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On the Minimum Size of a Contraction-Universal Tree

A tree Tuni is m-universal for the class of trees if for every tree T of size m, T can be obtained from Tuni by successive contractions of edges. We prove that a m-universal tree for the class of trees has at least m ln(m) + (γ -1)m + O(1) edges where γ is the Euler's constant and we build such a tree with less than m c edges for a fixed constant c = 1.984...

Introduction 2 Terminology

Our graphs are undirected and simple (with neither loops nor multiple edges). We denote by G(V, E) a graph (its vertex set is V (G) and its edge set is E(G) (a subset of the family of all the V (G)-subsets of cardinality 2)). Referring to C. Thomassen [START_REF] Thomassen | Embeddings and Minors, chapter 5 in Handbook of Combinatorics[END_REF], we recall some basic definitions that are useful for our purpose:

We denote by P n the path of size n. If x is a vertex then d(x), the degree of x, is the number of edges incident to x.

Let e be an edge of E(G), the graph denoted by Ge is the graph on the vertex set of G, whose edge set is the edge set of G without e. We call classically this operation deletion.

Let e = {a, b} be an edge of G(V, E), we name contraction of G along e, the graph denoted by G/e = H(V ′ , E ′ ), with V ′ = (V / {a, b}) ∪ {c} where c is a new vertex and E ′ the edge set which contains all the edges of the sub-graph G 1 on V /e and all the edges of the form {c, x} for {a, x} or {b, x} belonging to E.

We say that H is a minor of G if and only if we can obtain it from G by successively deleting and /or contracting edges, in an other way, we can define the set M (G) of minors of G by the recursive formula :

M (G) = G ∪   e∈E(G) M (G/e)   ∪   e∈E(G) M (G -e)  
The notion of minor induces a partial order on graphs. We write A B to mean "A is a minor of B".

For technical reasons, we prefer to use the size of a tree (edge number) rather than its order (vertex number).

Finally, let us recall that, a graph G uni is m-universal for a sub-class C of graphs if for every element G of C with m edges, G is a minor of G uni .

A Lower Bound

In this section, we prove that a m-universal tree T uni for the trees has asymptotically at least m ln(m) edges. We use the fact that T uni has to contain all spiders of size m as minors. A spider S on a vertex w is a tree such that ∀v ∈ V (S) \ {w} , d(v) ≤ 2. We denote the spider constituted by paths of lengths 1 ≤ m 1 ≤ ... ≤ m k by Sp(m 1 , ..., m k ) (Fig. 1). Definition 1. Let T be a tree, we denote by ∂T the subtree of T with V (∂T ) = V (T )\A, where A is the set of the leaves of T . Also, we denote by Proof. This just follows from an observation. 

∂ k the k-th iteration of ∂. Lemma 1. Sp(m 1 , ..., m k ) T involves that ∂Sp(m 1 , ..., m k ) ∂T . Moreover, if for all i, m i = 1 then ∂Sp(m 1 , ..., m k ) is a vertex. Otherwise, put a the first value such that m a > 1, we have ∂Sp(m 1 , ..., m k ) = Sp(m a -1, ..., m k -1) excepted for k = 1, in this last case we have ∂Sp(m 1 ) = Sp(m 1 -2).
m i ≥ 1 + m-1 i=1,i =2 m i -1 . ⊓ ⊔
What the above proof shows, in fact, is the following :

Corollary 1. A minimum m-universal spider for the class of spiders has m i=1,i =2 m i edges. Proof. The spider Sp m m , m m-1 , ..., m 2 , m 2 is clearly a m-universal spi- der of size m i=1,i =2 m i
for the class of spiders, and by theorem 3 it is a minimum value. ⊓ ⊔

The Main Stem

In the sequel, we deal with rooted graph, i.e. graph G where we can distinguish a special vertex denoted by r(G), called the root. Conventionally, any contracted graph G ′ of same rooted graph G will be rooted at the unique vertex which is the image of the root under the contraction mapping, we say in this case that the rooted graph G ′ is a rooted contraction of G. Note that, the contraction operator suffices to obtain all minor trees of a tree. So, we can now define the following new notion for sub-classes of rooted trees : a rooted tree T uni is strongly m-universal for a sub-classes C of rooted trees if for every rooted tree T in C of size m, T is a rooted contraction of T uni . The concept of root is introduced to avoid problems with graph isomorphisms that, otherwise would greatly impede our inductive proof.

For every edge e of a tree T , the forest T \e has two connected components. We call e-branch, denoted by B e , the connected component of T ′ which does not contain r (T ), we define the root of B e as e ∩ V (B e ) .

A main stem of a rooted tree of size m is defined as a path P which is issued from the root and such that for all e-branches B e with e / ∈ E (C), we have |E (B e )| < m 2 (Fig. 2).

Fig.2. A main stem in bold

The following lemma suggests the procedure which will be used to find a subquadratic upper bound for universal trees. Roughly speaking, it endows every tree with some recursive structure constructed with the help of main stems. Lemma 3. Every rooted tree has a main stem.

Proof. By induction on the size of the rooted tree. Let T be a rooted tree, if T has one or two edges, it is trivial. Otherwise let us consider the sub-graph T \r (T ), which is a forest. We choose a connected component T 1 with maximum size and we denote by b 1 the unique vertex of T 1 which is adjacent to r(T ). Tree T 1 , rooted in b 1 , has, by the induction hypothesis, a main stem B. Then the path (

V (B) ∪ {r (T )} , E (B) ∪ {{r (T ) , b 1 }}) is a main stem of T . ⊓ ⊔ Remark 1.
A tree may possess in general several main stems. Let us notice also that a main stem is not necessarily one of the longest paths which contain the root.

The Upper Bound

We need some new definitions. A rooted brush (Fig. 3) is a rooted tree such that the vertices of degree greater than 2 are on a same path P issued from the root.

Fig.3. A rooted brush

A rooted comb X (Fig. 4) is a rooted brush with d (r (X)) ≤ 2 and ∀v ∈ V (X), d (v) ≤ 3.

Fig.4. A rooted comb

The length of a rooted comb corresponds to the length of the longest path P issued from the root which contains all vertices of degree greater than 2.

To obtain an upper bound, we consider two building processes : the first one, a brushing M B , maps rooted trees with a main stem into rooted brushes, the second one, a ramifying M T , consists in obtaining a sequence of rooted trees, assuming that we have an increasing sequence of rooted combs. We note M k T the k-th element of the sequence. These building processes will possess the following fundamental property: Property 1. Let (T, σ) a rooted tree with a main stem σ and (X n ) n∈N a sequence of rooted combs :

∀T ′ T, M B (T ′ , σ) X |E(T ′ )| ⇒ T M |E(T )| T (X n ) n∈N .
Lemma 4. If building processes verify the property 1 and if for all i, the rooted comb X i is strongly i-universal for the class of rooted brushes then the rooted tree M m T (X n ) n∈N is strongly m-universal for the class of rooted trees. Proof. It is just an interpretation of the property.

⊓ ⊔

We now establish the existence of building processes which satisfy property 1.

Brushing M B (Fig. 5). Let T be a rooted tree with a main stem σ. We are going to associate a rooted brush B with it, denoted M B (T, σ) of the same size built from the same main stem σ with the following process: every e-branch B e connected to the main stem by edge e is replaced by a path of length |E (B e )| connected by the same edge. Ramifying M k T . For the second building process we work in two steps : First step. Given rooted trees T 1 , ..., T k with disjoint vertex sets, we build another rooted tree T , denoted [T 1 , ..., T k ], in the following way :

V (T ) = k i=1 V (T i ) ∪ {v 1 , ..., v k+1 } , E(T ) = k i=1 E (T i ) ∪ {{v 1 , r (T 1 )} , ..., {v k , r (T k )}} ∪ {{v 1 , v 2 } , ..., {v k , v k+1 }} , and r(T ) = v 1 .
If

T i = ∅, conventionally {v i , r (T i )} = ∅.
Prosaically, from a path P k = [v 1 , ..., v k+1 ] of size k and from k rooted trees T 1 , ..., T k , we build a rooted tree joining a branch T i to the vertex v i of P (Fig. 6).

Second step. By convention, P -1 = ∅.

We are going to construct rooted trees T k in the following way : T -1 = ∅, T 0 = X 0 , and ∀i, 1 ≤ i ≤ k, T i = T min(u1,i-1) , ..., T min(un i ,i-1) if X i = P u1 , ..., P un i . We can now define M k T :

M k T (X n ) n∈N = T k .
Lemma 5. The building processes described above verify the property 1.

Proof. First, note that M T (X n ) n∈N is an increasing sequence. We prove the lemma by recurrence on the size m of T . When m = 0 or m = 1, this is trivial. We suppose the property is verified for T with size m < m 0 . Let T be a rooted tree of size m 0 with a stem σ, we note e 1 , ..., e k the edges of T issued from σ which do not belong to σ. To each e-branch of T with e ∈ {e 1 , ..., e k } corresponds by M B a e-branch (it is a path of same size) in M B (T, σ). So there exists k distinct e-branches R 1 , ..., R k in X m0 that we can respectively contract to obtain each e-branch with e = e 1 , ..., e k in M B (T, σ). By recurrence hypothesis, we have for 1

≤ i ≤ k, B ei M |E(Be i )| T (X n
) n∈N and we have also

M |E(Be i )| T (X n ) n∈N M |E(Ri)| T (X n ) n∈N . So each e-branch of T is a minor contraction of M |E(Ri)| T (X n ) n∈N .
By associativity of contraction map, we have T M

|E(T )| T (X n ) n∈N . ⊓ ⊔
In this phase, we determine a sequence of rooted combs (X i ) i∈N such that the rooted combs X i are strongly i-universal for the rooted brushes.

In order to achieve this result, we define F p as the set of functions f : {1, ..., p} → 1, ..., p 2 satisfying the following property :

(∀n ∈ {1, ..., p}) ∀i ≤ n 2 (∃k ∈ N) (n -i + 1 ≤ k ≤ n and f (k) ≥ i)
Lemma 6. F p is not empty, it contains the following function ϕ p , defined for 1 ≤ i ≤ p by :

ϕ p (i) = min 2 υ2(i)+1 -1, p 2 , i -1
where υ 2 (k) the 2-valuation of k (i.e. the greatest power of 2 dividing k).

Proof. The verification is obvious. ⊓ ⊔
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Lemma 7. For every sequence F = (f 1 , f 2 , ...) of functions such that f i ∈ F i for i ≥ 1 and f i (k) ≤ f i+1 (k) for all i ≥ 1 and 1 ≤ k ≤ i, the rooted comb defined by Comb F m = [P f m 1 , ..., P f m m ] where P f m i designs the path of size f m (m + 1i) -1, for 1 ≤ i ≤ m is strongly m-universal for the rooted brushes.

Proof. By induction on m : Comb F 1 is strongly 1-universal for the rooted brushes. Suppose that Comb F i has all rooted brushes with i -1 edges as rooted contractions.

We consider two cases depending on the shape of a rooted brush B of size i : case 1 case 2

Brushes of case 1 are clearly rooted contractions of the rooted comb

Comb F i (B ′ Comb F i-1 , so B P 0 , P f i-1 1 , ..., P f i-1 i-1
Comb F i ). Let us study case 2 : B ′ is by induction hypothesis a rooted contraction of the rooted comb Comb F i-j , moreover Comb F i-j P f i j+1 , ..., P f i i . Finally, by the property of f i , there exists 1 ≤ α ≤ j, such that P f i α has more than j edges. Linking these two points, we can conclude that the rooted brush B is always a rooted contraction of the rooted comb Comb F i .

⊓ ⊔

The rooted comb built as in lemma 7 will be said to be associated to the sequence F and denoted by Comb By convention, we put Comb F 0 = P 0 (tree reduced in a vertex) We define T ree F m = M m T Comb F n n∈N . As before, we will say that the tree built in such a way is recursively associated to the sequence F and denoted by T ree F m . Thus, we have : Theorem 5. The rooted tree T ree F m is strongly m-universal for the class of rooted trees.

We now analyze the size of T ree F m .

Proposition 1. Let F = (f 1 , f 2 , ...) be a sequence of functions such that f i ∈ F i for i ≥ 1. The size of a m-universal tree constructed from the sequence is given by the following recursive formula :

u -1 = -1, u 0 = 0 and u k = 2k -1 + k i=1 u f k (i)-1
Proof. It derives from the following observation : m edges constitute the main stem, we have to add m -1 edges to link branches to the main stem and k i=1 u f k (i)-1 edges for the branches.

⊓ ⊔

Theorem 6. There is a sequence of functions G = (g 1 , g 2 , ...) such that g i ∈ F i and E T ree G m < (2m) c where c = 1.984... is the unique positive solution of the equation

1 2 c + 1 2 2c + 1 2 (c-1) -1 -1 2 c -1 = 1.
Proof. We take the following sequence of functions : g m (i) = min 2 υ2(i)+1 , i if i < m and i even, g m (i) = 1 if i odd and g m (m) = m 4 . It is clear that, if m is a power of 2, the comb Comb G m is strongly muniversal for the brushes.

In fact, the function g m takes the value 2 υ2(i)+1 when i is not a power of 2, otherwise it is equal to i. Thanks to this remark and with u m < m + m i=1 u fm(i) ,

(the sequence of sizes is increasing), we obtain u

2 n < 2 n + 2 n-1 + n-1 i=2 2 n-i u 2 i - n-1 i=2 u 2 i +u 2 n-1 +u 2 n-2 .
Thus, in evaluating the sums and reorganizing the terms, we obtain :

u 2 n < α n + 2 nc β with α n = 2 n-1 + 1 + 2 c + 1 2 c -1 - 2 n 2 (c-1) -1 + 2 n(c-1) WG (2002) β = 1 2 c + 1 2 2c + 1 2 (c-1) -1 - 1 2 c -1
Now α n < 0 when m > 1 and β ≤ 1 by definition of c. So u 2 n < 2 nc , hence u m < (2m) c . ⊓ ⊔ Remark 2. We observe that c = ln(x) ln [START_REF] Füredi | Nonexistence of universal graphs without some trees[END_REF] , where x is the positive root of X 4 -5X 3 + 4X 2 + X -2 = 0. Theorem 2 then follows since any rooted tree which is strongly m-universal for the rooted trees is also clearly m-universal for the class of trees.

Conclusion and Related Questions

When using the sequence Φ = (ϕ 1 , ϕ 2 , ...) of lemma 7, the induction step leads to involved expressions that do not allow us to find the asymptotic behavior of the corresponding term u m . A computer simulation gives that such a m-universal tree for the trees has less than m 1.88 edges. In any case, the constructive approach we proposed here, seems to be hopeless to reach the asymptotic best size of a m-universal tree for the trees.

Conjecture 1. The minimal size of a m-universal tree for the trees is m 1+o (1) . As a possible way to prove such a conjecture, it would be interesting to obtain an explicit effective coding of a tree of size m using a list of contracted edges taken in a m-universal tree for the trees.

A variant of our problem consists in determining a minimum tree which contains as a subtree every tree of size m. This is closely related to a well known still open conjecture due to Erdös and Sös (see [START_REF] Erdös | On maximal paths and circuits of graphs[END_REF]).
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