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Abstract

This work is concerned with the semiclassical approximation of the Schrödinger-
Poisson equation modeling ballistic transport in a 1D periodic potential by means
of WKB techniques. It is derived by considering the mean-field limit of a N -body
quantum problem, then K-multivalued solutions are adapted to the treatment of
this weakly nonlinear system obtained after homogenization without taking into
account for Pauli’s exclusion principle. Numerical experiments display the behaviour
of self-consistent wave packets and screening effects.
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1 Introduction

This article is the third and last part of a numerical study of semiclassical approximation of
the motion of electrons in short-scale periodic potentials. We have now in mind to take into
account also for the self-consistent interaction potential, which leads to a weak nonlinearity.
More precisely, we are about to focus onto the following Schrödinger-Poisson equation in
one space dimension,

i~∂tψ+
~

2

2m
∂xxψ = e

(

Vions(x)+Vext(x)+eVP (t, x)
)

ψ, −ǫ0∂xxVP = |ψ|2; x ∈ R (1)

with ~ the Planck’s constant, ǫ0 the dielectric permittivity of the medium (it will be set to
ǫ0 ≡ 1 throughout the whole paper), m and e the electronic mass and charge and Vion ∈ R

the periodic potential modeling the interaction with a lattice of ionic cores. The smooth and
slowly-varying external potential Vext stands usually for an applied electric field, a confining
potential or a doping term.

In order to shed complete light on the derivation and the qualitative properties of the sim-
plified model (1), we first start from the exact Hamiltonian for a neutral system constituted
of N atoms with Z electrons each in R

3:

H =

N∑

α=1







P2
α

2M
+

Z∑

i=1

p2
αi

2m
+

N∑

β( 6=α)=1




1

2

(Ze)2

|Xα − Xβ |
+

Z∑

i=1



− Ze2

|xβi
− Xα|

+
1

2

Z∑

j=1

e2

|xαi
− xβj

|














.

(2)
The notations have been chosen as follows: M,Pα,Xα stand for the mass, momentum and
position of the nuclei while m,pαi

,xαi
refer to those of the electrons in the αth atom. All

in all, this constitutes a system of N(Z + 1) charged particles interacting with each other
via Coulombian forces (the atomic cores are lumped into a unique particle in this model).
Ab initio computations will therefore refer to the ones involving this full Hamiltonian (2)
which can be considered as exact in nonrelativistic quantum mechanics.

However, even for moderate values for N,Z, such ab initio computations become quickly
almost impossible in terms of complexity. Hence several simplifications are usually in order:

• The Born-Oppenheimer assumption states that the nuclei’s motion decouples adiabati-
cally because M ≫ m; it can be neglected or at least treated classically.

• One can safely restrict (2) to vN valence and conduction electrons. All the others can
generally be considered as tightly tied to the cores and confined inside the inner shells.

At this level, we have reduced our original system to a collection of N ions with v va-
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lence/conduction electrons. So the Hamiltonian (2) boils down to Hions + He− with

Hions =
N∑

α=1







P2
α

2M
+

1

2

N∑

β( 6=α)=1

(ve)2

|Xα − Xβ |






, He− =

vN∑

i=1







p2
i

2m
+ Vions(xi) +

1

2

vN∑

j( 6=i)=1

e2

|xi − xj |






.

(3)

The ionic potential Vions(x) =
∑N

α=1 Vps(|x − Xα|) where Vps is a smoothered “pseudo-
potential” originating from both Coulomb attraction and screening effects from inner shells
electrons; it is referred to as the “effective core potential” in quantum chemistry. In the
simplest Bohr-Oppenheimer framework, one assumes the Xα to be constant and Pα ≡ 0
thus remains only He−(x,p) which can nonetheless constitute a delicate quantum many-body
problem, especially in case N ∈ N is big.

A common way out lies in the mean-field approximation that we shall present in §2.1;
roughly speaking, it consists in deriving self-consistently an average potential in place of the
Coulomb interaction by letting N → ∞ with a convenient scaling. Within this framework,
electrons move as independent particles submitted to an overall mean electric field. The
Pauli exclusion for fermions can be included or not in the derivation; Hartree or Hartree-
Fock models are obtained accordingly. We shall choose to ignore it; hence we somehow
consider an electron cloud treated as a condensate, that is a system endowed with the
property that all its components share the same one-particle state described by a unique
wave function ψ solution of the Hartree equation 1 . This model as a “one-particle equation”
is a somewhat crude approximation of the original many-body problem; since the wave
function contributes to the effective potential only via its corresponding position density,
this is the simplest realization of a time-dependent density functional theory (TDDFT). In
the situation we consider in this article where (repulsive) Coulomb interaction is only to
be taken into account, rigorous results have been obtained in case Vions ≡ 0 in [5,6]. We
shall indicate formally the changes that result from the inclusion of this potential. As the
number of electrons is considered infinite, it is reasonable to assume that the number of
corresponding ions diverges also; hence Vions can be seen as a smooth periodic potential
admitting a Bravais lattice endowed with a Wigner-Seitz cell in R

3. This matches the
physical setting of the articles [23,42,7,8].

We have in mind to conduct semiclassical computations on this Hartree model by means of
the “two-scale WKB method” originally presented in [31] (see also [18,21]) extensively used
in the linear setting (no self-interactions) in [28,26]. Relying on the well-known fact that
the Hartree term is but the Green function of the Laplace operator in R

3, we rewrite the
mean-field equation as the weakly nonlinear Schrödinger-Poisson system. Then, assuming
translational invariance in two independent space directions, [44], we move forward to a
one-dimensional model like (1) (see [37,41,48] for examples of its physical realizations) to
which it becomes possible to apply a variant of the linear WKB receipe. These derivations
are presented in full detail within §2.2. Many (semi)classical limits have been carried out
recently by means of the Wigner transform relying on the compactness lemma of [38]. In
the context of the Schrödinger-Poisson system, it leads to a Vlasov-Poisson like equation
possibly including the energy bands corresponding to the last valence or the first conduction
levels; consult §2.3 and e.g. [38,7,50]. At a computational level, simulating measure solutions
of this limit equation represents a heavy task even in one space dimension. Hence we chosed
to stick to the recent framework proposed by Brenier [15] (see also [1,12]) in §§3.1–2 for us to
solve the Vlasov-Poisson problem in a mathematically simple but founded sense. It is then
possible to use numerical techniques borrowed from [30] in order to update the intensities
and thus the electric field in a semi-Lagrangian framework, see [10]. This is explained in
detail in §3.3 assuming the reader familiar with the numerical techniques for K-branch
solutions, [16,24,25,28,26,27,46]. Other methodologies have been proposed in e.g. [34,39].

§4 is devoted to computational results. The first one is a self-consistent free electrons cloud’s

1 One speaks also about electrons (or mostly bosons) in coherence.
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simulation; it corresponds somewhat to the simplest situation described by (1), namely
V ′

ion ≡ 0 and V ′
ext ≡ 0, with initial data leading to a 5-branch solution thus asking for the

inversion routines of [29]. Next, we take Vion(x) = cos(x), the so-called Mathieu’s potential
already studied in [28,26]. At last, we tried to simulate the screening effect for an impurity
in the same periodic potential, but with Vext being a Coulomb term. For each of these, we
expect to validate the proposed WKB algorithm against direct Schrödinger computations
obtained via the Fourier schemes advocated in [3].

2 Hartree equation: mean-field assumption, WKB ansatz and Wigner analysis

2.1 Derivation of the Schrödinger-Poisson system via density functions

In this section, we aim at deriving the Hartree equation emanating from (3) within the
strongest Born-Oppenheimer assumption, i.e. considering the ions steady. More precisely,
we shall write down a “vN -body Schrödinger equation” (recall v as the number of va-
lence/conduction electrons per atom) for the wave function Ψ : R

+ × R
3vN → C satisfying

i~∂tΨ = He−Ψ. It would perhaps be more natural to consider a Hartree-Fock derivation
instead, taking into account for the Pauli exclusion principle. However, recent numerical
experiments suggest that for many physical situations, the parameters’ size and the density
are such that “exchange effects” can acutally be neglected, see [4,43]. Thus we first change
to “atomic units” for which ~ = m = e = 1 and without any loss of generality, we assume
v = 1. Making explicit the dependence on N ∈ N of the wave function, there holds

i∂tΨN (t,x1, ...xN ) = −1

2

N∑

i=1

{

∆xi
+ Vion(xi)

}

ΨN +
1

N

∑

1≤i<j≤N

VCou(|xj − xi|)ΨN , (4)

with xi ∈ R
3 and VCou standing for the Coulomb term, already studied in the semiclassical

context in [26], §5. We also introduce the density, DN (t,XN ,YN ) = ΨN (t,XN )ΨN (t,YN ) ∈
C, where XN = (x1,x2, ...,xN ) and YN = (y1,y2, ...,yN ) ∈ R

3N . At this level, it is conve-
nient to define another important object, namely its nth marginal for any N ∋ n < N :

DN :n(t,x1, ...,xn,y1, ...,yn) =

∫

R3(N−n)

DN (t,x1, ...,xn, zn+1, ..., zN ,y1, ...,yn, zn+1, ..., zN )dzn+1...dzN .

One observes at once that the local position density ̺(t,x) reads: ̺(t,x) = DN :1(t,x,x)
for any x ∈ R

3. All these quantities can be deduced from equation (4). It is now that the
“coherence assumption” comes into play since we must complete (4) with peculiar initial
data like,

ΨN (t = 0,x1, ...,xN ) =
N∏

i=1

ψ0(xi), (5)

which expresses the fact that initially, all the N electrons located in xi=1,...,N are in the
same quantum state ψ0, an assumption which violates Pauli’s exclusion principle 2 . Never-
theless, the idea is to prove, at least formally, that this “ansatz” propagates in time t ∈ R

+

asymptotically in N → ∞.

2 A Slater determinant, [2], could be considered instead
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It is well-known that densities satisfy the Von-Neumann equation,

i∂tDN (t,XN ,YN ) = −1

2
[∆XN

− ∆YN
]DN (t,XN ,YN )

+

N∑

i=1

[Vion(xi) − Vion(yi)]DN (t,XN ,YN )

+
1

N

∑

1≤i<j≤N

[VCou(|xj − xi|) − VCou(|yj − yi|)]DN (t,XN ,YN ),

from where one deduces the BBGYK 3 hierarchy for each of the nth marginals, [6]:

i∂tDN :n(t,Xn,Yn) = −1

2
[∆Xn

− ∆Yn
]DN :n(t,Xn,Yn)

+
n∑

i=1

∫

R3(N−n)

[VCou(|xi − z|) − VCou(|yi − z|)]DN :n+1(t,Xn, z,Yn, z).dz

+e(n,N) +

n∑

i=1

[Vion(xi) − Vion(yi)]DN :n(t,Xn,Yn),

(6)
since the last integral term coming from Vion vanishes identically; e(n,N) stands for an
error term going to zero as N → +∞.

Now, it is tempting to consider the “self-consistent one-particle equation”:

i∂tψ = −1

2
∆xψ + Vion(x)ψ +

(∫

R3

VCou(|x − z|)|ψ(t, z)|2.dz

)

ψ, (7)

for which the density reads simply ρ(t,x,y) = ψ(t,x)ψ(t,y) for x,y in R
3. The same way,

it can be shown to solve a “one-particle Von-Neumann equation”,

i∂tρ(t,x,y) = −1

2
[∆x − ∆y]ρ(t,x,y) + [Vion(x) − Vion(y)]ρ(t,x,y)

+ρ(t,x,y)

(∫

R3

[VCou(|x − z|) − VCou(|y − z|)]ρ(t, z, z).dz

)

,

from which we infer that ρn(t,Xn,Yn)
def
=

∏n
i=1 ρ(t,xi,yi) is solution of an infinite hierar-

chy similar to (6):

i∂tρn(t,Xn,Yn) = −1

2
[∆Xn

− ∆Yn
]ρn(t,Xn,Yn) +

n∑

i=1

[Vion(xi) − Vion(yi)]ρn(t,Xn,Yn)

+

n∑

i=1

∫

R3(N−n)

[VCou(|xi − z|) − VCou(|yi − z|)]ρn+1(t,Xn, z,Yn, z).dz.

Hence it is reasonable to expect that under the same hypotheses as in [5], i.e. ψ0 ∈ H2(R3)
and (5), the following convergence holds:

∀t ∈ R
+, (x,y) ∈ R

6, DN :1(t,x,y)
N→∞−→ ρ(t,x,y).

By a uniqueness result for the Cauchy problem on the infinite hierarchies, [5], this implies

that ψ solution of (7) is related to (4) via ΨN (t,x1, ...,xN ) =
∏N

i=1 ψ(t,xi), up to an error
that goes eventually to zero as N → ∞. This expresses the fact that electrons remain in

3 after Born, Bogolyubov, Green, Yvon and Kirkwood.
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coherence as time increases. All in all, mean-field provides a convenient way to compute
approximately a global wave function ΨN solution of (4) from the knowledge of a simpler
one ψ solving the self-consistent problem (7); this shortcut is only meant to be relevant for
large values of N ∈ N. The final step is to rewrite (7) as

i∂tψ(t,x) = −1

2
∆xψ(t,x) + Vionψ(t,x) + VP (t,x)ψ(t,x), (8)

where the self-consistent potential VP = VCou ∗x |ψ|2, which is equivalent to say that VP

solves the Poisson equation:

−∆xVP (t,x) = |ψ|2(t,x), x ∈ R
3. (9)

If we restrict ourselves to models endowed with translational invariance in 2 space dimen-
sions [44], a one-dimensional problem like (1) arises. The preceding derivation seems to
indicate that only smooth initial data ψ(t = 0, .) = ψ0 ∈ H2(R3) are relevant, like in [5].

2.2 Bloch spectrum and the one-dimensional (linear) WKB ansatz

From the former section, one can notice that the mean-field model (7) is mostly con-
cerned with a “large system” containing an infinite number of strongly delocalized va-
lence/conduction electrons which wander inside the material. A concrete example of such
a system is given by a metal cluster, see [13], where N can grow from 1000 up to the Avo-
gadro’s number (which may be considered as “infinite” in practice). Typically, mean-field is
too much of a rough approximation for quantum chemistry. Relying on these considerations,
it is quite natural to switch to the characteristic scales of the bulk system under consid-
eration; thus a dimensionless parameter ε is introduced, which measures the microscopic-
macroscopic ratio. We can assume it small in order to look for “wave-packet solutions” of
(7) with a spatial spreading of the order of 1/ε. Physically speaking, this means exactly that
only strongly delocalized electrons wandering inside the crystal are sought.

Sticking hereafter to our one-dimensional model, we recast (1) in macroscopic variables
x 7→ x/ε, t 7→ t/ε and taking into account for the slowly-varying exterior potential Vext, we
obtain a scaled problem as in [28,26],

iε∂tψ +
ε2

2
∂xxψ = Vion

(x

ε

)

ψ + (VP ψ) + Vext(x)ψ, Vion(x + 2π) = Vion(x), (10)

for which VP stands for the self-consistent potential and Vext is smooth and independent of
time. From now on, we assume the lattice period to be 2π on the atomic lengthscale for the
sake of simplicity only.

The naive “WKB plane-wave” ansatz A(t, x) exp(iϕ(t, x)/ε) doesn’t have the correct struc-
ture hence following [18,21,31], we shall consider instead a two-scale amplitude A(t, x, x/ε) exp(iϕ(t, x)/ε)
as follows:

A
(

t, x, y =
x

ε

)

= A0(t, x, y) + εA1(t, x, y) + · · · ; A
(
t, x, y + 2π

)
= A(t, x, y) ∈ C. (11)

Since we are interested in arbitrary small values of ε ≥ 0, the x ∈ R and y ∈ R variables must
be uncorrelated. Taking this new dependence into account inside (10) yields the expression:

−A∂tϕ +
1

2

(

∂yyA − A(∂xϕ)2 + 2i(∂xϕ)(∂yA)
)

−
(

Vion(y) + Vext(x) + VP (t, x)
)

A

+
iε

2

(

2∂tA + A∂xxϕ + 2∂xA ∂xϕ − 2i∂xyA
)

+
ε2

2
∂xxA = 0.

(12)
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• The O(1) terms inside (12) rewrite

−
{(

∂tϕ + Vext(x) + VP (t, x)
)

−
(1

2
(∂y + i(∂xϕ))2 − Vion(y)

)}

A,

thus they cancel if and only if y 7→ A0(t, x, y) exp(iκy) is an eigenstate of H(p̂, y) =
− 1

2∂yy + Vion(y), p̂ = i∂y, written in Bloch wave form, see [11,45] and associated to the
eigenvalue E(∂xϕ) = −∂tϕ − Vext(x) − VP (t, x):

H(y, p̂)(A0 exp(iκy)) = −
(
∂tϕ + Vext(x) + VP (t, x)

)
(A0 exp(iκy)), κ = ∂xϕ.

That is to say, we want y 7→ Ψκ(y) = exp(iκy)A0(t, x, y) to satisfy for all (t, x) ∈ R
+×R:

∀y ∈ R, H(p̂, y)Ψκ = −1

2
∂yyΨκ + Vion(y)Ψκ = E(κ)Ψκ. (13)

Note that the slow variable x shows up only as a parameter; thus an Hamilton-Jacobi
equation has been derived from this cell problem,

∂tϕ + E(∂xϕ) + Vext(x) + VP (t, x) = 0. (14)

However, it isn’t clear at this level why the Poisson potential doesn’t depend on the fast
scale y = x/ε as A0 does.

• The second step consists in writing A0(t, x, y) = a0(t, x)zκ(y) with stationary 2π-periodic
orthonormal modulations: ‖zκ‖L2(0,2π) = 1. Then following [18], the solvability condition
to make O(ε) remainder terms in (12) vanish leads to the modified transport equation:

∂ta0 + E′(∂xϕ)∂xa0 +
a0

2
∂xE′(∂xϕ) + β(t, x)a0 = 0. (15)

The phase-shift term is purely imaginary; β(t, x) = iℑβ(t, x) (ℑ. standing for the imag-
inary part of a complex number). It is sometimes referred to as the Berry phase which
stems from the interaction between the periodic lattice and the exterior potentials. How-
ever, one can always multiply (15) by 2ā0 and take its real part in order to derive the
more usual continuity equation for the intensity |a0|2:

∂t|a0|2 + ∂x

(

|a0|2 E′(∂xϕ)
)

= 0. (16)

• We must at last indicate how to extract the Poisson potential VP from ϕ, Ψκ and the
principal amplitude a0. The computation is shown for the pre-caustic region, and for a
smooth wave-function ψ (we recall from §2.1 that presumably, ψ0 ∈ H2(R)). Let us start
from

−∂xxVP (t, x) = |ψ|2(t, x) = |a0(t, x)|2|zκ(x/ε)|2, κ = ∂xϕ.

Since y 7→ zκ(y) is 2π-periodic and C∞ (energy bands are isolated in 1d, see e.g. the
introduction of [8]), it can be written as its Fourier series:

−VP (t, x) =

∫ x ∫ x′

|a0(t, s)|2|zκ(t,s)(s/ε)|2.ds.dx′

=
∑

j,j′∈Z

∫ x ∫ x′ {

(a0.a0)(t, s)ẑ
j
κ.ẑj′

κ

}

exp(i(j − j′)s/ε).ds.dx′.

This self-consistent potential is defined up to 2 constants coming from boundary/decay
conditions for the Poisson equation. We now integrate by parts making use of exp(i(j −

7



j′)s/ε) = −iε
j−j′ ∂s

{
exp(i(j − j′)s/ε)

}
and the smoothness of a0 and zκ. The terms j = j′

yield an adiabatic decoupling:

−VP (t, x) =

∫ x ∫ x′

|a0(t, s)|2 ‖zκ(t,s)(.)‖2
L2(0,2π)

︸ ︷︷ ︸
∑

j∈Z
|ẑj

κ|2=1

.ds.dx′ + O(εm), (17)

where m ∈ N is the smoothness of a0, i.e. x 7→ a0(t, x) is of class Cm for t in some time
interval. This is somewhat a homogenization process for the Poisson equation arising in
this 1d context. In a 3-D case, a stationary phase argument on the Hartree term would
(formally) give a similar result with m = 1 (see also [19,40]).

All in all, starting from the Schrödinger equation (10), one has to consider the Bloch spec-
tral decomposition (13) producing a countable set of distorted plane waves Ψn

κ, n ∈ N,
associated to the energy bands En(κ); consult [2,7,11,18,21,31,28,26,42] for more details.
Thus a convenient nth band ansatz reads (as in the linear case) at least before breakup,

ψε
n(t, x) = a0(t, x) exp

(
iϕ(t, x)

ε

)

zn
κ (x/ε), κ = ∂xϕ(t, x), (18)

where the unknowns evolve according to the nth band weakly nonlinear WKB system:

∂tϕ+En(∂xϕ)+Vext(x)+VP (t, x) = 0, ∂tµ+∂x

(

E′
n(∂xϕ) µ

)

= 0, −∂xxVP (t, x) = µ = |a0|2.
(19)

Equations (18)–(19) mean in particular that an initial datum in the nth band En(κ), zn
κ

always leads to an approximate solution in the same band; hence the Poisson nonlinearity
induces a behaviour not so different compared to the linear cases in [26]. This is one of the
reasons why it is possible to extend K-branch solutions to cover the present situation.

Remark 1 The post-caustic region is more delicate to handle as we expect ϕ and µ to
become multivalued as in [28,26]. So, in order to remain consistent, the Poisson equation
will involve µ1,2,... plus many cross-terms which go weakly to zero (as formally shown in
[28] §3.2) except on caustics and at the edges of the Brillouin zone. Hence another O(ε)
error term comes into play when neglecting them. We shall go back to that in §4.

2.3 Rigorous semiclassical limit: the Wigner-Bloch series

In this section, we shall recall briefly the main result from [7] concerning the semiclassical
behaviour of mixed-states for (8)–(9), in our 1D context (10) though. More precisely, we
consider a scaled system of equations in R

+ × R,

iε∂tψ
ε
j +

ε2

2
∂xxψε

j = Vion

(x

ε

)

ψε
j + (V ε

P ψε
j ), Vion(x + 2π) = Vion(x),

ψε
j (t = 0, x) = ψε

j,0(x), j ∈ N, ̺ε(t, x) =
∑

j∈N

λε
j |ψε

j (t, x)|2; −∂xxV ε
P = ̺ε.

(20)

The infinite vector (ψε
j )j∈N represents the quantum mixed state of the system under con-

sideration. Furthermore, it is assumed:

λε
j ≥ 0,

∑

j∈N

λε
j = 1,

∑

j∈N

(λε
j)

2 ≤ O(1)ε3.

8



Then, from the Bloch decomposition recalled in §2.2, one defines the Wigner-Bloch series
as follows,

wε
n(t, x, ξ) =

∑

γ∈2πZ

ζε
n,n

(

x +
ε

2
γ, x − ε

2
γ
)

exp(−iγξ),

with ζε
n,p standing for the Bloch density matrix built from the projectors Iε

n onto the wave-
packet subspaces Sε

n (notation borowed from [28], §2.3 is used here),

∀x, y ∈ R
2, ζε

n,p(t, x, y) =
∑

j∈N

λε
jIε

nψε
j (t, x)Iε

pψε
j (t, y).

Now, let the initial data concentrate inside an isolated energy band En(κ), like e.g. (18),
then it follows that, in convenient topologies,

wε
n(t, x, ξ)

ε→0
⇀ f(t, x, ξ) ≥ 0, ̺ε(t, x)

ε→0
⇀ ̺(t, x) :=

∫ 1
2

− 1
2

f(t, x, ξ).dξ, V ε
P → VP .

Moreover, the kinetic distribution f satisfies the semiclassical (nth band) Vlasov-Poisson
equation,

∂tf + E′
n(ξ)∂xf − ∂xVP (t, x)∂ξf = 0, −∂xxVP = ̺, (21)

in the sense of distributions. One sees here one big advantage in using WKB methods in the
present context when compared to Wigner techniques. Indeed, WKB construction delivers
a rather simple expression (18) for a wave function belonging to the nth energy band and
approximately satisfying (1) for t ≥ 0 and ε positive but small enough through the solving
of (19). In sharp constrast, Wigner techniques furnish only information on the ideal ε = 0
case discarding fine-scale modulations zn

κ (./ε); it would therefore be more difficult to study
numerically the weak consistency of physical observables relying on this approach, left apart
the more singular moment systems admitting measure-valued solutions, see [27,33,46,49].
However, results of this type do provide a guideline as we shall see in the forthcoming
section.

3 K-branch solutions with a weak nonlinearity

K-branch solutions, see e.g. [16,24,25,46], have been used up to now exclusively in the
context of linear dispersive equations. Hence we must show now how to adapt this tool in
order to tackle the weakly nonlinear problem (19).

3.1 Lagrangian solutions for Vlasov-Poisson in 1D with V ′
ext ≡ 0

The Hamilton-Jacobi equation in (19) must be considered in a “geometric sense”, i.e. relying
on the method of characteristics. We also want our framework to be fully consistent with
the “ideal case” ε = 0 studied in [7,44,50] by means of Bloch-Wigner series where a (nth

band) Vlasov-Poisson equation is derived,

∂tf + ∂x(E′
n(ξ)f) + ∂ξ(F (t, x)f) = 0, f(t = 0, x, ξ) = f0(x, ξ), (22)

and where F (t, x) stands for the electric field F = −∂xVP . We aim at building solutions by
means of a method which can easily be implemented on a computer. So, following a recent
paper by Brenier, [15], we start with a N -particle density function,

fN (t, x, ξ) =
1

N

N∑

α=1

δ(x − Xα(t))δ(ξ − Uα(t)), t ≥ 0,

9



δ(.) the Dirac measure in 0, which evolves according to the differential system:

Ẋα(t) = E′
n(Uα)(t), U̇α(t) = F (t,Xα(t)). (23)

The trick is based on the fact that the Laplacian’s Green function in 1d is but the Heaviside
function H; accordingly,

∂xF (t, x) =

∫

R

fN (t, x, ξ).dξ =
1

N

N∑

α=1

δ(x − Xα(t)),

which yields:

F (t, x) =
1

N

N∑

α=1

H(x − Xα(t)), H(0) =
1

2
. (24)

From [12,15], we know that the nonlinear differential system (23)–(24) is well-posed in
phase-space for any value N ∈ N thus we get:

Ẋα(t) = E′
n(Uα)(t), U̇α(t) =

1

N

N∑

β=1

H(Xα(t) − Xβ(t)).

We stress that, since N ∈ N is finite, this is but a 2N×2N autonomous first-order differential
system with a BV right-hand side. So the associated Liouville equation is linear and the
renormalization property of [12] fully applies hence ensures well-posedness. However, we
now intend to pass formally to the continuous limit N → ∞ hence f(t, x, ξ) =

∫

R
δ(x −

X(t, α))δ(ξ − U(t, α)).dα for which (23)–(24) boils down to:

∂tX(t, α) = E′
n(U(t, α)), ∂tU(t, α) =

∫ R

0

H(X(t, α) − X(t, α′)).dα′, (25)

where R = ‖a0(t = 0, .)‖2
L2(R). This is a one-dimensional bicharacteristics system for the

semiclassical Vlasov-Poisson equation and we shall interpret (19) in this “geometric sense”
hereafter, see also Remark IV.6 in [38]. Of course, the symbol α which refers to the La-
grangian mass variable has here a completely different meaning compared to [43].

Let us now show that this (Lagrangian) construction is consistent with (22):

d
dt

∫

R
f(t, x, ξ)φ(x, ξ).dx.dξ = d

dt

∫

R
φ(X(t, α), U(t, α)).dα

=
∫

R
{∂xφ(X,U)∂tX + ∂ξφ(X,U)∂tU}(t, α).dα

=
∫

R
{∂xφ(X,U)E′

n(U(t, α)) + ∂ξφ(X,U)F (t,X(t, α))}.dα

=
∫

R
f(t, x, ξ){∂xφ(x, ξ)E′

n(ξ) + ∂ξφ(x, ξ)F (t, x)}.dx.dξ.

The third step uses the definition of the differential system (25) and the last one is just a
consequence of the definition of f by means of Dirac masses. So clearly we have derived a
weak formulation of (22) for any test function φ ∈ C1(R2). At last, the case V ′

ext 6= 0 can
be handled by replacing F (t,Xα(t)) by F (t,Xα(t)) − V ′

ext(Xα(t)) in (23) and so on.

3.2 Consistency of bicharacteristics’ system (25) before breakup

We shall consider monokinetic initial data, like in [50],

f(t = 0, x, ξ) = ̺0(x)δ(ξ − u0(x)), ̺0 = a2
0 ≥ 0,

10



which leads to a monokinetic solution ̺(t, x)δ(ξ − u(t, x)) at least for some time if ̺0, u0

are smooth, [40]. Indeed we can initialize (25) as follows:

X(t = 0, α) = X0(α), U(t = 0, α) = u0(X0(α)), (26)

with X0 the reciprocal mapping of ̺0 (i.e. the pseudo-inverse of the antiderivative of ̺0) in
the sense of [30]. That is to say, we consider r0(x) =

∫ x

−∞
̺0(s).ds, an increasing function.

There obviously holds limx→+∞ r0(x) = ‖a0(t = 0, .)‖2
L2(R) = R; usually R = 1 because of

the probabilistic interpretation of the kinetic distribution. The reciprocal mapping X0 is
defined as a pseudo-inverse of r0, i.e.,

X0 : [0, 1] → R

α 7→ X0(α) := inf sup{y ∈ R such that r0(y) = α}.
(27)

Now, by definition (27), X0 is a solution at time t = 0 of the Jacobian equation:

̺(t,X(t, α))

∣
∣
∣
∣

∂X

∂α
(t, α)

∣
∣
∣
∣
= 1. (28)

Pushing further, one observes from (19) that r(t, x), any antiderivative of µ, solves the
transport equation ∂tr + E′(u)∂xr = 0; hence α = r(t,X(t, α)) = r0(α) holds before
breakup. Moreover, assuming the solution of (25)–(26) being given (by a suitable extension
of the recent theorems in [1,12,50]), let us consider any function σ(t, x) satisfying (28) with
σ(t = 0, x) = ̺0(x). This means that for any continuous test-function φ ∈ C0(R),

∫

R

φ(X(t, α)).dα =

∫

R

φ(x)σ(t, x).dx.

Then, differentiating on both sides with respect to time and using (25) leads to:

∫

R

φ(x)∂tσ(t, x) =

∫

R

∂xφ(X(t, α))E′
n(U(t, α)).dα =

∫

R

∂xφ(x)E′
n(u)(t, x).σ(t, x).dx,

which is but a weak formulation of the continuity equation ∂tσ + ∂x(σE′
n(u)) = 0 holding

for t 7→ σ(t, .) smooth enough. Hence by a uniqueness result 4 , we have σ(t, .) = ̺(t, .) since
intial data coincide.

A consequence is that for any φ ∈ C0(R2) and X,U solution of (25)–(26), there holds:

∫

R

δ(x−X(t, α))δ(ξ−U(t, α))φ(x, ξ).dx.dξ =

∫

R

φ(X,U)(t, α).dα =

∫

R

φ(x, u(t, x))̺(t, x).dx,

with u(t, .) implicitly defined by u(t,X(t, α)) = U(t, α) as long as α 7→ X(t, α) remains a
diffeomorphism (an admissible change of variables!). This precisely means that the density
built out of (25)–(26) reads f(t, x, ξ) = ̺(t, x)δ(ξ − u(t, x)) on this time interval.

3.3 Updating the intensities within a time-marching scheme

We have presented in the former section a Lagrangian framework to solve the Vlasov-Poisson
equation (22). Following [36], the WKB strategy can be seen as a mean to manufacture

4 A simple energy estimate gives d

dt

∫

R

σ2

2
.dx = −

∫

R
σ(∂xσ)E′

n(u).dx =
∫

R

σ2

2
∂xE′

n(u).dx which makes sense for Lipschitz u’s.
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a quantum wave function starting from the knowledge of the classical motion in phase
space. The theory of “K-branch solutions” [16,24,46] is well-suited 5 to compute efficiently
multivalued velocities ~u = ∂xϕ (or crystal momentum); it is moreover easier to handle when
compared to the processing of the full moment systems emanating from a Wigner analysis,
see [47,33,28,27,25]. Indeed, as the treatment of the corresponding (possibly multivalued)
intensities µ is decoupled, moment systems become less singular hence less demanding at
a computational level. In return, original algorithms have to be devised in order to update
~µ at each time-step: in [28,25], some sort of “backwards ray-tracing” has been introduced
(because the bicharacteristics are straight lines for homogeneous problems) whereas the
conservation of the Hamiltonian along trajectories in phase space has been used in [26].

Both techniques fail when considering the Poisson coupling here; however, an algorithm
consistent with the analysis of §3.1 can be easily deduced. Indeed, the right-hand side of
the second equation in (25) corresponds to the field created by all the electrons located on
the left of the one at X(t, α); this is what is needed in order to set up a semi-lagrangian
scheme.

From now on, ∆x and ∆t will stand for the usual parameters of a cartesian grid in the
t, x-plane and we assume the reader familiar with the numerical schemes of [28,26] which
generate ~un

j = (uk=1,...,K)n
j , an approximation of ~u(tn = n∆t, xj = j∆x) ∈ R

K for j, n ∈
Z × N. Then let us consider an auxiliary quantity Fk(t, x) at each time-step; at time t = 0,
it is defined as follows:

Fk(t = 0, xj) =

∫ xj

µk(t = 0, s).ds =

∫ xj

|a0|2(t = 0, s).ds, k = 1, ...,K.

Once again, this quantity is defined up to a constant coming from the Poisson equation.
Then, as an antiderivative of µk, each Fk solves a transport equation ∂t. + uk∂x. = 0 (see
§3.2), so from (18), (25) and [26] §3.1, we update it at every time-step like

Fk

(

tn+1, xj + E′(uk(tn, xj))∆t
)

= Fk(tn, xj), k = 1, ...,K,

for some energy band κ 7→ E(κ) corresponding to the initial data (18). It is easy to interpo-
late the values Fk(tn+1, .) on the original Eulerian grid xj = j∆x for instance by means of
quadratic splines just solving a 3× 3 Vandermonde system in every computational cell (see
[10] for some mathematical properties of interpolation operators in a related context). Inten-
sities µk(tn+1, xj) := ∂xFk(tn+1, xj) can be recovered by means of e.g. centered differences,
as in [30].

Now, in order to compute an approximation of ~u(tn+1, xj), a value for the electric field
independent of k can be deduced:

R ∋ F (tn+1, xj) =
∑

k s.t. |Fk(tn+1,xj)−Fk−1(tn+1,xj)|>∆x

Fk(tn+1, xj),

where we chosed arbitrarily ∆x to be the threshold value (this can be seen as the correct
answer to the issue raised in [26], Appendix A). This means that, in case several electrons
with different momenta uk show up at xj , the total electric field is given by summing
the fields Fk produced by each electron, as written in (25). At last, the velocities can be
updated by e.g. a simple extension of the “Riemann split-schemes” of [26], §2.3. Of course,
the aforementioned algorithm can be used for simpler cases, like for instance the ones

5 Namely, this “interpolation between geometric and viscosity solutions” essentially
leads to K × K moment systems from which f(t, x, ξ) can be exactly recovered as
long as K is big enough; otherwise entropy is produced through compressive Lax
shocks and irreversibility appears.
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presented in [26]. At last, in case V ′
ext 6= 0, one has to include the corresponding terms in

the moment system’s right-hand side, see again [26].

Remark 2 (Consistency with the δ-closure, [34])
It isn’t easy at this level to state whether or not the approximate solutions (18) built out
of the aforementioned algorithm are consistent with the ones obtained in [34]. First, in
case K is chosen too low, they will surely be different as they already are in the linear
case, as seen in [27]. Now, even if K is big enough, one should need a genuine comparison
with Schrödinger computations since there is no uniqueness result for the Vlasov-Poisson
equation with measure-data, [50].

4 Numerical experiments

We want now to check numerically the outcome of our WKB approach by a systematic
comparison with the quadratic observables coming out of a Fourier scheme [3] for the
Schrödinger-Poisson equation (10) as done in [28,26] for the linear case. We shall use the
same parameter, namely δt = 0.01 6 . Following [17], we tried to check on the right column a
weak convergence as ε → 0 by looking at the antiderivative of the difference of the position
densities (the first quadratic observable); thus we shall study the function

x 7→
∫ x

0

(

̺ε
WKB(T, s) − |ψε(T, s)|2

)

.ds, (29)

which can be expected to flatten as ε is decreased. ̺ε
WKB stands for the position density

obtained from the WKB ansatz (18) as done in [28,26]. Lemma 2.1 in [17] ensures that the
L1 norm of (29) going to zero is equivalent to the weak convergence of ρε

WKB . It appeared
absolutely necessary to filter numerically the input or the outcome of the Fourier schemes;
here we used a standard convolution receipe involving a Gaussian kernel exp(−aξ2), a ∈ R

+.
Different values of a have been used, from 0.01 to 0.1. More precisely, to initialize the Fourier
time-split schemes, we shall always use

1√
2π

√
πa

∫

R

ψε
n(0, s) exp(−(x − s)2/4a).ds ⇔ ψ̂ε

n(0, ξ) exp(−aξ2),

instead of (18); of course, letting a → 0, one recovers the correct initial signal.

4.1 Free self-consistent electron cloud

This first test-case corresponds to (10) with constant ionic and exterior potentials; of course

this leads to a trivial Bloch decomposition with a unique energy band E(κ) = κ2

2 , an infinite
Brillouin zone and constant modulations involved. The WKB system (19) is just made of
the classical Eikonal/continuity equations (as in [24,25]) coupled by the Poisson potential.
We selected the following initial data, inspired by [27,29]:

u0(x) = sin(x)| sin(x)|, µ0(x) = exp(−(x − π)2)/2π, (30)

which leads to a 5-branch solution after some time. The inversion routines of [29] have
been used to generate the results of Figs.1 (T = 0.5), 2 and 3 (T = 2.5), pre- and post-
breakup respectively. 512 points of discretization have been used for both methods; the CFL
number has been chosen to be 0.95. Beyond caustic onset, one observes the appearance of

6 The notation ∆t refers to the time-step used to compute the solution of hyperbolic
moment systems. δt stands for the one used in the time-splitting Fourier schemes.
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Fig. 1. Comparison of position densities in T = 0.5 with ε = 1/25 (left) and decay
of (29) as ε → 0 (right).
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Fig. 2. 5-branch velocity (left) and corresponding intensities (right) at time T = 2.5.

the double cusp on Fig.2; there is a quite good agreement between the WKB approximation
and the direct Schrödinger computation in both logarithmic and normal scales away from
caustics. One can observe the nice convergence in log-scale as ε is decreased on Figs.1 and
3; interestingly, the two curves look similar despite bigger errors in the 5-valued context.
Notingly, the 5-valued region x ∈ [2.5, 3.5] seems to produce the right values for the position
density. Finally, it seems that the error terms coming from multivaluations are indeed of little
influence when carrying out practical computations: this (partially) answers the question
raised in Remark 1.

4.2 Self-consistent electron cloud within Mathieu’s potential

This test-case corresponds to (10) with Vion(x) = cos(x) and V ′
ext ≡ 0. The main novelty

with respect to the former one lies in the handling of the Bloch decomposition and the energy
bands when computing the moment systems which govern the evolution of the K-branch
solutions; this has been done according to the routines proposed in [28,26]. We selected an
initial datum leading only to a 3-branch solution,

u0(x) = 0.3 sin(x), µ0(x) = 0.3 exp(−(x − π)2)/π. (31)

Since the Poisson term is repulsive, a strong initial position density prevents numerous
multivaluations to develop in the solution. The 3-branch solutions are displayed on Fig.4
where the dispersive effect of the repulsive Poisson term is clearly seeable. We compared
with a direct Schrödinger computation at time T = 2, see Fig.5. The agreement looks
satisfying away from caustics; even the central spike is produced by both schemes. A decay
of the L1 norm of (29) in T = 2 (and even a harsh strong L1 convergence) has also been
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Fig. 3. Comparison of position densities in T = 2.5 with ε = 1/10, 1/25, 1/40 and
decay of (29) as ε → 0 (left to right, top to bottom).

observed 7 , see Fig.6. The error coming from the spurious blowup on the caustics seems
to decrease and the results in the multivalued region contribute at most up to 10% of the
overall (as seen on the antiderivatives of the postion densities’ difference, right of Fig.6). We
believe that the slight increase of the L1 norm of (29) as ε ≃ 1/40 comes from a shortage
of Fourier modes; 512 points of discretization have been used here.

It is interesting to notice that one main difference with §4.1 is the number of multivaluations;
hence part of the error reported on Fig.3 with respect to Fig.6 comes from the algorithm
used to invert Markov’s moment problem as proposed in [29]. Also the simulation of a bigger
hyperbolic moment system is likely to produce slightly higher truncation errors.

4.3 A smoothered model for screening

The situation described now is still given by Vion(x) = cos(x) supplemented by an exterior
Coulomb term Vext(x) = −1

|x−x0|
; i.e. a potential induced by an impurity inside the periodic

lattice. It has already been studied in [26] in a linear context, that is to say, without consid-
ering any self-interaction among the electrons. Roughly speaking, Vext creates a potential
well around x0, but the repulsive Poisson term has the opposite effect and both mechanisms
should balance after some transient regime. However, it hasn’t been possible to work with
the normal Coulomb term because it is too singular; hence we turned back to a smoother
potential,

Vext(x) = − cos(0.5(π − x))2.

The initial data are rather simple:

u0 ≡ 0, µ0(x) = exp(−(x − π)2)/2π.

7 Compare especially with Figures 11 and 12 in [26].
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Results at time T = 2 are shown in Fig.7. The validation is done by means of a comparison
with a direct Schrödinger computation with 1024 Fourier modes in Fig.8. It’s been more
difficult to obtain a reliable outcome while decreasing the parameter ε thus we show a decay
of the L1 norm of (29) only for moderate values, see Fig.9. We notice that for ε ∈ [1/25, 1/5],
the weak consistency is quite satisfying.

5 Conclusion and outlook

An extension of the Homogenization/WKB techniques to the weakly nonlinear Schrödinger-
Poisson equation has been introduced, in the spirit of [7,50]. It somehow “closes a loop”
initiated in the joint work [28] and the earlier ones [24,46]. The validation of our numeri-
cal algorithms has been entirely done by systematic comparisons of quadratic observables
with the ones obtained from direct computations on Schrödinger-Poisson models with time-
splitting Fourier schemes. A clean convergence of the position densities has been observed
for problems of increasing difficulty. This confirms the results from [25] concerning the va-
lidity of these 1D WKB techniques with K-branch solutions, [16,24,29,46], even for weakly
nonlinear problems of the type (1). Indeed one could be tempted to go down this track
and study the semi-classical limit of the so-called Xα equation heuristically derived in [43]
which reads:

i~∂tψ +
~

2

2m
∂xxψ = e

(

Vion(x) + Vext(x) + VP (t, x) − α|ψ| 23
)

ψ, −ǫ0∂xxVP = e|ψ|2. (32)

The strong focusing nonlinearity emanating from Pauli’s exclusion principle forbids to apply
any known technique to obtain rigorously the semiclassical behaviour of ψ, see [19]. However,
the local exchange term −αρ = α( ǫ0

e
∂xxVP ) might be treated as a small perturbation (for

α below a critical threshold, [4]) inside the present approach. At best, this equation is
likely to describe ballistic transport of electron ensembles inside solid-state materials. These
basic concepts don’t address the issue of collisions (phonons, impurities, see [2]); they are
incorporated by linking the ballistic quantum transport picture to a classical Boltzmann-
type equation and by assuming that quantum effects and collisions aren’t relevant in the
same computational subdomains, see [9].
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Fig. 4. 3-branch velocities (left) and corresponding intensities for Mathieu’s potential
at times T = 0.5, 1.5, 2, 2.5, 3.5 (top to bottom).
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(right) in logarithmic (top) and normal (bottom) scales.
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Fig. 7. 3-branch velocity (left) and corresponding intensities (right) at time T = 2.
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