O Bodini

A Jacquot

Boltzmann Samplers for v-balanced Colored Necklaces

This paper is devoted to the random generation of particular colored necklaces for which the number of beads of a given color is constrained (these necklaces are called v-balanced). We propose an efficient sampler (its expected time complexity is linear) which satisfies the Boltzmann model principle introduced by Duchon, Flajolet, Louchard and Schaeffer (7). Our main motivation is to show that the absence of a decomposable specification can be circumvented by mixing the Boltzmann samplers with other types of samplers.

Introduction

Necklaces are classical objects in combinatorics (10; 6; 13; 14). They naturally occur in the study of Lyndon words or in many other enumeration problems [START_REF] Cattell | Fast Algorithms to Generate Necklaces, Unlabelled Necklaces and Irreducible Polynomials over GF(2)[END_REF]. For v = (v 1 , ..., v k) a k-tuple of positive integers, our interest lies in uniformly drawing v-balanced necklaces of n beads : the beads can take k distinct colors and the number n i of beads of color i verifies the v-balance (which we define as meaning that (n 1 , ..., n k) is collinear to v). An additional reason to focus on v-balanced structures derives from the intrinsic difficulty to enumerate and describe such objects in terms of analytic combinatorics. In particular, the generating function of v-balanced cycles is neither holonomic nor closed-formed. We attempt to draw very large necklaces in order to conjecture some limit properties on them. To that purpose, we adopt the framework of Boltzmann samplers. This approach, like the recursive method [START_REF] Nijenhuis | Combinatorial Algorithms[END_REF], allows to "automatically" build a sampler from a decomposable specification of a combinatorial class. A Boltzmann sampler does not guarantee the size of the generated object, only that the drawn object has the same probability to be drawn as any other of the same size. More details on this point can be found in the preliminary section. But we can already state that for a large number of combinatorial classes this relaxation allows to generate an object of size n in expected linear time O(n) without preprocessing.

The main problem is that v-balanced necklaces do not admit decomposable s using traditional builders (+, ×, Seq, ...), except for some very special cases. The aim of this paper is to adapt an ad-hoc sampler for v-balanced sequences, in such a way that the sampling follows a Boltzmann model. After that, we will use this Boltzmann sampler (which cannot be built from a decomposable specification) to obtain a Boltzmann sampler for v-balanced cycles. To this end, we need to know how to obtain a Boltzmann sampler for a class A from a Boltzmann sampler for its pointing class ΘA.

This paper is organized in four sections. The first section defines the notations and concepts used throughout the article. After reflecting upon basic notions related to combinatorial classes and Boltzmann samplers, we define our classes of interest, namely, the v-balanced sequences and the v-balanced cycles. The second section addresses the sampler for (1, 1)-balanced cycles. We show two ways of building such a sampler. The first one uses a natural isomorphism with a decomposable combinatorial class involving Dyck paths. Unfortunately, this approach cannot be generalized, therefore we propose a second one based on an isomorphism between pointed (1, 1)-balanced cycles and the weighted sum of (1, 1)-balanced sequences. These sequences can be drawn with an ad-hoc sampler. In the third section, a generalization of the previous approach to v-balanced cycles is given, yielding an efficient Bolzmann sampler which, for our object of study, bypasses the need for a specification of the class. The fourth section concludes with some perspective works.

Preliminaries

An (unlabelled) combinatorial class is a couple C, s (generally abbreviated by C) where C is a set of objects and s is a function on C called size function which satisfies the conditions : (i) ∀a ∈ C, s(a) is a non-negative integer; (ii) the number of objects of any given size is finite. We naturally associate to a combinatorial class C the ordinary generating function C(x) = c n x n where c n is the number of objects of size n in C. A Boltzmann sampler for an unlabelled combinatorial class C is a random generator such that the probability to draw an object a of size n is P x (a) =

x n C(x) . These samplers were first introduced in (7) and extended, (in particular the sampler for unlabelled cycles) in [START_REF] Flajolet | Boltzmann Sampling of Unlabelled Structures[END_REF]. Let us notice that a Boltzmann sampler depends on a parameter x which can be tuned to focus on an expected output size. More precisely, let N be the random variable of the size of the output, we can solve the equation

E(N) = x • C ′ (x) C(x)
to center the output distribution on an expected value.

Let us recall in the following table the samplers for the unlabelled operators that we need. Boltzmann samplers are very powerful tools to efficiently generate combinatorial structures (2; 8). In particular, It can be possible to automatically build a sampler according to the specification of a combinatorial class. Our aim is to with a generated by ΓxnA.

Let K be a random variable in N * verifying :

P(K = k) = -ϕ(k) kCycA(x) log(1 -A(x k))
with CycA(x) the generating function of Cyc(A) ΓxCyc(C) Draw k according to the law of K.

Draw j according to a logarithmic law of parameter A(x k). Let M by the concatenation of j calls to

Γ x k A Return M M...M | {z } k times .
Fig. 1. Some classical samplers with A, B and C combinatorial classes, A(x), B(x) and C(x) their respective generating functions. C must not have neutral objects.

consider Cyc v and Seq v defined below, as additional basic classes, to be added to the collection of classical constructions thus increasing the expressivity of the Boltzmann model.

Definition 1. We denote by Seq v (resp. Cyc v) a sequence of atoms (objects of size 1), such that each atom can be colored by one of the color in {1, ..., k} and the numbers n i of beads of color i verifies the v-balanced condition. That is to say (n 1 , ..., n k) is collinear to v.

From an easy observation, it can be seen that the generating function of

Seq (v1,...,v k) is ((n|v|)! ((v i n)!))x n|v| where |v| = v i .
The following proposition is a trivial consequence.

Proposition 1 (see e.g (1)). The class Seq v is holonomic for every v.

Proof. Indeed, a quick calculation shows that this can be written as the hypergeometric function :

k F k-1 (1 |v| , 2 |v| , ..., |v| |v| ; 1 v 1 , 2 v 1 , ..., v 1 v 1 , 1 v 2 , ..., v 2 v 2 , ..., 1 v k , 2 v k , ..., v k -1 v k ; |v| |v| v vi i ×x |v|).
The hypergeometric functions are holonomic by definition.

Remark: Nevertheless, the class Seq v is algebraic in only very few cases. For instance, Seq (1,1,1) is not algebraic. See (1) for a complete classification of the algebraic cases.

Generating (1,1)-balanced cycles

This section is dedicated to the random generation of (1, 1)-balanced cycles. This is a good example to illustrate our approach. A (1, 1)-balanced sequence (resp. cycle) is by previous definition a sequence (resp. cycle) of black atoms Z b and white atoms Z w such that the number of black atoms is equal to the number of white atoms. The generating function for

Seq (1,1) is S (1,1) = 1 F 0 (1/2, 4x 2) = (1- 4x 2) -1 2 .
In particular, Seq (1,1) is algebraic. We are going to use this important property in the following first approach.

First approach: through a decomposable specification

Both Seq (1,1) and Cyc (1,1) are specifiable. We can thus apply the unlabelled samplers described in the previous table. More precisely, Seq (1,1) is a classical combinatorial notion, names bridges. To generate Cyc (1,1) , we use an isomorphism between the (1, 1)-balanced cycles and the cycles of indecomposable Dyck paths.

Let D be the class of Dyck paths of specification D = Seq(ր D ց). Dyck paths are excursions from (0, 0) to (0, 2n) over the discrete lattice Z + × Z + , with displacements of (1, 1) and (1, -1). This can also be viewed as the class of wellformed parentheses strings. Bridges are defined by Seq((ր D ց) + (ց D ր)), where D is like D, but with the roles of ց and ր interchanged. So, we can generate Seq (1,1) by classical Boltzmann sampler principles.

The class of indecomposable Dyck paths is the class of specification ր D ց.

Proposition 2 (Raney's lemma). The balanced cycle can also be specified as

Cyc (1,1) ≃ Cyc(ր D ց),
where Cyc is the classical constructor for cycles.

Proof. (sketch) We can represent Cyc (1,1) as an excursion from (0, 0) to (0, 2n), with steps of (1, 1) and (1, -1), up to circular permutations. Such an excursion has a non-empty set S of points of minimal abscissa. As we deal with excursions up to circular permutations, we can consider that the excursion begin at any c in S (see Fig. 2). In this case, we have Dyck paths and we remark that they are exactly the same up to circular permutations of their indecomposable Dyck paths. Input: the parameter x Output: a (1,1)-balanced cycle Let K be a random variable in N * verifying :

Cycl(• • • • • • • •) ↔ a a c ≡ c c a ↔ Cycl()
1 P(K = k) = -ϕ(k) kC (1,1) (x) log(1 -x 2k D(x k)) 2
Draw k according to the law of K.].

8

This method is an efficient way to draw (1, 1)-balanced cycles. In particular, the basic rejection sampler µCyc (1,1) (x; n, ε) (see [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF] for details) has an O(n) overall cost in average. But it relies on a very singular property of the class : it can be decomposed with usual constructors. We are now interested in another way to generate these objects. This new approach will be extended to all vbalanced objects in the last section.

Second approach: mixed samplers

We are still focused on the generation of (1, 1)-balanced cycles, but now the use of an algebraic specification is avoided. The idea of our sampler can be summerized as follows : first, we adapt an ad-hoc sampler for the (1, 1)-balanced sequences in such a way that this sampling follows a Boltzmann model; second, we show an isomorphism (see proposition 4) between the class ΘCyc (1,1) of pointed balanced cycles and a sum involving duplications of Seq [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . The notion of pointing classes is recalled in this part; finally, to obtain a Boltzmann sampler for Cyc (1,1) , we explain how to obtain a Boltzmann sampler for a class A from a Boltzmann sampler for its pointing class ΘA.

Sampler for Seq [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . Let us start by introducing our Boltzmann sampler for Seq (1,1) and proving its correctness:

Algorithm 3: Γ x Seq (1,1)
Input: the parameter x Output: a balanced sequence of Z b and Z w . Let L be a random variable in

N * verifying P(L = l) = (2l)! (l!) 2 x 2l S (1,1) (x) 1
Draw l according to the law of L. Proof. Let α be an output of this algorithm. The probability to draw α is the probability to draw the right length and then to draw the right positions for Z b . So,

P(α) = |α|! (|α| 2 !) 2 x |α| S (1,1) (x) . (|α| 2 !) 2 |α|! = x |α| S (1,1) (x)
An isomorphism for ΘCyc [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . Another classical operator, in structural combinatorics, is the pointing operator which can be defined as follows : Definition 2. Let C be a combinatorial class, the combinatorial class ΘC is formally defined as n>0 C n × {ǫ 1 , ..., ǫ n } where the ǫ i are distinct neutral objects (0-sized objects) and C n is the sub-class of C of the elements of size n.

The generating function of the pointed class

ΘC is C • (x) = x.
dC dx . We can interpret this operator by saying that each object in ΘC is an object in C with a tagged atom on it. Proof. Let C bic be the generating function for Cyc(Z w + Z b), without any constraint on the number of beads (Z w and Z b) of each color. We can write the generating function C bic as follows :

C bic = n>0 -ϕ(n) n log(1 -(Z n w + Z n b)) = n>0 ϕ(n) n k>0 1 k (Z n b + Z n w) k C bic = n>0 ϕ(n) n k>0 1 k p1+p2=k k! p 1 !p 2 ! Z p1n b Z p2n w
The notion of diagonal for a bivariate generating function is needed for what follows. Let f (X, Y) = i a i,j X i Y j be a bivariate generating function, the function g(Z) = a n,n Z 2n is called the (1,1)-diagonal of f (X, Y) and it is denoted by ∆f .

So, by definition C (1,1) = ∆C bic and we can use the previous formula to obtain :

C (1,1) = l>0 ([Z l b Z l w]C bic)X 2l = n>0 ϕ(n) n p>0 1 2p (2p)! (p!) 2 X 2np
Now, pointing the Cyc(1,1) class yields :

C • (1,1) = n>0 ϕ(n) p>0 (2p)! (p!) 2 X 2np C • (1,1) = n>0 ϕ(n)S (1,1) (X n)
At this stage, it is possible to draw an object of size n in Cyc (1,1) using classical recursive method [START_REF] Flajolet | A calculus for the random generation of labelled combinatorial structures[END_REF]. But here we pitch on Boltzmann point of view which avoids costly preprocessing calculus.

This isomorphism allows us to describe a Boltzmann sampler for ΘCyc (1,1) :

Algorithm 4: Γ x ΘCyc (1,1)
Input: the parameter x Output: a (1, 1)-balanced cycle of Z b and Z w . n := 1

1 S := ϕ(n)S (1,1) (x n) C • (1,1) (x) 2
Draw a real number u uniformly in [0, 1] Proof. This is a corollary of the correctness of our general sampler, given in section four.

3 while u > S do 4 n := n + 1 5 S := S + ϕ(n)S (1,1) (x n) C • (1,1) (x) 6 return [Γ x (Rep n (Seq (1,1)))]
A Boltzmann Sampler for Cyc [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . We have obtained a Boltzmann sampler for ΘCyc [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . This is enough to uniformly generate (1,1)-balanced cycles. But, the sampler does not have a Boltzmann distribution for Cyc (1,1) , so it can not be called by another constructor. For instance, Cyc(ΘCyc (1,1)) is not equal to Cyc(Cyc [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF]). Indeed, small objects are drawn with a smaller probability in ΘCyc [START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] . To unbias the sampler, we are going to change its parameter according to a well-chosen density law f x (u). A similar idea occurs in [START_REF] Roussel | A Boltzmann sampler for the box operator[END_REF].

Lemma 2. Let C(x) = n>0 c n x n be a generating function (with C(0) = 0).

For any fixed x in the convergence disc of C, the function

f x (u) = C • (xu) uC(x) is a density of probability on [0, 1].
Proof. Clearly f is non negative. Now, it remains only to prove that

1 u=0 C • (xu) uC(x) du = 1.
We can expand the serie to C • (xu),

1 u=0 n>0 nc n (ux) n uC(x) du.
We now swap the sum and integral, we have :

n>0 nc n x n C(x) 1 u=0 u n-1 du = 1 C(x) n>0 nc n x n u n n 1 u=0 = 1.
Theorem 2. The following sampler (Algorithm 5) gives a valid Boltzmann sampler for C with parameter x from a Boltzmann sampler for ΘC.

Algorithm 5: Γ x C Input: the parameter x Output: an object in C.

Draw a real number u according to the density law

C • (xu) u(C(x) -c 0) . 1 if (Bernoulli(c 0 C(x)
) = 1) then 2 return an object in C 0 drawn uniformly. Proof. It is sufficient to evaluate the probability that the output be of size n.

If n = 0, we have drawn an object in C 0 . This occurs with probability

c 0 C(x) . If n > 0, the probability is (1 - c 0 C(x)) • 1 u=0 nc n (ux) n uC(x) du = c n x n C(x)
. In every cases, this is a Boltzmann probability.

This sampler allows us to generate extremely large (1, 1)-cycles (more than 1000000 beads). Indeed, this sampler is clearly linear in the size of the output. The following figures (Fig. 3) show a (1, 1)-cycle of size 100 (Fig. 3(a)) (only 100 beads for the legibility.) It also shows that we can compose our sampler with the classical builder (* , +, Seq, Cyc, M Set, P Set, ...). Figure 3(b) shows a random generated a necklace of (1, 1)-cycles. We can see that the necklaces do not contain a lot of (1, 1)-cycles. Moreover only one of these (1, 1)-cycles contains a lot of beads.

The general vectorial case

In this part, we extend the previous method to all cases, algebraic or not. Let v = (v 1 , v 2 , ...v m), and |v| = m i=1 v i . Our goal here is to generate Cyc v : cycles of m colors, such that the number of occurences of each atom Z i verify the v-balance condition. We follow the same principles than in section 3.2 but the proofs are slightly more technical.

Sampler for Seq v

Let us recall S v , the generating function of v-balanced sequences:

S v = p>0 (|v|p)! m i=1 ((v i p)!) m i=1 Z vip i .
Algorithm 6: Γ x Seq v Input: the parameter t Output: a v-balanced sequence of Z i .

Let L be a random variable in

N * verifying P(L = l) = (|v|l)! m i=1 (v i l!) t (m P i=1 vil) S v 1
Draw l according to the law of L.

2

Let M be a (|v|l)-uple, Proof. The proof can be easily transposed from (1, 1)-balanced one. The complexity result is trivial. Now, as with the example of (1, 1)-balanced cycles, we are going to use this sampler for v-balanced sequences to generate v-balanced cycles.

An isomorphism for ΘCyc

v Theorem 3. ΘCyc v is isomorphic to n>0 ϕ(n)Rep n (Seq v).
Proof. Let C mcol be the generating function of cycles of m atoms Z 1 , ..., Z m .

C mcol = n>0 -ϕ(n) n log(1 -(m i=1 Z n i)) = n>0 ϕ(n) n k>0 1 k (m i=1 Z n i) k C mcol = n>0 ϕ(n) n k>0 1 k m P i=1 pi=k k! m i=1 (p i !) m i=1 Z npi i
Let C v be the generating function of Cyc v . This is the extraction of terms with the exponents verifying the v-balanced condition in C mcol .

C v = l>0 ([m i=1 Z lvi i]C mcol)X |v|l = n>0 ϕ(n) n p>0 1 |v|p (|v|p)! m i=1 ((v i p)!) X |v|np
We will now apply the same idea that we described for the (1, 1)-balanced case to ΘC v (the generating function of which is C

• v). C • v = n>0 ϕ(n) p>0 (|v|p)! m i=1 ((v i p)!) X |v|np = n>0 ϕ(n)S v (X n)
This isomorphism can be used to obtain the following sampler:

Algorithm 7: Γ x ΘCyc v Input: the parameter x Output: a v-balanced cycle of Z i . n := 1 1 S := ϕ(n)Sv(x n) C • v (x) 2
Draw a real number u uniformly in [0, 1]

3 while u > S do 4 n := n + 1 5 S := S + ϕ(n)Sv(x n) C • v (x) 6 return [Γ x (Rep n (Seq (1,1)
))] 7 Proposition 3. Algorithm 7 is a valid Boltzmann sampler for ΘCyc v . Its arithmetic complexity is linear in the size of its output object.

Proof. Let us consider the generation of a pointing cycle c. It can be written as c = u p , where u a primitive sequence (i.e. without replication) and p is the primitive repetition order of c (|c| = p|u|). There are s = |u| shifts of u which produce equivalent cycles. In Algorithm 7, the generating sequence is not necessarily primitive. So, c can be drawn as any ũd , with d|p and ũ a shift of p d repetitions of u. So, the probability to draw u is the sum for all d|p of the probability to draw d as repetition order and to draw one of the s shift of ũ as motif : To obtain a v-balanced cycle from an object of ΘCyc v , we can now apply the general algorithm 5 to ΘCyc v . As proven previously, this provides us a Boltzmann sampler for Cyc v .

P(c) =

Conclusion

The random generation of constrained-colored structures is in general very difficult. In a previous paper (3), we already investigated the generation of the k-colored structures and size-colored structures. In this short paper, we have presented a way to efficiently generate v-balanced cycles. It is possible with our samplers to generate v-balanced cycles of sizes reaching up to one million. Nevertheless our methods can not be directly generalized to other balanced structures. For instance, we do not know how to generate (1, 1)-balanced general non planar (unlabelled) trees where general non planar trees can be specified as T = Z.M Set(T). This problem is a work in progress and should be solved by a method involving multivariate Boltzmann sampler. Another perspective is the generation of semi-labelled structures. In these structures each atom can take a color in {1, ..., k} but, if we have an atom of color k > 1, we need to also have at least one atom of color k -1. Semi-labelling is a new interesting labelling which is in a sense between unlabelling and labelling. But very little is as of yet known about it.

Finally, we want to thank, B. Salvy for his precious knowledge on hypergeometric functions and Joachim Dehais, Jérémie Lumbroso and Yann Ponty for their careful reading of a preliminary version of the manuscript.

Fig. 2 .

 2 Fig. 2. Isomorphism between Cyc (1,1) and Cyc(ր D ց).

Algorithm 1 : 1 M := ε 2 for i from 1 to l do 3 M 4 return (M). 5 Algorithm 2 :

 1123452 Γ x D Input: the parameter x Output: an object of D Draw l according to a geometric law of parameter x 2 D(x) := concat(M, •, Γ x D, •) Γ x Cyc (1,1)

3

 Draw j according to a logarithmic law of parameter x 2k D(x k).

4 M := ε 5 for i from 1 to j do 6 M

 456 := concat(M, •, Γ x D, •) 7 return [M M...M k times

2

 Let M be a (2l)-uple, select uniformly l positions belongs the 2l entries in 3 M . This positions are the Z b entries of M , the other ones are the Z w entries. 4 return (M).

5 Lemma 1 .

 51 Algorithm 3 is a valid Boltzmann sampler for Seq[START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF][START_REF] Beukers | Monodromy for the hypergeometric function n F n-1[END_REF] .

Theorem 1 .

 1 ΘCyc (1,1) is isomorphic to n>0 ϕ(n)Rep n (Seq (1,1)), where Rep n (A) is the class {aa...a n times ; a ∈ A}.

7 Corollary 1 .

 71 Algorithm 4 is a valid Boltzmann sampler for ΘCyc (1,1) .

3 else 4 return

 34 Γ ux (ΘC) and forget the point.

5

 5

 (a) random (1,1)-cycle of size 100. (b) A random necklace of (1,1)-cycles of size 200.

Fig. 3 .

 3 Fig. 3. Examples of Boltzmann sampling.

3 for i from 1 to m do 4

 34 Select uniformly lv i positions belongs the (|v|l) entries not yet affected 5 in M . This positions are the Z i entries of M . 6 return (M).

7 Lemma 3 .

 73 Algorithm 6 is a valid Boltzmann sampler for Seq v . Its arithmetic complexity is linear in the size of its output object.

 i) = 1 |c| P(c) = x |c| C • v with i ∈ [|1, l|],the choice of i corresponding to the pointed atom. The complexity ensues from the results on Boltzmann sampling.