
HAL Id: hal-00432215
https://hal.science/hal-00432215

Preprint submitted on 14 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boltzmann Samplers for v-balanced Colored Necklaces
Olivier Bodini, Alice Jacquot

To cite this version:
Olivier Bodini, Alice Jacquot. Boltzmann Samplers for v-balanced Colored Necklaces. 2009. �hal-
00432215�

https://hal.science/hal-00432215
https://hal.archives-ouvertes.fr

Boltzmann Samplers for v-balanced Colored

Necklaces

O. Bodini and A. Jacquot

LIP6, UMR 7606, Departement CALSCI, Université Paris 6 - UPMC,
104, avenue du président Kennedy,

F-75252 Paris cedex 05, France

Abstract. This paper is devoted to the random generation of particu-
lar colored necklaces for which the number of beads of a given color is
constrained (these necklaces are called v-balanced). We propose an effi-
cient sampler (its expected time complexity is linear) which satisfies the
Boltzmann model principle introduced by Duchon, Flajolet, Louchard
and Schaeffer (7). Our main motivation is to show that the absence of
a decomposable specification can be circumvented by mixing the Boltz-
mann samplers with other types of samplers.

Introduction

Necklaces are classical objects in combinatorics (10; 6; 13; 14). They naturally
occur in the study of Lyndon words or in many other enumeration problems (5).
For v = (v1, ..., vk) a k-tuple of positive integers, our interest lies in uniformly
drawing v-balanced necklaces of n beads : the beads can take k distinct colors
and the number ni of beads of color i verifies the v-balance (which we define
as meaning that (n1, ..., nk) is collinear to v). An additional reason to focus
on v-balanced structures derives from the intrinsic difficulty to enumerate and
describe such objects in terms of analytic combinatorics. In particular, the gen-
erating function of v-balanced cycles is neither holonomic nor closed-formed. We
attempt to draw very large necklaces in order to conjecture some limit properties
on them. To that purpose, we adopt the framework of Boltzmann samplers. This
approach, like the recursive method (15), allows to “automatically” build a sam-
pler from a decomposable specification of a combinatorial class. A Boltzmann
sampler does not guarantee the size of the generated object, only that the drawn
object has the same probability to be drawn as any other of the same size. More
details on this point can be found in the preliminary section. But we can already
state that for a large number of combinatorial classes this relaxation allows to
generate an object of size n in expected linear time O(n) without preprocessing.

The main problem is that v-balanced necklaces do not admit decomposable s
using traditional builders (+,×, Seq, ...), except for some very special cases. The
aim of this paper is to adapt an ad-hoc sampler for v-balanced sequences, in such
a way that the sampling follows a Boltzmann model. After that, we will use this

Boltzmann sampler (which cannot be built from a decomposable specification) to
obtain a Boltzmann sampler for v-balanced cycles. To this end, we need to know
how to obtain a Boltzmann sampler for a class A from a Boltzmann sampler for
its pointing class ΘA.

This paper is organized in four sections. The first section defines the notations
and concepts used throughout the article. After reflecting upon basic notions
related to combinatorial classes and Boltzmann samplers, we define our classes
of interest, namely, the v-balanced sequences and the v-balanced cycles.
The second section addresses the sampler for (1, 1)-balanced cycles. We show
two ways of building such a sampler. The first one uses a natural isomorphism
with a decomposable combinatorial class involving Dyck paths. Unfortunately,
this approach cannot be generalized, therefore we propose a second one based on
an isomorphism between pointed (1, 1)-balanced cycles and the weighted sum of
(1, 1)-balanced sequences. These sequences can be drawn with an ad-hoc sampler.
In the third section, a generalization of the previous approach to v-balanced
cycles is given, yielding an efficient Bolzmann sampler which, for our object of
study, bypasses the need for a specification of the class.
The fourth section concludes with some perspective works.

1 Preliminaries

An (unlabelled) combinatorial class is a couple 〈C, s〉 (generally abbreviated by
C) where C is a set of objects and s is a function on C called size function which
satisfies the conditions :
(i) ∀a ∈ C, s(a) is a non-negative integer;
(ii) the number of objects of any given size is finite.
We naturally associate to a combinatorial class C the ordinary generating func-
tion C(x) =

∑
cnxn where cn is the number of objects of size n in C. A Boltz-

mann sampler for an unlabelled combinatorial class C is a random generator

such that the probability to draw an object a of size n is Px(a) =
xn

C(x)
. These

samplers were first introduced in (7) and extended, (in particular the sampler
for unlabelled cycles) in (9). Let us notice that a Boltzmann sampler depends
on a parameter x which can be tuned to focus on an expected output size. More
precisely, let N be the random variable of the size of the output, we can solve

the equation E(N) = x ·
C′(x)

C(x)
to center the output distribution on an expected

value.
Let us recall in the following table the samplers for the unlabelled operators

that we need.

Boltzmann samplers are very powerful tools to efficiently generate combina-
torial structures (2; 8). In particular, It can be possible to automatically build
a sampler according to the specification of a combinatorial class. Our aim is to

Sampler Description

Γx(Z) Return Z. Z denotes an atomic class.

Γx(AB) Return (ΓxA, ΓxB).

If Bernoulli(A(x)
A(x)+B(x)

) = 1

Γx(A + B) then Return ΓxA

else Return ΓxB

ΓxSeq(C) Draw l according to a geometric law of parameter C(x).
Return the concatenation of l calls to ΓxA.

ΓxRepn(C) Return aa...a
| {z }

n times

with a generated by ΓxnA.

Let K be a random variable in N
∗ verifying :

P(K = k) = −ϕ(k)
kCycA(x)

log(1 − A(xk)) with CycA(x) the generating function of Cyc(A)

ΓxCyc(C) Draw k according to the law of K.
Draw j according to a logarithmic law of parameter A(xk).
Let M by the concatenation of j calls to ΓxkA

Return MM...M
| {z }

k times

.

Fig. 1. Some classical samplers with A, B and C combinatorial classes, A(x),
B(x) and C(x) their respective generating functions. C must not have neutral
objects.

consider Cycv and Seqv defined below, as additional basic classes, to be added
to the collection of classical constructions thus increasing the expressivity of the
Boltzmann model.

Definition 1. We denote by Seqv (resp. Cycv) a sequence of atoms (objects of
size 1), such that each atom can be colored by one of the color in {1, ..., k} and
the numbers ni of beads of color i verifies the v-balanced condition. That is to
say (n1, ..., nk) is collinear to v.

From an easy observation, it can be seen that the generating function of

Seq(v1,...,vk) is
∑

(
(n|v|)!

∏
((vin)!)

)xn|v| where |v| =
∑

vi. The following proposition

is a trivial consequence.

Proposition 1 (see e.g (1)). The class Seqv is holonomic for every v.

Proof. Indeed, a quick calculation shows that this can be written as the hyper-
geometric function :

kFk−1(
1

|v|
,

2

|v|
, ...,

|v|

|v|
;

1

v1
,

2

v1
, ...,

v1

v1
,

1

v2
, ...,

v2

v2
, ...,

1

vk

,
2

vk

, ...,
vk − 1

vk

;
|v||v|
∏

vvi

i

×x|v|).

The hypergeometric functions are holonomic by definition.

Remark: Nevertheless, the class Seqv is algebraic in only very few cases. For
instance, Seq(1,1,1) is not algebraic. See (1) for a complete classification of the
algebraic cases.

2 Generating (1,1)-balanced cycles

This section is dedicated to the random generation of (1, 1)-balanced cycles. This
is a good example to illustrate our approach. A (1, 1)-balanced sequence (resp.
cycle) is by previous definition a sequence (resp. cycle) of black atoms Zb and
white atoms Zw such that the number of black atoms is equal to the number of
white atoms. The generating function for Seq(1,1) is S(1,1) = 1F0(1/2, 4x2) = (1−

4x2)−
1
2 . In particular, Seq(1,1) is algebraic. We are going to use this important

property in the following first approach.

2.1 First approach: through a decomposable specification

Both Seq(1,1) and Cyc(1,1) are specifiable. We can thus apply the unlabelled
samplers described in the previous table. More precisely, Seq(1,1) is a classical
combinatorial notion, names bridges. To generate Cyc(1,1), we use an isomor-
phism between the (1, 1)-balanced cycles and the cycles of indecomposable Dyck
paths.

Let D be the class of Dyck paths of specification D = Seq(ր D ց). Dyck
paths are excursions from (0, 0) to (0, 2n) over the discrete lattice Z

+×Z
+, with

displacements of (1, 1) and (1,−1). This can also be viewed as the class of well-
formed parentheses strings. Bridges are defined by Seq((ր D ց) + (ց D ր)),
where D is like D, but with the roles of ց and ր interchanged. So, we can
generate Seq(1,1) by classical Boltzmann sampler principles.

The class of indecomposable Dyck paths is the class of specification ր D ց.

Proposition 2 (Raney’s lemma). The balanced cycle can also be specified as
Cyc(1,1) ≃ Cyc(ր D ց), where Cyc is the classical constructor for cycles.

Proof. (sketch) We can represent Cyc(1,1) as an excursion from (0, 0) to (0, 2n),
with steps of (1, 1) and (1,−1), up to circular permutations. Such an excursion
has a non-empty set S of points of minimal abscissa. As we deal with excursions
up to circular permutations, we can consider that the excursion begin at any
c in S (see Fig.2). In this case, we have Dyck paths and we remark that they
are exactly the same up to circular permutations of their indecomposable Dyck
paths.

Cycl(◦ • • • ◦ • ◦ ◦) ↔
a a

c

≡
c c

a
↔ Cycl()

Fig. 2. Isomorphism between Cyc(1,1) and Cyc(ր D ց).

Now, with this specification, we can use usual Boltzmann samplers for unla-
belled structures to draw (1, 1)-balanced cycles. We obtain a Boltzmann sampler
for Cyc(ր D ց) by a combination of the previous mentioned samplers according
to the specification. In the following algorithms D(x) and C(1,1)(x) respectively
represent the generating functions of D and Cyc(◦D•).

Algorithm 1: ΓxD

Input: the parameter x
Output: an object of D
Draw l according to a geometric law of parameter x2D(x)1

M := ε2

for i from 1 to l do3

M := concat(M, ◦, ΓxD, •)4

return (M).5

Algorithm 2: ΓxCyc(1,1)

Input: the parameter x
Output: a (1,1)-balanced cycle
Let K be a random variable in N

∗ verifying :1

P(K = k) = −ϕ(k)
kC(1,1)(x) log(1 − x2kD(xk))2

Draw k according to the law of K.3

Draw j according to a logarithmic law of parameter x2kD(xk).4

M := ε5

for i from 1 to j do6

M := concat(M, ◦, ΓxD, •)7

return [MM...M
︸ ︷︷ ︸

k times

].
8

This method is an efficient way to draw (1, 1)-balanced cycles. In particular,
the basic rejection sampler µCyc(1,1)(x; n, ε) (see (7) for details) has an O(n)
overall cost in average. But it relies on a very singular property of the class : it
can be decomposed with usual constructors. We are now interested in another
way to generate these objects. This new approach will be extended to all v-
balanced objects in the last section.

2.2 Second approach: mixed samplers

We are still focused on the generation of (1, 1)-balanced cycles, but now the use of
an algebraic specification is avoided. The idea of our sampler can be summerized
as follows : first, we adapt an ad-hoc sampler for the (1, 1)-balanced sequences in
such a way that this sampling follows a Boltzmann model; second, we show an
isomorphism (see proposition 4) between the class ΘCyc(1,1) of pointed balanced
cycles and a sum involving duplications of Seq(1,1). The notion of pointing classes
is recalled in this part; finally, to obtain a Boltzmann sampler for Cyc(1,1), we

explain how to obtain a Boltzmann sampler for a class A from a Boltzmann
sampler for its pointing class ΘA.

Sampler for Seq(1,1). Let us start by introducing our Boltzmann sampler for
Seq(1,1) and proving its correctness:

Algorithm 3: ΓxSeq(1,1)

Input: the parameter x
Output: a balanced sequence of Zb and Zw.

Let L be a random variable in N
∗ verifying P(L = l) = (2l)!

(l!)2
x2l

S(1,1)(x)1

Draw l according to the law of L.2

Let M be a (2l)-uple, select uniformly l positions belongs the 2l entries in3

M .
This positions are the Zb entries of M , the other ones are the Zw entries.4

return (M).5

Lemma 1. Algorithm 3 is a valid Boltzmann sampler for Seq(1,1).

Proof. Let α be an output of this algorithm. The probability to draw α is the
probability to draw the right length and then to draw the right positions for Zb.
So,

P(α) =
|α|!

(|α|
2 !)2

x|α|

S(1,1)(x)
.
(|α|

2 !)2

|α|!
=

x|α|

S(1,1)(x)

An isomorphism for ΘCyc(1,1). Another classical operator, in structural
combinatorics, is the pointing operator which can be defined as follows :

Definition 2. Let C be a combinatorial class, the combinatorial class ΘC is

formally defined as
∑

n>0

Cn × {ǫ1, ..., ǫn} where the ǫi are distinct neutral objects

(0-sized objects) and Cn is the sub-class of C of the elements of size n.

The generating function of the pointed class ΘC is C•(x) = x.
dC

dx
. We can

interpret this operator by saying that each object in ΘC is an object in C with
a tagged atom on it.

Theorem 1. ΘCyc(1,1) is isomorphic to
∑

n>0
ϕ(n)Repn(Seq(1,1)), where Repn(A)

is the class {aa...a
︸ ︷︷ ︸

n times

; a ∈ A}.

Proof. Let Cbic be the generating function for Cyc(Zw + Zb), without any con-
straint on the number of beads (Zw and Zb) of each color. We can write the
generating function Cbic as follows :

Cbic =
∑

n>0

−ϕ(n)

n
log(1 − (Zn

w + Zn
b)) =

∑

n>0

ϕ(n)

n

∑

k>0

1

k
(Zn

b + Zn
w)k

Cbic =
∑

n>0

ϕ(n)

n

∑

k>0

1

k

∑

p1+p2=k

k!

p1!p2!
Zp1n

b Zp2n
w

The notion of diagonal for a bivariate generating function is needed for what
follows. Let f(X, Y) =

∑

i ai,jX
iY j be a bivariate generating function, the func-

tion g(Z) =
∑

an,nZ2n is called the (1,1)-diagonal of f(X, Y) and it is denoted
by ∆f .

So, by definition C(1,1) = ∆Cbic and we can use the previous formula to
obtain :

C(1,1) =
∑

l>0

([Z l
bZ

l
w]Cbic)X

2l =
∑

n>0

ϕ(n)

n

∑

p>0

1

2p

(2p)!

(p!)2
X2np

Now, pointing the Cyc(1,1) class yields :

C•
(1,1) =

∑

n>0

ϕ(n)
∑

p>0

(2p)!

(p!)2
X2np

C•
(1,1) =

∑

n>0

ϕ(n)S(1,1)(X
n)

At this stage, it is possible to draw an object of size n in Cyc(1,1) using
classical recursive method (12). But here we pitch on Boltzmann point of view
which avoids costly preprocessing calculus.

This isomorphism allows us to describe a Boltzmann sampler for ΘCyc(1,1) :

Algorithm 4: ΓxΘCyc(1,1)

Input: the parameter x
Output: a (1, 1)−balanced cycle of Zb and Zw.
n := 11

S :=
ϕ(n)S(1,1)(x

n)

C•
(1,1)

(x)2

Draw a real number u uniformly in [0, 1]3

while u > S do4

n := n + 15

S := S +
ϕ(n)S(1,1)(x

n)

C•
(1,1)

(x)6

return [Γx(Repn(Seq(1,1)))]7

Corollary 1. Algorithm 4 is a valid Boltzmann sampler for ΘCyc(1,1).

Proof. This is a corollary of the correctness of our general sampler, given in
section four.

A Boltzmann Sampler for Cyc(1,1). We have obtained a Boltzmann sampler
for ΘCyc(1,1). This is enough to uniformly generate (1,1)-balanced cycles. But,
the sampler does not have a Boltzmann distribution for Cyc(1,1), so it can not
be called by another constructor. For instance, Cyc(ΘCyc(1,1)) is not equal to

Cyc(Cyc(1,1)). Indeed, small objects are drawn with a smaller probability in
ΘCyc(1,1). To unbias the sampler, we are going to change its parameter according
to a well-chosen density law fx(u). A similar idea occurs in (16).

Lemma 2. Let C(x) =
∑

n>0 cnxn be a generating function (with C(0) = 0).

For any fixed x in the convergence disc of C, the function fx(u) =
C•(xu)

uC(x)
is a

density of probability on [0, 1].

Proof. Clearly f is non negative. Now, it remains only to prove that
∫ 1

u=0

C•(xu)

uC(x)
du = 1. We can expand the serie to C•(xu),

∫ 1

u=0

∑

n>0 ncn(ux)n

uC(x)
du.

We now swap the sum and integral, we have :

∑

n>0

ncnxn

C(x)

∫ 1

u=0

un−1du =
1

C(x)

∑

n>0

ncnxn

[
un

n

]1

u=0

= 1.

Theorem 2. The following sampler (Algorithm 5) gives a valid Boltzmann sam-
pler for C with parameter x from a Boltzmann sampler for ΘC.

Algorithm 5: ΓxC

Input: the parameter x
Output: an object in C.

Draw a real number u according to the density law
C•(xu)

u(C(x) − c0)
.

1

if (Bernoulli(
c0

C(x)
) = 1) then

2

return an object in C0 drawn uniformly.3

else4

return Γux(ΘC) and forget the point.5

Proof. It is sufficient to evaluate the probability that the output be of size n.

If n = 0, we have drawn an object in C0. This occurs with probability
c0

C(x)
. If

n > 0, the probability is (1 −
c0

C(x)
) ·

∫ 1

u=0

ncn(ux)n

uC(x)
du =

cnxn

C(x)
. In every cases,

this is a Boltzmann probability.

This sampler allows us to generate extremely large (1, 1)-cycles (more than
1000000 beads). Indeed, this sampler is clearly linear in the size of the output.
The following figures (Fig.3) show a (1, 1)-cycle of size 100 (Fig. 3(a)) (only
100 beads for the legibility.) It also shows that we can compose our sampler
with the classical builder (∗, +, Seq, Cyc, MSet, PSet, ...). Figure 3(b) shows a
random generated a necklace of (1, 1)-cycles. We can see that the necklaces do
not contain a lot of (1, 1)-cycles. Moreover only one of these (1, 1)-cycles contains
a lot of beads.

(a) random (1,1)-cycle of size
100.

(b) A random necklace of
(1,1)-cycles of size 200.

Fig. 3. Examples of Boltzmann sampling.

3 The general vectorial case

In this part, we extend the previous method to all cases, algebraic or not. Let

v = (v1, v2, ...vm), and |v| =
m∑

i=1

vi. Our goal here is to generate Cycv : cycles

of m colors, such that the number of occurences of each atom Zi verify the
v-balance condition. We follow the same principles than in section 3.2 but the
proofs are slightly more technical.

3.1 Sampler for Seqv

Let us recall Sv, the generating function of v-balanced sequences:

Sv =
∑

p>0

(|v|p)!
m∏

i=1

((vip)!)

m∏

i=1

Zvip
i .

Algorithm 6: ΓxSeqv

Input: the parameter t
Output: a v-balanced sequence of Zi.

Let L be a random variable in N
∗ verifying P(L = l) =

(|v|l)!
m∏

i=1

(vil!)

t
(

m
P

i=1

vil)

Sv

1

Draw l according to the law of L.2

Let M be a (|v|l)-uple,3

for i from 1 to m do4

Select uniformly lvi positions belongs the (|v|l) entries not yet affected5

in M .
This positions are the Zi entries of M .6

return (M).7

Lemma 3. Algorithm 6 is a valid Boltzmann sampler for Seqv. Its arithmetic
complexity is linear in the size of its output object.

Proof. The proof can be easily transposed from (1, 1)-balanced one. The com-
plexity result is trivial.

Now, as with the example of (1, 1)-balanced cycles, we are going to use this
sampler for v-balanced sequences to generate v-balanced cycles.

3.2 An isomorphism for ΘCycv

Theorem 3. ΘCycv is isomorphic to
∑

n>0
ϕ(n)Repn(Seqv).

Proof. Let Cmcol be the generating function of cycles of m atoms Z1, ...,Zm.

Cmcol =
∑

n>0

−ϕ(n)

n
log(1 − (

m∑

i=1

Zn
i)) =

∑

n>0

ϕ(n)

n

∑

k>0

1

k
(

m∑

i=1

Zn
i)k

Cmcol =
∑

n>0

ϕ(n)

n

∑

k>0

1

k

∑

m
P

i=1

pi=k

k!
m∏

i=1

(pi!)

m∏

i=1

Znpi

i

Let Cv be the generating function of Cycv. This is the extraction of terms
with the exponents verifying the v-balanced condition in Cmcol.

Cv =
∑

l>0

([

m∏

i=1

Z lvi

i]Cmcol)X
|v|l =

∑

n>0

ϕ(n)

n

∑

p>0

1

|v|p

(|v|p)!
m∏

i=1

((vip)!)
X |v|np

We will now apply the same idea that we described for the (1, 1)-balanced
case to ΘCv (the generating function of which is C•

v).

C•
v =

∑

n>0

ϕ(n)
∑

p>0

(|v|p)!
m∏

i=1

((vip)!)
X |v|np =

∑

n>0

ϕ(n)Sv(Xn)

This isomorphism can be used to obtain the following sampler:

Algorithm 7: ΓxΘCycv

Input: the parameter x
Output: a v-balanced cycle of Zi.
n := 11

S := ϕ(n)Sv(xn)
C•

v (x)2

Draw a real number u uniformly in [0, 1]3

while u > S do4

n := n + 15

S := S + ϕ(n)Sv(xn)
C•

v (x)6

return [Γx(Repn(Seq(1,1)))]7

Proposition 3. Algorithm 7 is a valid Boltzmann sampler for ΘCycv. Its arith-
metic complexity is linear in the size of its output object.

Proof. Let us consider the generation of a pointing cycle c.
It can be written as c = up, where u a primitive sequence (i.e. without replica-
tion) and p is the primitive repetition order of c (|c| = p|u|). There are s = |u|
shifts of u which produce equivalent cycles.
In Algorithm 7, the generating sequence is not necessarily primitive. So, c can
be drawn as any ũd, with d|p and ũ a shift of p

d
repetitions of u.

So, the probability to draw u is the sum for all d|p of the probability to draw
d as repetition order and to draw one of the s shift of ũ as motif :

P(c) =
∑

d|p

ϕ(d)Repd(Sv)

C•
v

.
s.(xd)

p

d

Repd(Sv)
= s

x|c|

C•
v

∑

d|p

ϕ(d) = |c|
x|c|

C•
v

.

P(c, i) = 1
|c|P(c) = x|c|

C•
v

with i ∈ [|1, l|], the choice of i corresponding to the

pointed atom. The complexity ensues from the results on Boltzmann sampling.

To obtain a v-balanced cycle from an object of ΘCycv, we can now apply
the general algorithm 5 to ΘCycv. As proven previously, this provides us a
Boltzmann sampler for Cycv.

4 Conclusion

The random generation of constrained-colored structures is in general very dif-
ficult. In a previous paper (3), we already investigated the generation of the
k-colored structures and size-colored structures. In this short paper, we have
presented a way to efficiently generate v-balanced cycles. It is possible with our
samplers to generate v-balanced cycles of sizes reaching up to one million. Nev-
ertheless our methods can not be directly generalized to other balanced struc-
tures. For instance, we do not know how to generate (1, 1)-balanced general
non planar (unlabelled) trees where general non planar trees can be specified as
T = Z.MSet(T). This problem is a work in progress and should be solved by
a method involving multivariate Boltzmann sampler. Another perspective is the
generation of semi-labelled structures. In these structures each atom can take a
color in {1, ..., k} but, if we have an atom of color k > 1, we need to also have at
least one atom of color k− 1. Semi-labelling is a new interesting labelling which
is in a sense between unlabelling and labelling. But very little is as of yet known
about it.

Finally, we want to thank, B. Salvy for his precious knowledge on hyperge-
ometric functions and Joachim Dehais, Jérémie Lumbroso and Yann Ponty for
their careful reading of a preliminary version of the manuscript.

Bibliography

[1] F. Beukers, G. Heckman, “ Monodromy for the hypergeometric function

nFn−1”, in Inventiones mathematicae, vol 95; pp. 325-354.
[2] O. Bodini, E. Fusy and C. Pivoteau, “Random sampling of plane partitions.”

Proceedings of Gascom’06.
[3] O. Bodini, A. Jacquot, “Boltzmann Samplers for Colored Combinatorial

Objects”, in Proceedings of Gascom’07.
[4] R. Brualdi and M. Newman, “An enumeration problem for a congruence

equation”, J. Res. Nat. Bureau Standards, B74 (1970), 37-40.
[5] K. Cattell, F. Ruskey, J. Sawada, C.R. Miers, and M. Serra, “Fast Algo-

rithms to Generate Necklaces, Unlabelled Necklaces and Irreducible Poly-
nomials over GF(2)”, J. Algorithms, 37 (2000) 267-282.

[6] WYC. Chen, JD Louck, “Necklaces, MSS Sequences, and DNA Se-
quences”,Adv. Appl. Math. 18 (1997) pp.18-32

[7] P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer. “Boltzmann Sam-
plers for the Random Generation of Combinatorial Structures”, In Com-
binatorics, Probability, and Computing, Special issue on Analysis of Algo-
rithms, 2004, Vol. 13, No 4–5, pp. 577-625.

[8] A. Darrasse, M. Soria, “Degree distribution of random Apollonian network
structures and Boltzmann sampling”, Proceedings of International Confer-
ence on Analysis of Algorithms DMTCS, 2007.

[9] P. Flajolet, E. Fusy and C. Pivoteau, “Boltzmann Sampling of Unlabelled
Structures”, Proceedings of ANALCO’07 (Analytic Combinatorics and Al-
gorithms) Conference, New Orleans, January 2007. SIAM Press, in print.

[10] P. Flajolet and R. Sedgewick, “Analytic Combinatorics” published soon by
Cambridge University Press.

[11] P. Flajolet and M. Soria, private communication, 2008.
[12] P. Flajolet, P. Zimmerman, B. Van Cutsem, “A calculus for the random

generation of labelled combinatorial structures”, Theor. Comput. Sci. 132,
1-2 (Sep. 1994), 1-35.

[13] H. Fredricksen, I.J. Kessler, “An algorithm for generating necklaces on beads
in two colors”, Discrete mathematics, 1986, vol. 61, no2-3, pp. 181-188.

[14] H. Fredricksen and J. Maiorana, “Necklaces of beads in k colors and k-ary
de Bruijn sequences”, Discrete Mathematics 23 (1978), 207-210.

[15] A. Nijenhuis and H. Wilf, “Combinatorial Algorithms”, Academic Press,
ISBN 0125192509 (1975).

[16] O. Roussel, ”A Boltzmann sampler for the box operator“, master thesis,
2008.

