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Optimal Partial Tiling of

Manhattan Polyominoes

Olivier Bodini⋆ and Jérémie Lumbroso

LIP6, UMR 7606, CALSCI departement, Université Paris 6 / UPMC,
104, avenue du président Kennedy,

F-75252 Paris cedex 05, France

Abstract. Finding an efficient optimal partial tiling algorithm is still an
open problem. We have worked on a special case, the tiling of Manhattan
polyominoes with dominoes, for which we give an algorithm linear in the
number of columns. Some techniques are borrowed from traditional graph
optimisation problems.

For our purpose, a polyomino is the (non necessarily connected) union of unit
squares (for which we will consider the vertices to be in Z

2) and a domino is a
polyomino with two edge-adjacent unit squares.

To solve the domino tiling problem [6,9,10,11,12,13] for a polyomino P is
equivalent to finding a perfect matching in the edge-adjacent graph Gp of P ’s
unit squares. A specific point of view to study tiling problems has been intro-
duced by Conway and Lagarias in [4]: they transformed the tiling problem into
a combinatorial group theory problem. Thurston [13] built on this idea by intro-
ducing the notion of height, with which he devised a linear-time algorithm to tile
a polyomino without holes with dominoes. Continuing these works, Thiant [12],
and later Bodini and Fernique [3] respectively obtained an O (n log n) algorithm
which finds a domino tiling for a polyomino whose number of holes is bound,
and an O

(

n log3 n
)

algorithm with no constraint as to the number of holes. All
these advances involved the “exact tiling problem”.

Naturally, all aforementioned exact tiling algorithms are useless when con-
fronted with polyominoes that cannot be perfectly tiled with dominos. Such
algorithms will output only that the polyominoes cannot be tiled—and this is
inconvenient because a perfect tiling is not necessarily required: we might want
partial tilings with at most x untiled squares.

Thus, by analogy with matching problems in graph theory and the notion
of maximum matching, it seems interesting to study the corresponding notion
of optimal partial tiling. No algorithm has been specifically designed with this
purpose in mind; and whether the optimal partial tiling problem for polyominoes
can be solved by a linear-time algorithm has been an open problem for the past
15 years. In this paper, we are studying the partial optimal domino tiling problem
on the Manhattan class of polyominoes (see figure 1).

⋆ Supported by ANR contract GAMMA, “Génération Aléatoire Modèles, Méthodes
et Algorithmes”, BLAN07-2 195422.



A Manhattan polyomino is a sequence of adjacent columns that all extend
from the same base line (“Manhattan” refers to the fact that this polyomino looks
like a skyline). We are exhibiting an algorithm that makes solving this problem
much more efficient than solving the corresponding maximum matching problem.
Indeed, the best known algorithm for maximum matchings in bipartite graphs is
in O (

√
nm) [7,8] (where n is the number of vertices and m the number of edges)

and it yields an algorithm in O
(

n3/2
)

for the partial tiling problem, whereas
our algorithm is linear in the number of columns. The choice of the Manhattan
class of polyominoes is justified as a generalisation of the seminal result of Bougé
and Cosnard [2] which establishes that a trapezoidal polyomino (i.e. a monotic
Manhattan polyomino, in which the columns are ordered by increasing height)
is tilable by dominoes if and only if it is balanced. The partial tiling problem on
more general classes seems to be out of reach at present.

Fig. 1. A Manhattan polyomino.

This paper first succinctly recalls some definitions on tilings, polyominoes in
general and Manhahattan polyominoes in particular; we list the notations that
we will use throughout the paper (section 1). Follows a presentation of the main
idea of reducing the partial tiling problem to a network flow problem (section 2);
we then prove this reduction to be valid (section 3). A greedy algorithm to solve
this specific network problem is given (section 4), which allows us to conclude
(section 5).

1 Definitions

An optimal partial tiling by dominoes of a polyomino P is a set {D1, . . . , Dk} of
vertical or horizontal dominoes placed in the discret plane such that:

(i) ∀i ∈ {1, . . . , k}Di ⊂ P ;

(ii) the dominoes D1, . . . , Dk have mutually disconnected interiors: for every

i, j such that 1 6 i 6 j 6 k, we have
◦

Di ∩
◦

Dj = ∅ where
◦

D is the interior
of D for the topology endowed with the euclidean distance on R

2;

(iii) k is maximal: if k′, k′ > k, and D′

1, . . . D
′

k exists with the above two con-
ditions, then k = k′.



A column is the union of unit squares placed one on top of the other. A Manhat-
tan polyomino is the connected union of columns aligned on the same horizontal
line.

We will identify a Manhattan polyomino with a tuple: the sequence of the
heights of all the columns of the polyomino (ordered from left to right). For
example, the polyomino in figure 1 is represented as (4, 2, 4, 4, 1, 2, 2, 2, 4, 4). This
representation is clearly more convenient in memory space than, say, the list of
all unit squares of a polyomino.

It is convenient to define inclusion, and we will do so using the tuple rep-
resentation: polyomino P = (p1, p2, . . . , pn) is said to be included in Q =
(q1, q2, . . . , qn) if ∀i, pi 6 qi (both polyominoes can be padded with zero-sized
columns if necessary).

In addition, the unit squares of a polyomino have a chessboard-like coloration;
specifically1, the unit square with position (i, j) (i.e.: unit square (i, j)+[0, 1[2) is
white if i+ j is even and black otherwise. A column is said to be white dominant
(or black dominant) if it has more white (or black) unit squares than black (or
white) ones.

2 From polyominoes to flow networks

In this section, without loss of generality, we consider the polyominoes are bal-
anced (a polyomino is balanced if it contains the same count of white and black
unit squares). Indeed, a polyomino can always be balanced by adding the nec-
essary number of isolated unit squares of the lacking color.

Notations. Let (h1, . . . , hn) be a Manhattan polyomino P .
For i 6 j, we define X(i, j) as the number mini6k6j {hk}, the height of the

smallest column contained in the subset {hi, . . . , hj}.
We define B(P ) (and respectively W (P )) as the set of black unit squares,

(or white unit squares) contained in P . Let IP (and resp. JP ) be the set of
indices of black dominant columns (and resp. white dominant columns). We
define s1, . . . , sn as the elements of IP ∪ JP sorted in ascending order.

Let G = (V, E) be a graph, and S ⊂ V . We define Γ (S) as the subset of
neighbor vertices of S, i.e. the vertices y ∈ V such that there exists x ∈ S with
(x, y) ∈ E or (y, x) ∈ E.

Construction of the flow network. For each polyomino P , we build a directed
graph (flow network) that we call FP :

– its vertex set is {s1, . . . , sn}∪{s, t} where s and t are two additional vertices
respectively called source and sink (be mindful of the fact that we use si

both to refer to the vertices, and to the actual columns);

1 And regardless of the basis, as both colors are symmetrical in purpose (i.e.: it doesn’t
matter whether a given unit square is white or black, so long as the whole polyomino
is colored in alternating colors).



– its edge set E is defined by:

E = {(si, si+1) ; i ∈ {1, . . . , n − 1}}
∪ {(si+1, si) ; i ∈ {1, . . . , n − 1}}
∪ {(s, a); a ∈ IP } ∪ {(a, t); a ∈ JP } ,

and each arc of E is weighted by a function c called capacity function defined
by:

c(e) =











⌈

X(si,si+1)
2

⌉

if e = (si, si+1) or e = (si+1, si)

1 if e = (s, a) with a ∈ IP

1 if e = (b, t) with b ∈ JP

where x 7→ ⌈x⌉ is the ceiling function (which returns the smallest integer not
lesser than x).

1 2 3 4 5 6 7 8 9 10 11 12 13

(a) Manhattan polyomino P .

1 3 4 6 8 10 11 13

(b) The union IP ∪ JP of black
and white dominant columns
(with s1 = 1, s2 = 3 and so
on).

Fig. 2. Construction of a {s1, . . . , sn} set.

Example. Figures 2 and 3 illustrate the construction described above. The poly-
omino P in figure 2(a) contains four black dominant columns and four white
dominant columns which have been extracted and are represented on figure
2(b).

This yields the set IP ∪ JP = {s1 = 1, s2 = 3, . . . , s8 = 13} from which we
can build the flow network in figure 3.

For instance, the capacity of arc (s1, s2) is c ((s1, s2)) = 2 because the smallest
column between the indices s1 = 1 and s2 = 3 is the column 3 and its height is
3 (what this boils down to is X(1, 3) = 3).

3 Main theorem: An overview

As might have been evident in the previous sections, oddly-sized columns, whether
white or black dominant, are what make domino tiling of Manhattan polyomi-



t

s

2 2 1 2 1 1 1

2 2 1 2 1 1 1

1

1 1

1

1
1 1

1

Fig. 3. Flow network associated with the polyomino of figure 2(a).

noes an interesting problem: indeed, evenly-sized columns (of a polyomino com-
prising only such columns) can conveniently be tiled with half their size in domi-
noes.

3.1 Sketch of the method

Let P be a polyomino. Our method can intuitively be summarized in several
steps:

– we devise a “planing” transformation which partially tiles the polyomino P

in a locally optimal way (i.e.: such that it is possible to obtain an optimal
partial tiling for P by optimally tiling the squares which remain uncovered
after the transformation); this transformation, as illustrated in figure 4(c),
“evens out” a black dominant column and a white dominant column;

– we devise a way to construct a maximum flow problem that translates exactly
how the planing transformation can be applied to the polyomino P ;

– we prove that the solutions to the maximum flow problem constructed from
P , and to the optimal partial tiling of P are closely linked (by a formula).

In truth, these steps are intertwined: the local optimality of the planing
transformation is demonstrated using the maximum flow problem.

3.2 The planing (or leveling) transformation

The planing transformation we just mentionned can be expressed as a map
φ, which can only be applied to a polyomino P which has two consecutive2

2 By this we mean that the two dominant columns are consecutive in the s1, s2, . . .

ordering (and this does not necessarily imply that they are adjacent in P ); in figure
4(c), dominant columns s1 and s2 are consecutive (so are s2 and s3).



(a) A polyomino P2.
s1 s2 s3

(b) A näıve tiling for
P2 (the uncovered squares
are those of the oddly-
sized columns).

s1 s2 s3

(c) After applying the
planing transformation to
P2 once.

Fig. 4. Tilings of P2, which has three oddly-sized columns.

oddly-sized columns si, si+1 of different dominant colors. This condition3 can
be summarized as

∃i, (si ∈ IP and si+1 ∈ JP or si ∈ JP and si+1 ∈ IP ) .

Let P = (h1, . . . hn) be a Manhattan polyomino, and let i be the smallest
integer such that si, si+1 are two oddly-sized columns of different dominant colors
and c(si, si+1) 6= 0, then P ′ = φ(P ) is a new polyomino defined by

P ′ =
(

h1, . . . , hsi−1, a, . . . , a, hsi+1+1, . . . , hn

)

where a = min
(

hsi
− 1, hsi+1 − 2, . . . , hsi+1−1 − 2, hsi+1

− 1
)

, i.e.: all columns
from si to si+1 are leveled to height a, which is at least one unit square smaller
than the smallest of si and si+1 and two unit squares smaller than the smallest
even-sized column of P from si to si+1 .

Since we have only decreased the heights of the columns of P to obtain P ′,
φ(P ) = P ′ ⊂ P is trivial (following the definition of inclusion we gave in section
1).

We will show that this transformation is locally optimal: again, this means
that if optimal tilings of φ(P ) have x non-covered unit squares, then so do
optimal tilings of P (the number of non-covered unit squares is invariant with
regards to the transformation).

3.3 Main theorem

Having constructed a flow network FP from a given Manhattan polyomino P ,
we now show that, if we call d(P ) the number of non-covered unit squares in an
optimal partial tiling of P , then the value v(P ) of the maximum flow on FP is
such that:

|IP | + |JP | − 2v(P ) = d(P ).

3 Wherein it is obvious that the or is mutually exclusive.



s1 s2

(a) At least one unit square
smaller than the smallest
odd-sized column ...

s1 s2 s3 s4

(b) ... at least two unit squares smaller
than the smallest even-sized column.

Fig. 5. Generic examples of the planing transformation.

The meaning of this equation is quite intuitive: it says that the number of un-
covered squares d(P ), is exactly the number of single squares that come both
from the black dominant columns IP and from the white dominant columns JP ,
from which we withdraw two squares for each of the v(P ) times we are able to
apply the planing transformation (recall that this transformation evens out both
a black dominant column and a white dominant column, hence the 2 factor).

Lemma 1. Let P be a Manhattan polyomino. For all P ′, such that P ′ = φk(P )
(the planing transformation applied k times to P ), the following invariant holds:

|IP | + |JP | − 2v(P ) = |IP ′ | + |JP ′ | − 2v(P ′)

where v(P ) and v(P ′) are the values of a maximum flow respectively in TP and
TP ′ .

Proof (by induction on k). Let f be a maximum flow on TPk−1
which minimizes

∑

e f(e) (i.e.: the flow takes the shortest path from s to t given a choice). Since
it is possible to apply the planing transformation to Pk−1, then there must be
two consecutive vertices si and si+1 corresponding to oddly-sized columns of
different dominant colors (given several such pairs, we consider that for which i

is the smallest).
Let us now build TPk

, the flow network associated with Pk = φ(Pk−1) : the
vertices of TPk

are the vertices of TPk−1
from which we remove {si, si+1}; the

arcs of TPK
are the trace of the arcs of the arcs of TPk−1

(trace is a non-standard
term by which we mean all arcs that are incident neither to si nor to si+1) to
which we add, should both vertices exist, the arcs (si−1, si+2) and (si+2, si−1)
with capacity

min (c ((si−1, si)) , c ((si, si+1)) − 1, c ((si+1, si+2))) .

Suppose si and si+1 respectively represent a black and white dominant column
(figure 6 illustrates the construction in this case); the other case is symmetrical.



Then, because
∑

e f(e) is minimal, maximum flow f routes a non-null amount
through the path (s, si, si+1, t).

t

s

2 2 1

2 2 1

1

1

1
1

t

s

2 - 1

1 - 1

1 - 1

t

s
1

1

min(2, 2-1, 1) = 1

min(2, 2, 1) = 1

Fig. 6. Building TPk
from TPk−1

: a max flow for the network of figure 3 neces-
sarily goes through the path (s, s2, s3, t). Here we show the impact of removing
this path on the flow network’s edges, vertices and capacities.

Thus the maximum flow f on TPk−1
induces a maximum flow f ′ on TPk

,
which is defined as the trace of f on TPk

and updated, if necessary, by adding:

{

f ′((si−1, si+2)) = f((si−1, si)) = f((si+1, si+2))
f ′((si+2, si−1)) = f((si, si−1)) = f((si+2, si+1))

.

Proving that f ′ is a maximum flow on TPk
is straightforward (suppose there

is a better flow, and reach a contradiction). We then immediately remark that
v(Pk−1) = v(Pk) + 1; and because the planing transformation applied to Pk−1

levels both a black dominant column and a white dominant column to obtain
Pk, we have |IPk

| =
∣

∣IPk−1

∣

∣ − 1 and |JPk
| =

∣

∣JPk−1

∣

∣ − 1, thus:

∣

∣IPk−1

∣

∣ +
∣

∣JPk−1

∣

∣ − 2v(Pk−1) = |IPk
| + |JPk

| − 2v(Pk),

from which, by induction on k, we derive the lemma’s invariant. ⊓⊔

Lemma 2. Let P be a Manhattan polyomino and v(P ) the value of a maximum
flow in TP (cf. section 2). There is a partial tiling of P in which exactly |IP | +
|JP | − 2v(P ) squares are uncovered.

Proof. We prove the property by induction on the size of P . Let f be a maximum
flow in TP . We consider whether there are two consecutive vertices si and si+1

which correspond to oddly-sized columns of different dominant colors, such that
the flow of f going from si to si+1 is non-null.

Either: no such vertices si and si+1 exist4, in which case we have v(P ) = 0
(this would mean f is the zero flow). Indeed, any path from s to t would use at
least one transversal arc (si, si+1) because, by construction, a vertex si cannot

4 This case arises when there are no oddly-sized columns, or only oddly-sized columns
of a given color.



be simultaneously linked to s and t. We remark that the planing transformation
cannot be applied. If we partially tile P , as in figure 4(b), with vertical dominoes
alone, leaving one square uncovered per oddly-sized column, we obtain a partial
tiling which globally leaves |IP | + |JP | squares uncovered—thus proving our
property for this case.

Or: such vertices si and si+1 exist. We can then apply the planing transfor-
mation φ, P ′ = φ(P ). By induction, the property holds for P ′. As we’ve seen,
the (union of the) squares removed by the transformation is a domino-tileable
Manhattan polyomino (figure 5); and by lemma 1,

|IP ′ | + |JP ′ | − 2v(P ′) = |IP | + |JP | − 2v(P ).

⊓⊔

Theorem 1. Let P be a Manhattan polyomino, and d(P ), the number of un-
covered unit squares in an optimal partial tiling of P . The construction outlined
in the proof of lemma 2 is optimal, i.e.:

|IP | + |JP | − 2v(P ) = d(p).

Remark 1. We are now going to work on GP which is the edge-adjacency graph
of polyomino P : the vertices of GP are the unit squares of P , and an edge
connects two vertices of GP if and only if the two corresponding squares share
an edge in P . (By contrast, TP is the flow network constructed in section 2.)

The idea behind the proof of theorem 1 is as follow: we isolate a subset B(P )
of black squares of P , such that the (white) neighbors (in graph GP ) to squares
of B(P ) verify the relation

|B(P )| − |Γ (B(P ))| = |IP | + |JP | − 2v(P ).

We can then conclude, using Hall’s theorem, that d(P ) > |B(P )| − |Γ (B(P ))|.
To construct B(P ), we use a minimal cut5 of graph TP , from which we deduce a
list of “bottlenecks”. These bottlenecks mark the boundary of zones containing
squares of B(P ).

Intuitively, once bottlenecks are planed (that is to say when we have tiled
them following the template given by our planing transformation), they isolate
zones which have either too many white or too many black squares.

3.4 Greedy algorithm

Having proven that our optimal partial tiling problem can be reduced to a net-
work flow problem, we will now present an algorithm to efficiently solve this

5 Recall that a cut of graph G = (V, E) is a partition of its vertices in two subsets X1

and X2; let EC be the set of edges such that one vertex is in X1 and the other in
X2: the value of the cut is the sum of the capacity of each edge in EC ; a minimal cut
is a cut which minimizes this sum. In the case of flow networks, a cut separates
the source s from the sink t.
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Fig. 7. A polyomino P , its flow network TP (the transversal arcs are only hinted
at, with dashed lines; the max flow is represented with snake-lines), and, in red,
a minimal cut of TP which separates P in two zones (each zone is connected here,
but that may not be the case). The black striped squares on the left belong to
B(P ): in accordance with Hall’s theorem, |B(P )| − |Γ (B(P ))| = 9− 7 = 2 is the
number of uncovered squares in the optimal partial tiling.

specific brand of network flow problem (indeed, a general-purpose network flow
algorithm would not take into account those properties of our network which are
a consequence of the way it was constructed).

We will first introduce the notion of f -tractability for two vertices of our
flow network. The pair (si, sj) (for which we consider that i < j) is said to be
f -tractable if:

– si and sj correspond to two oddly-sized columns of different dominant
columns6;

– if si corresponds to a black-dominant column, then the arcs (si, si+1), ...,
(sj−1, sj) are not saturated;

– or else, if si corresponds to a white-dominant column, then the arcs (sj , sj−1),
..., (si+1, si) are not saturated;

– for every k, i < k < j, if sk ∈ IP (resp. sk ∈ JP ) then (s, sk) (resp. (sk, t))
is saturated.

This might seem like an elaborate notion, but in fact, it only translates whether,
in terms of flow increase, we can apply our transformation.

We are going to prove that the following algorithm builds a maximum flow:

1. we begin with a null flow f ;
2. while there exists two vertices si and sj with i < j which are f -tractable:

6 Recall that this is almost the condition under which the planing transformation can
be applied: the planing transformation requires, in addition, that si and sj be so
that j = i + 1 —per the ordering which have defined in section 2.



(a) we take the first pair of vertices in lexicographic order which is f -
tractable,

(b) and we augment the flow f by 1 on the arcs belonging to the path
[s, si, si+1, . . . , sj , t] or [s, sj , sj−1, . . . , si, t] (depending on the dominant
color of si);

3. we return the flow f .

Proof (Correctness of the greedy algorithm). Let (si, si+1) be the first pair of
vertices in lexicographic order which, at the beginning of the algorithm, is f -
tractable. We suppose here that si corresponds to a black dominant column (the
other case is symetrical). We want to prove that there is a maximum flow f ,
which minimizes

∑

v∈TP
f(v), such that none of the following values are null:

f((s, si)), f((si, si+1)), f((si+1, t)). If a maximum flow following this last con-
dition does not exist, then one of those three arcs must be null and another
one must be saturated, otherwise the flow f can be augmented. Now, by the
minimality of

∑

v∈TP
f(v), it follows that (s, si) is not saturated (otherwise we

can remove 1 to f on every arc belonging to a minimal path from s to t using
(s, si) with non-zero flow, and add 1 to f((s, si)), f((si, si+1)), f((si+1, t)). We
obtain a maximum flow which contradicts the minimality of

∑

v∈TP
f(v).) The

arc (si, si+1) cannot be saturated for the same reason. So, (si+1, t) is saturated.
But in this case, as (s, si) and (si, si+1) are not saturated, we can remove 1 to
f on every arc belonging to a non-zero flow path from s to t using (si+1, t), and
add 1 to f((s, si)), f((si, si+1)), f((si+1, t)). We again obtain a new maximum
flow with total weigth at most

∑

v∈TP
f(v). That proves what we want. Now,

the next recursive steps of the algorithm are exactly proved by the same way but
on transport networks obtained by convenient diminution of the arc capacities.

To briefly but correctly analyze the complexity of this algorithm, we have to
describe the representation of the entry. If the Manhattan polyomino is given by
the list of its column heights, it can be stored in O(l log(max(hi))) bits where l

is the number of columns. We can consider two steps. The first one consists in
obtaining the transport network TP from P . This can be done in one pass and we
make O(l) elementary operations (min, division by 2). The second part consists
in solving the transport networks problem. Using stacks, the algorithm can solve
the problem making a unique pass on the vertices of TP . So, its complexity is in
O(|IP |). Thus, globally the algorithm works in O(l) elementary operations. If we
make the hypothesis that the number of columns is approximatively the average
of the height of the columns. Our algorithm is clearly sublinear in n the number
of unit squares. Moreover, if we consider the complexity according to the size of
the input, this algorithm is linear.

4 Conclusion

In this paper, we have illustrated that particular optimal partial domino tiling
problems can be solved with specific algorithms. We have not yet been able to
evidence a linear algorithm for the general problem of partial domino tiling of



polyominoes without holes. This appears to be an attainable goal, as [13] has
devised such an algorithm for the exact domino tiling problem.

Currently, the best known complexity for the general partial domino tiling
problem is O(n · √n) using a maximum matching algorithm in bipartite graphs.
To improve this bound, it seems irrelevant to obtain an analogue to the notion
of height which is a cornerstone of the tiling algorithms. Nevertheless, it can be
proven that two optimal partial tilings are mutually accessible using extended
flips (which contain classical flips [1,11] and taquin-like moves). This fact involves
in a sense a weak form of “lattice structure” over the set of optimal partial tilings.
This is relevant and could be taken into account to optimize the algorithms.
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5 Annexe (proof of theorem 1)

So, we have proved that on the sequence of Manhattan polyominoes obtained by
successive planing transformations, the function |I | + |J | − 2v( ) is invariant.
We need another invariant to conclude that |IP |+|JP |−2v(P ) ≤ d(P ). It follows
from a list of “bottlenecks” which prevent the matching of columns.

We denote by Pred = (hred
1 , ..., hred

n ) the Manhattan polyomino obtained from
P after v(P ) planing transformations.

We can suppose that the least x such that (x, x′) belongs to YP (the set of
edges of FP that crosses the minimal cut) corresponds to a black dominant col-
umn (if this is not the case, we can inverse the colors). Let g(x, x′) be the smallest
k ∈ {x, . . . , x′} such that hk = X(x, x′). We denote by G = {g(x, x′); (x, x′) ∈
YP } the list of bottlenecks of P and we sort the elements of G in ascending order.

G =
(

g0
1 , . . . , g

0
k

)

. Now, if i is odd (resp. even) and is the index of a white
dominant column, we put gi = g0

i −1 (resp. gi = g0
i +1) otherwise we put gi = g0

i .
With the hypothesis, we can observe that (h1, h2, . . . , hg1

) has more black unit
squares than white ones. We put

HP = B ((h1, h2, . . . , hg1
)) ∪ B ((hg2

, . . . , hg3
)) ∪ . . .

and
KP = W ((h1, h2, . . . , hg1

)) ∪ W ((hg2
, . . . , hg3

)) ∪ . . .

We have 2(|HP | − |Γ (HP )|) ≤ d(P ) and we want to prove that 2(|HP | −
|Γ (HP )|) = |IP | + |JP | − 2v(P ). In order to do that, let P ′ be the Manhattan
polyomino obtained from P by a planing transformation as we have processed
previously. Firstly, we are going to show that |HP |−|Γ (HP )| = |HP ′ |−|Γ (HP ′)|
where

HP ′ = B
((

h′

1, h
′

2, ..., h
′

g1

))

∪ B
((

h′

g2
, ..., h′

g3

))

∪ ...

We put B(HP ) (resp. W(HP )) the number of odd black dominant columns
(resp. white) in P which belongs to the columns of indices in E = {1, 2, ...g1} ∪
{g2, ..., g3} ∪ .... An easy observation allows us to see that

|HP | − |Γ (HP )| = |HP | − |KP | −
∑

v∈YP

c(v)

= B(HP ) −W(HP ) −
∑

v∈YP

c(v)

When we apply the planing transformation on P , we delete :

– a black dominant column in E and a white column in Ec and
∑

v∈Y
P ′

c(v) =

∑

v∈YP

c(v) − 1,

– a black dominant and a white dominant column in E or a black dominant
and a white column in Ec and

∑

v∈Y
P ′

c(v) =
∑

v∈YP

c(v).



This fact proves that |H |− |Γ (H )| is invariant on every sequence of Manhattan
polyominos obtained by successive planing transformations.

Now, let us remark that

|HPred
| − |Γ (HPred

)| = B(HPred
) = |IPred

|

(W(HPred
) =

∑

v∈YPred

c(v) = 0) and that |IPred
| = |IP | − v(P ). Indeed, we have

made v(P ) planing transformations and each of them reduces by 1 the number
of black dominant columns.

So, |HP | − |Γ (HP )| = |HPred
| − |Γ (HPred

)| = |IP | − v(P ).
Moreover, we have assumed initially that the polyomino is balanced. So,

|IP | = |JP |. Consequently, we have proved that 2(|HP | − |Γ (HP )|) = |IP | +
|JP | − 2v(P ). Thus, we can conclude that |IP | + |JP | − 2v(P ) ≤ d(P ).


