJ(x, t) =

j
∑

α′=−j

hjαα
′

IJ (t)Dj
α′α(g(x)); (61)

The time dependent amplitudes hjααIJ (t) represent, at fixed j, (2j + 1)2 inhomogeneous degrees of freedom. They are
governed by a set of coupled differential equations, studied in [31].

At a first sight, the dependence of the scalar harmonic function hjαIJ(x, t) on the modes j, α in equations (60-61)
seems to be incompatible with the Peter-Weyl decomposition [32] of hIJ (x, t). However, the choice of not summing
over the j, α labels contracted with the Wigner D functions relies on the evidence, due to Einstein equations, that
j, α states can be de-coupled from α′ states. This leaves as a possible choice to fix perturbations of the metric with
definite j, α. Indeed, only the α′ states are mixed by the action of the derivative operators and thus by the linearized
Einstein tensor, as explained in Appendix C. This can be understood moving from the action (C9) of the invariant
operators on the Wigner D functions and expressing it in terms of derivatives vector fields on the Euclidean space E4

in which S3 can be embedded.
Let us adapt this formalism to the first order variables we use. We start with the triads. Let us write a generic

perturbed triad EaI (x, t) as the sum of the background triad eI field and a perturbation.

EaI (x, t) = eaI (x) + ψaI (x, t) . (62)

It is convenient to project the perturbation on the background triad

ψaI (x) = ψIJ(x, t) e
a
J(x) . (63)

Following Regge and Hu, we write this as a sum of components of definite j and α quantum numbers

ψIJ (x, t) =
∑

j α

ψj αIJ (x, t) , (64)
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where

ψj αIJ (x, t) =

j
∑

α′=−j

ψjαα
′

IJ (t)Dj
α′α (g(x)) . (65)

The same can be done for the connection

ωIa(x) → ω̃Ia(x, t) = ωIa(x) + ϕIa(x, t) . (66)

Project ϕIa on the invariant one-forms

ϕIa(x) = ϕIJ (x, t) ωJa (x) . (67)

Expanding this in components of definite j and α quantum numbers gives

ϕIJ(x, t) =
∑

j α

ϕIJj α(x, t) , (68)

where

ϕIJj α(x, t) =

j
∑

α′=−j

ϕIJjαα′ (t)D
j
α′α (g(x)) . (69)

The (ϕIJjαα′ (t), ψIJjαα′ (t)) are the time-dependent expansion coefficients that capture the inhomogeneous degrees of

freedom. They, are given by matrices in the internal indices I, J , labeled by the spin j that runs from j = 1/2 to all
the semi-integers numbers, and the corresponding magnetic number α.

A. Dipole model

Suppose we restrict the geometry by assuming that the matrices (ϕIJjαα′ (t), ψIJjαα′ (t)) are diagonal in the internal
indices I, J and it is different from zero only for lowest nontrivial integer spin j = 1 and for, say, α = 0. That is, we
restrict to the components

ϕIJ1,0,α(t) = δIJϕIα(t). ψIJ1,0,α(t) = δIJψIα(t). (70)

where α = −1, 0, 1. Then we have that the inhomogeneities are determined by precisely nine plus nine variables
ϕIα(t), ψ

I
α(t), namely nine degrees of freedom. Assuming that the Gauß constraint reduces the degrees of freedom by

three (see below), we obtain six degrees of freedom, which is the number of degrees of freedom captured by the dipole
variables. Thus, such a geometry is entirely captured by the six degrees of freedom of the dipole model. Therefore,
we can interpret the six extra degrees of freedom of the dipole model (beyond anisotropies), as a description of the
diagonal part of the lowest integer mode of the inhomogeneities
If we do so, we can relate the variables of the dipole model to the quantities (ϕIα(t), ψ

I
α(t)). Notice that the one

forms ω̃I no longer satisfy the Maurer-Cartan equation (2). The fiducial algebra-elements ωIf are therefore perturbed
as well. At first order, for a generic perturbation, let us define

ω̃If =
1

2

∫

f

ǫI JK ω̃
J ∧ ω̃K = ωIf +

∫

f

ǫI JK ω
J ∧ ϕK = ωIf +

∑

jαα′

ϕKLjαα′ (t) φ
I jαα′

f KL (71)

where

φI jαα
′

f KL =

∫

f

ǫI JK Dj
α α′ ω

J ∧ ωL. (72)

In particular, if we restrict to the diagonal j = 1, α = 0 case,

ω̃If = ωIf + ϕ(I)
α (t) φ

(I)
f,α (73)

where

φIf,α =

∫

f

ǫI JK D1
0α ω

J ∧ ωK (74)
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are fixed coefficients. Then the relation with the dipole variables can be written as

Uf (c
I , ϕIα) = exp

(

cI ω̃IfτI
)

exp
(

αωIfτI
)

, (75)

which replaces (44). Similarly, we can write

ẼIf =

∫

f

(eaI + ψaI )ǫabcdx
b ∧ dxc = EIf + 2

∫

f

ψIJ ǫ
J
KL ω

K ∧ ψL = EIf + 2
∑

jαα′

ψjαIJφ
J
f,αα′ (76)

In particular, if we restrict to the diagonal j = 1, α = 0 case,

ẼIf = EIf + 2ψαI φ
I
f,α. (77)

The Gauß constraint no longer identically vanishes. It can be split into two parts: the homogeneous and the
inhomogeneous terms

GI =
∑

f

p(I)ω
(I)
f + 2ψαI

∑

f

φIf,α ≈ 0 . (78)

The first part is the constraint which appears in (48) within the Bianchi IX framework and vanishes identically because
of the Stokes theorem. The second gives three conditions on the inhomogeneous perturbations to the electric fields
Ẽf .

VIII. CONCLUSIONS AND PERSPECTIVES

We have studied a triangulated (loop) quantum cosmology model, and analyzed the geometry it describes. In
particular, the model of a dipole SU(2)-lattice theory, triangulating a topological three-sphere by means of two
tetrahedra, has been related to a Bianchi IX cosmological model perturbed by six inhomogeneous degrees of freedom.
This work is mainly based on the case of the dipole cosmology, for which the algebra of Hamiltonian constraint

closes. Higher modes of the mode expansion can be captured with finer triangulations, but these require a more work
for a consistent definition.
The truncation we use relies on spherical topology. It is likely that the technique we have used could be extended

to general compact spaces, but we have not studied this issue. For the extension to non-compact spaces, on the
other hand, the problem is delicate. To use the same technique, one should partition a non-compact spatial slice with
“fiducial boxes”, as is done in LQC, but this would reduce the inhomogeneities that the model can capture. Doing
so, on the other hand, would be interesting for the comparison with LQC.
We have only discussed the dynamics generated by the Euclidean part of the Hamiltonian constraint and with a

fixed value of the Barbero-Immirzi parameter. The full Hamiltonian constraint, the possibility of using of a generic
value of the Barbero-Immirzi parameter β, and the Lorentzian theory, will be considered elsewhere.
Finally, notice that the results of this paper, together with the link between LQC and spin-foams derived in [41],

might provide a path to connect cosmological spin-foam models from the cosmological sector of LQG.
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Appendix A: The three-sphere

We collect in this Appendix some useful information on the structure of a three sphere, and a few other useful
formula. In A1 we illustrate the topology of the three-sphere and its relation to the Hopf fibration. In subsection
A2, using the isomorphim of groups S3/{1,−1} ∼ SO(3), in which the subgroup {1,−1} is the kernel of the group
homomorphism h : S3 → SO(3), and identifying with SU(2) the double cover of SO(3), namely Spin(3), we clarify
which is the role of the group SU(2) in describing the topology of S3 by means of the Hopf fibration. In subsection
A3, we describe how the SU(2) symmetry structure enter the definition of the Cartan one-forms.
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1. Topology of the three-sphere: Hopf fibration

We illustrate here a concrete realisation of the Hopf map [33] acting on S3, which defines a fibration with fiber space
S1 and the base space S2. In what follows we identify R4 with C2 and R3 with C × R. Taking (x1, x2, x3, x4) ∈ R4

and (ξ1, ξ2, ξ3) ∈ R
3 the identification is achieved respectively by means of z0 = x1 + i x2 and z1 = x3 + i x4 for R4,

and z = ξ1 + iξ2 and y = ξ3 for R3. A unit three-sphere embedded in R4, as (x1)
2 + (x2)

2 + (x3)
2 + (x4)

2 = 1, reads
in terms of the complex variables |z0|2 + |z1|2 = 1. A unit two-sphere is identified with the subset of C×R such that
|z|2 + y2 = 1. Let us parametrize S2 by means of the expression (ξ1)

2 + (ξ2)
2 + (ξ3)

2 = 1 and take a natural bundle
projection by the Hopf map π : S3 → S2

ξ1 = 2(x1 x3 + x2 x4), (A1)

ξ2 = 2(x2 x3 − x1 x4),

ξ3 = −(x1)
2 − (x2)

2 + (x3)
2 + (x4)

2.

With this mapping the relation (ξ1)
2 + (ξ2)

2 + (ξ3)
2 =

(

(x1)
2 + (x2)

2 + (x3)
2 + (x4)

2
)2

= 1 holds.

We can now consider a stereographic projection [34, 35] of a point in the southern hemisphere S2
− ⊂ S2 from its

north pole and label its coordinates as U, V . On the complex plane C containing the equator of S2 ⊂ C × R, we
consider the function T = U + i V , which is within the circle of unit radius on the complex plane and is given by

T =
ξ1 + i ξ2

1− ξ3
=
x1 + i x2
x3 + i x4

=
z0
z1
, (A2)

with ξi ∈ S2
−. For a λ ∈ U(1) such that |λ| = 1, we can see that T is invariant under (z0, z1) → (λz0, λz1), which

are both points in S3. Since the set of complex numbers λ with |λ|2 = 1 form the unit circle in the complex plane,
it follows that for each point m̄ ∈ S2, the inverse image π−1(m̄) is a circle, i.e. π−1(m̄) ≃ S1. Thus the 3-sphere is
realized as a disjoint union of these circular fibers.
Similarly, the stereographic coordinates P, Q of the northern hemisphere S2

+ projected from the south pole read

S =
ξ1 − i ξ2

1 + ξ3
=
x3 + i x4
x1 + i x2

=
z1
z0

(A3)

with ξi ∈ S2
+. On the equator, S2

+ ∩ S2
−, one finds T = S−1.

The fiber bundle structure is then given by the following local trivialization1: on the south hemisphere one defines
φ−1
− : π−1(S2

−) → S2
− × U(1) as given by (z0, z1) → (z0/z1, z1/|z1|) while on the north hemisphere the quantity

φ−1
+ : π−1(S2

+) → S2
+ × U(1) is given by (z0, z1) → (z1/z0, z0/|z0|). This construction clarifies that S2 is the base

space of S3.

2. SU(2) description of the three-sphere

A further geometric interpretation of the Hopf fibration can be obtained considering rotations of the two-sphere in
a three-dimensional space [35]. We recall that Spin(3) is the double cover of the rotation group SO(3) and that is
diffeomorphic to S3. The spin group acts in a transitive way on S2 by rotations. The stabilizer subgroup2 of a point
of S2 is isomorphic to the circle group, from which it follows that S3 is a principle circle bundle over S2. This is
exactly the Hopf fibration.
Concretely, this can be seen identifying Spin(3) with the group of unit quaternions Sp(1): a point (x1, x2, x3, x4) ∈

R4 is interpreted [36] as a quaternion q ∈ H by q = x1 + ix2 + jx3 + kx4 and the three-sphere is then identified with
the quaternions of unit norm, namely q q̄ = |q|2 = (x1)

2 + (x2)
2 + (x3)

2 + (x4)
2 = 1. Now a vector p in R3 can be

identified with the imaginary part of a quaternion, i.e. p = i p1+ j p2+k p3, and the mapping p→ q p q̄ is a rotation in

1 Each local trivialization is well defined on each chart, while on the equator they become φ−1

− : (z0, z1) → (z0/z1,
√
2z1) and φ−1

+
:

(z0, z1) → (z1/z0,
√
2z0): the transition function on the equator is τ+−(ξ) = (

√
2z0)/(

√
2z1) = ξ1 + i ξ2 ∈ U(1). While following a path

around the equator, the transition function τ+−(ξ) crosses the unit circle in the complex plane once. Thus the U(1) bundle S3 →π S2 is
characterized by the homotopy class 1 of π1(U(1)) = Z. The Hopf fibration is therefore locally a product space, but it is not a trivial
fiber bundle, as S3 is not (globally) a product of S2 and S1.

2 For every element x of a set X, the stabilizer subgroup of x is the set of all elements in G that fix x.
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R3, and thus an isometry as |qpq̄|2 = |p|2. Morover it is not hard to check that this mapping, as a rotation, preserves
orientation. The q are then unit quaternions provided by the group of rotation in R3, with opposite elements −q
undergoing the same transformations. The set of unit quaternions q which fixes a unit imaginary quaternion have
the form q = ζ + ν p, with ζ, ν ∈ R such that |ζ|2 + |ν|2 = 1 (i.e. a circle subgroup). Taking then p = k, one can
define the Hopf fibration via the map π : q → qkq̄. The image set by the Hopf map is made of (still unit) quaternions
provided only by imaginary parts: these points lie on the two-sphere S2. As a quaternion q = x1 + i x2 + jx3 + kx4
can be recast in terms of a 2× 2 matrix,

q(x1, ... x4) :=

(

x1 + i x2 x3 + i x4
−x3 + i x4 x1 − i x2

)

, (A4)

one can identify the group of unit quaternions with SU(2) and represent imaginary quaternions by the skew-hermitian
2×2 matrices, which are isomorphic to C×R. The fiber for a given point of S2 consists now of all those unit quaternions
whose image via the Hopf map π : q → qkq̄ aims there. These points are easily recognised to belong to a circle. A
direct way of seeing it is to consider that the multiplication by unit quaternions is equivalent to realise a composition
of rotations in R3: for instance multiplying by qt = ekt corresponds to a rotation by 2t around the z axis — varying
t one draws a great circle of S3. As long as a generic base point β = (l,m, n) is not the antipode (0, 0,−1), any
quaternion qβ (associated to the base point β by means of π−1) not having component on the z axis, say for instance

qβ = (1 + n,−m, l, 0)/
√

2(1 + n), will continue aim there after multiplication by qt: the fiber of the base point β is
therefore given by quaternions of the form qβ ·qt, which does not represent merely a topological circle, but a geometric
one [37]. For the base point (0, 0,−1), whose associated quaternion can be taken to be the i axis, the fiber is simply
(0, cos t,− sin t, 0).

3. Differential structure of the three-sphere

The unit quaternions, once expressed by means of the unimodular (because of the qq̄ = 1 condition identifying a
S3) matrices (A4), can be in turn represented by means of Euler angles, which are another set of coordinates {θ, φ, ψ}
on the three-sphere such that θ and φ, as usual, are in the range θ ∈ [0, π), φ ∈ [0, 2π), while for the Euler angle ψ
one must set ψ ∈ [0, 4π) in order to achieve a simply connected covering3 space with the topology of S3. By these
one q assumes the form

q(θ, φ, ψ) := e−φτ1 e−θτ2 e−ψτ3 . (A5)

In terms of Euler angles, isometries of the three-sphere are well understood as left (and right) translation generated by
SU(2) representations. Recall that a left (right) translation is a mapping µ : S3 → S3 which take a point P in a point
point P′, where q(P) = µ q(P′) (and respectively q(P) = q(P′)µ). These are really translations, as the only mapping
having fixed points is the identity. Otherwise, a mapping having fixed points can be defined by q(P′) = µ(P)µ−1.
This latter is clearly a rotation.
The right and the left translation can be used to define differential operators on S3. For instance a right translation

can be represented by a hermitian matrix υ and a parameter v, for which q(P′) = q(P) ei vυ or by a differential
operator K and a parameter v, such that q(P′) = [eivKq](P). The compatibility condition for those two representation
is q υ = Kq.
Similarly, a left translation is defined by υ q = K̃q, where using (A4) and previous definition of left and right

translation, it is possible to see that K̃(x1, x2, x3, x4) = K̄(−x1, −x2, −x3, x4). Similarly, in term of Euler angles,
one must send (φ, θ, ψ) → (−ψ, −θ, −φ). Right and left translation operators can then be determined from these
definitions. If we relabel a point in R4 with (x1, x2, x3, x4 ) = (xi, X4), we can recognize, respectively, the right and
the left translation operators to be [38]

Jk =
i

2

(

xk
∂

∂x4
− x4

∂

∂xk
− xsǫskl

∂

∂xl

)

(A6)

J̃k =
i

2

(

xk
∂

∂x4
− x4

∂

∂xk
+ xsǫskl

∂

∂xl

)

3 This chart breaks down at the poles θ = φ = ψ = 0, corresponding to the identity 11, and at θ = φ = 0 and ψ = 2π, corresponding to
−11.
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Notice that these generators4 fulfill two su(2) algebras

[Ji, Jj ] = i ǫijkJk , [J̃i, J̃j ] = i ǫijkJ̃k , [J̃i, Jk] = 0 . (A7)

These four-dimensional operators are all tangent to the surfaces of constant modulus, represented by (x1)
2 + (x2)

2 +
(x3)

2 + (x4)
2 = et, with t ∈ R. Thus, focusing on our case t = 0 and equating relation (A4), which is written in

cartesian coordinates, to relation (A5) expressed in terms of Euler angles, one finds change of variables and then
translation operators in terms of Euler angles.
Making a further transformation, which defines Hopf coordinates in terms of Euler angles,

η =
1

2
θ , ξ+ =

1

2
(ψ + φ) , ξ− =

1

2
(ψ − φ) , (A8)

one finds the transformation from cartesian to Hopf coordinates

x1 = sin(θ/2) sin ξ− , x2 = sin(θ/2) cos ξ− , x3 = cos(θ/2) sin ξ+ , x4 = cos(θ/2) cos ξ+ . (A9)

Transformations (A8) and (A9) allow us to think at the topology of S3 in terms of two-torus coordinates, as both

ξ1, ξ2, ∈ [0, 2π). In fact, we can consider the third component of the left and right invariant vector fields J3 and J̃3,

and their combinations J3 − J̃3 and J3 + J̃3. Their duals one-forms are now linear in dξ− and dξ+, as

ω3 − ω̃3 = −2 cos2 η dξ+ , (A10)

ω3 + ω̃3 = −2 sin2 η dξ− .

The metric on the unitary 3-sphere turns out to be expressed by

dl2 = 4
(

(dη)2 + sin2 η (dξ−)
2 + cos2 η (dξ+)

2
)

, (A11)

which makes clear that the trajectories of these two-parameter subgroup are constant η surfaces and that they shrink
in the ξ− direction near the degenerate trajectory η = 0, and in the ξ+ direction near the other degenerate direction
η = π/2. In terms of the Hopf fibration, each torus, which topologically is in stead the product of two circles, can be
thought as the stereographic projection of the inverse image of a circle of latitude of the two-sphere.

Appendix B: Traces of τ -matrices

We give here results of straightforward calculations of traces of products of τ -matrices. We remind that a basis for
the su(2) algebra elements in the fundamental representation is given by τI = σI/(2i), in which σI are intended to
be the Pauli matrices. It follows that:

Tr[τIτJ ] = −1

2
δIJ ,

Tr[τIτJτK ] = −1

4
ǫIJK ,

Tr[τIτJτKτL] = −1

4
(δIKδJL − δILδJK) +

1

8
δIJδKL ,

Tr[τIτJτKτLτS ] =
1

4

(

−1

4
δKSǫIJL +

1

4
δKLǫIJS + δLSǫIJK + δIJǫLSK

)

,

Tr[τIτJτKτLτSτM ] =
1

8

(

−1

4
ǫIKLǫJSM +

1

4
ǫJKLǫISM +

1

2
δSM (δIKδJL − δILδJK)+

+
1

2
δKL(δISδJM − δIMδJS) +

1

2
δIJ(δKSδLM − δKMδLS)− 2δIJδKLδSM

)

. (B1)

4 Rotations about the fixed point x1 = x2 = x3 = 0 and x4 = 1 are generated by the operators Lk = Jk − J̃k.
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Appendix C: Wigner D-functions

Finally, we recall here an explicit formula for the Wigner D-functions. These are obtained from their very defini-
tion in terms of matrix elements of the rotation operator R(φ, θ, ψ) = exp(−iφjx) exp(−iθjy) exp(−iψjz) , in which
jx , jy, jz are generators of the su(2) Lie-algebra, and can be expressed as [39]

Dj
α′α ≡ 〈j α′|R(φ, θ, ψ)|j α〉 = e−iα

′φ djα′α(θ) e
−iαψ ,

djα′α(θ) = [(j + α′)!(j − α′)!(j + α)!(j − α)!]1/2
∑

s
(−1)α

′
−α+s

(j+α−s)!s!(α′−α+s)!(j−α′−s)!

(

cos θ2
)2j+α−α′−2s (

sin θ
2

)α′−α+2s
,(C1)

in which the sum over s is over such values that the factorials are nonnegative.
For j = l integers, the Wigner D-functions are simply related to the spherical harmonics Yl,α(θ, φ) by the relation

Dl
α′α(g) = (−1)−α

′
√

4π/(2l+ 1)Yl,−α′(θ, φ) eiα ψ . (C2)

More in particular, the Wigner D-functions, which are the representation functions of the SO(3) and SU(2)
simmetry-groups, can be obtained by imposing that they satisfy the following differential equations, expressed in
terms of the Euler angles

Ĉ Dj
α′α =

[

∂2

∂θ2 + cot θ ∂
∂θ +

1
sin2 θ

(

∂2

∂φ2 − 2 cos θ ∂2

∂φ ∂ψ + ∂2

∂ψ2

)]

Dj
α′α = j(j + 1)Dj

α′α ,

L̂3D
j
α′α = −i ∂∂ψ D

j
α′α = α′Dj

α′α , L̂zD
j
α′α = −i ∂∂φ D

j
α′α = αDj

α′α . (C3)

In the above equation we have introduced two bases of generators for the su(2) algebra and their common Casimir op-

erator Ĉ, which is an invariant of the group. The angular momentum operators {L̂1, L̂2, L̂3} of the three-dimensional
rotation group in quantum mechanics, which are the intrinsic angular momentum operators of a rigid body, are related
to the left-invariant vector fields eaI (which generate right-transformations) via the relations

L̂1 = i ea1 ∂a , L̂2 = i ea2 ∂a , L̂3 = i ea3 ∂a . (C4)

The spatial angular momentum operators {L̂x, L̂y, L̂z} are in turns related to the right-invariant Killing vectors ξaI
(which generates left-transformations) by the formulae

L̂x = −iξa1 ∂a , L̂y = −iξa2 ∂a , L̂z = −iξa3 ∂a . (C5)

In the chart provided by the Euler angles, it is straightforward to find the expression for the left invarint frames eI
as well as that one for the right invariant vector fields ξI (which Lie drag the the frame and coframe introduced in
Section II). For the frames

e1 = − cosψ
∂

∂θ
− sinψ

sin θ

∂

∂φ
+

cos θ sinψ

sin θ

∂

∂ψ
,

e2 = sinψ
∂

∂θ
− cosψ

cos θ

∂

∂φ
+

cos θ cosψ

sin θ

∂

∂ψ
,

e3 =
∂

∂ψ
, (C6)

which fulfill the relation [eI , eJ ] = −ǫ K
IJ eK .

It turns out that the Killing vectors are in the following relation to the frames

ξ1 = cosφ
∂

∂θ
− cos θ cosφ

sin θ

∂

∂φ
+

sinφ

sin θ

∂

∂ψ
=

= − (cosφ cosψ − cos θ sinφ sinψ) e1 + (cosφ sinψ + cos θ sinφ cosψ) e2 + (sinφ sin θ) e3 ,

ξ2 = sinφ
∂

∂θ
+

cos θ cosφ

sin θ

∂

∂φ
− cosφ

sinψ

∂

∂ψ
=

= − (cosψ sinφ+ cos θ cosφ sinψ) e1 + (sinφ sinψ − cos θ cosφ cosψ) e2 − (cosφ sin θ) e3 ,

ξ3 = − ∂

∂φ
= sin θ sinψ e1 + sin θ cosψ e2 − cos θ e3 , (C7)
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from which the Lie brackets [ξI , ξJ ] = ǫ K
IJ ξK easily follow. Moreover

[ ξI , eJ ] = ξI ⊲ eJ = ξI ⊳ eJ = 0 , (C8)

which means that eI are left-invariant vector fields (i.e. they are invariant under the left action “ ⊲” of the Killing
vectors) and, in turns, that ξI are right-invariant vector fields (i.e. they are invariant under the right action “⊳ ” of
the frames).
We want now to show, following [40], that the action of the derivatives, expressed in terms of the action of the

invariant operators, mixes only the α′ states. That is what we briefly mentioned in Section VII while we were
expanding inhomogeneous perturbations (intended as scalar harmonic functions on S3) as a linear combination of
Wigner D-functions.
From the previous equations it follows that

L̂+D
j
α′α =

(

L̂1 + i L̂2

)

Dj
α′α = i

√

(j + α′)(j − α′ + 1)Dj
(α′−1)α ,

L̂−D
j
α′α =

(

L̂1 − i L̂2

)

Dj
α′α = i

√

(j + α′ + 1)(j − α′)Dj
(α′+1)α ,

L̂3D
j
α′α = α′Dj

α′α . (C9)

The invariant operators can be rewritten in terms of Cartesian coordinates xA = {x1, x2, x3, x4} in the Euclidean
space E4 in which S3 is embedded (see Appendix A). In stead of the three co-frames ωI in the Euler angles chart, in
the Euclidean space the invariant basis is given by the four forms σA, which are related to ωI by the transformation
matrices SIA(xA) via

ωI = 2SIA(xA) dx
A . (C10)

Conversely, the coordinates differentials of E4 are expressible in terms of ωI via dxA = 1/2SIAω
I .

The coordinates derivatives, which are the vector fields of E4, are then expressed by

∂

∂xA
= 2SIA(xA) eI . (C11)

It turns out to be much easier, using the homogeneity of the S3 spatial slices, evaluate the Cartesian derivatives at
the pole xP = (x4 = 1, x1 = x2 = x3 = 0), where the transformations matrices reduce to SIA = −δIA thus yielding
the relations

∂

∂xA

∣

∣

∣

xP

= −2 eI . (C12)

Equation (C12) allows us, by means of (C4), to express derivatives in terms of invariant operators. On other hand,
equations (C9) specify the actions of the invariant operators on the Wigner D-functions. It follows, once the Einstein
equations for the Bianchi IX model have been rewritten in terms of Cartesian coordinates xA [29], that the pertur-
bations to homogeneity possess states with definite j, α and that only perturbations labelled by α′ states are mixed.
This result has been used in Section VII in order to de-couple j, α modes from α′ modes.
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637665;
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