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One-dimensional electronic conduction is investigated in a special case usually referred to as the harmonic crystal, meaning essentially that atoms are assumed to move like coupled harmonic oscillators within the Born-Oppenheimer approximation. We recall their dispersion relation and derive a WKB system approximately satisfied by any electron's wave-function inside a given energy band. This is then numerically solved according to the theory of K-branch solutions. Numerical results are presented in case atoms move with one-or twomodes vibrations; at last, we include the case where the Poisson self-interaction potential influences the electrons dynamics too.

Introduction

Preliminaries

It is a familiar fact that electrons are able to move over long distances inside certain materials; this phenomenon manifests itself, for instance, through the high electrical conductivity of metals. However, even in purest metals, electrons are influenced by the underlying lattice made of the atoms consituting the crystal itself. A very reasonable assumption is to consider the repartition of these atoms as periodic; such an idealization allows to take advantage of Bloch's theory which explains how valence/conduction electrons can move rather freely and have a well-defined (Bloch) momentum. Indeed, Bloch's theorem is one example of coherent electronic transport: in a perfect crystal at zero temperature, there is a great superposition of phasecoherent waves with similar wavenumbers which results in a frictionless flow inside the material (at low densities, Pauli's exclusion principle doesn't have very sensible effects). These electrons move according to the energy bands thus can survive multiple scattering events with the atoms without getting localized and accumulating somewhere. Unfortunately, finite conductivity is observed in practice because no sample will be pure enough to be a perfectly periodic lattice, and even if this idealization was realizable, vibrations due to thermal excitation would perturb the picture. The effects of these vibrations constitute the main point we want to study in this paper within a simplified framework.

We are interested in deriving approximate WKB solutions of certain Schrödinger equations in one space dimension, where short-range scattering effects other than those considered in the Bloch decomposition will be neglected. In other words, we shall work on ballistic transport of electrons for which the most important long-range interaction is the Coulomb force. In case one assumes translational invariance in two directions, three dimensional objects can be modelled to some extent by means of a one-dimesional mean-field equation. We shall follow these ideas which have already been studied in former works, [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF][START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice -II. Impurities, confinement and Bloch oscillations[END_REF][START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -III. From ab-initio models to WKB for Schrödinger-Poisson[END_REF]. However, we go now one step further considering that atoms vibrate as "coupled harmonic oscillators". The Hamiltonian for one electron reads (see [START_REF] Ashcroft | Solid-state physics[END_REF], page 430), with obvious notation,

H f ull = p 2 2m + α∈Z P 2 α 2M + α∈Z V ions (|X α -X α-1 |) + α∈Z V ion-e -(|x -X α |). (1) 
Parameters (p, x, m) refer to some electron and (P α , X α , M ) α to the collection of atomic cores. One could also consider a cloud of electrons indexed by β ∈ Z and the first term in (1) should be replaced by

β∈Z p 2 β 2m + 1 2 β =β e 2 |x β -x β | .
Then Coulomb self-interactions may be treated via "mean-field", which would lead to some Hartree equation, cf. [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -III. From ab-initio models to WKB for Schrödinger-Poisson[END_REF]; this will be briefly considered in the numerical results of §4.3. But first, let us concentrate on the one-particle model [START_REF] Ashcroft | Solid-state physics[END_REF]. We shall assume the following hypotheses to hold throughout the whole paper:

• Ionic cores are coupled oscillators, i.e. V ions (|X α -X α-1 |) = 1 2 M ω 2 (X α -X α-1 ) 2 .
• They are treated classically (Born-Oppenheimer approximation) because m M 1.

• They influence electrons but not the opposite (there are no polarons, cf. [START_REF] Ashcroft | Solid-state physics[END_REF][START_REF] Nieto | A generalized mean-field approach to the polaron[END_REF]).

Modelling of ionic cores vibrations

Without V ions , ions would arrange periodically Xα = 2πα, α ∈ Z, like in [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF]; now, let's call U α (t) := X α (t) -2πα the displacement around these abscissae "at rest". The cores' equation is decoupled thanks to our third hypothesis,

d dt 2 U α (t) -ω 2 U α+1 (t) -2U α (t) + U α-1 (t) = 0.
As for the continuous wave equation, it can be solved by Fourier series:

Q(t, k) = α∈Z U α (t) exp(-ik2πα) ⇒ d dt 2 Q(t, k) = Ω(k) 2 Q(t, k).
The dispersion relation reads, (see also [START_REF] Ashcroft | Solid-state physics[END_REF])

Ω(k) = 2ω| sin(kπ)|, k ∈ B := - 1 2 , 1 2 ,
with B the Brillouin zone associated to the Bravais lattice for the ionic cores "at rest". U α (t) can be written as a continuous summation of plane waves:

U α (t) = 1 2 0 A(k) exp i(k2πα -Ω(k)t) + B(k) exp -i(k2πα -Ω(k)t) .dk. ( 2 
)
The Schrödinger equation for the electron's wave function ψ becomes accordingly,

i ∂ t ψ + 2 2m ∂ xx ψ = V per x + U α (εt) ψ, (3) 
with V per (x) α V ion-e -(|x -Xα |) can be considered 2π-periodic and smooth; the dimensionless paramenter ε = Te -/ Tions is defined as the ratio of characteristic times for the movements of ions and electrons, respectively. This modelling has already been incontered in several papers; let us quote [START_REF] Niu | Quantum adiabatic particle transport[END_REF][START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects[END_REF] where it is referred to as "the deformed crystal". Moreover, many studies have been made in the field of "incommensurate crystals", see [START_REF] De Lange | Electrons in incommensurate crystals: spectrum and localization[END_REF][START_REF] Quilichini | Phonon excitations in quasicrystals[END_REF][START_REF] Mishra | One-dimensional photonic crystal: the Kronig-Penney model[END_REF], emphasizing the so-called modulated Kronig-Penney model. This is somewhat an extreme case for which the potential showing up in (3) isn't periodic any more thus the Brillouin zone of the resulting crystal is reduced to a point. We believe that new methods are needed for tackling such a problem of non-periodic homogenization which goes beyond the scope of the present paper. Indeed all this text deals only with perturbed potentials (as showing up in the right-hand side of (3)) endowed with some perdiodicity.

WKB asymptotic expansions of wave functions

We assume the reader to be familiar with Bloch's theory; a comprehensive presentation is given in [START_REF] Ashcroft | Solid-state physics[END_REF], see also [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF][START_REF] Dimassi | Semiclassical asymptotics in magnetic Bloch bands[END_REF][START_REF] Guillot | Semiclassical asymptotics in solid-state physics[END_REF][START_REF] Hövermann | Semiclassical limit for the Schrödinger equation for a short scale periodic potential[END_REF][START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF]. In this section, we shall show that for simple enough displacements (2) (typically with few vibration modes), it is possible to derive a WKB approximation for the wave function ψ solution of (3) for smooth V per . For simpliciy, we switch at once to "atomic units" for which = m = e = 1 and seek a convenient Ansatz as variables are rescaled according to (t, x) → (εt, εx) with 0 < ε 1; ε = 0 would mean that phonon scattering acts instantaneously.

Bloch theory and the Eikonal equation

We are now basically interested in the following equation:

iε∂ t ψ + ε 2 2 ∂ xx ψ = Ṽper t, x ε ψ, Ṽper (t, y) = V per (y + u(t, y)), (4) 
where y = x/ε is the microscopic variable, Ṽper is supposed to be C ∞ in both variables, the motion u is smooth and periodic in both its variables, and V per is 2π-periodic. The simplest case where u is only endowed with a unique vibration mode is displayed in Fig. 1. Let us assume that for all t, Ṽper (t, y + 2π/k) = V per (t, y); thus one can consider a slightly generalized Bloch eigenvalue problem:

∀t ∈ R, - 1 2 ∂ yy Ψ n,κ (t, y) + Ṽper t, x ε Ψ n,κ (t, y) = E n (t, κ)Ψ n,κ (t, y), (5) 
for any t ∈ R + and Ψ n,κ (t, y) = exp(iκy)z n,κ (t, y) a Bloch state. We observe that we only need y ∈]0, 2π/k[ and the Brillouin zone corresponding to Ṽper is smaller than B,

κ ∈ B = - k 2 , k 2 , |k| ≤ 1 2 .
Since there's no differentiation in time inside [START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF], standard results remain valid (see e.g. [START_REF] Markowich | A Wigner-function approach to semiclassical limits: electrons in a periodic potential[END_REF]) and ensure that for any fixed t and κ ∈ B, there exists a complete set of eigenfunctions Ψ n,κ (t, .) ∈ L 2 (0, 2π/k) with countably many eigenvalues

E 1 (t, κ) < E 2 (t, κ) < • • • < E n-1 (t, κ) < E n (t, κ) < • • • depending smoothly on time.
The set {E n (t, κ); κ ∈ B} is called the n th energy band whereas Ψ n,κ is a n th Bloch state having the form exp(iκy)z n,κ (t, y) for a certain 2π/k-periodic modulation. Modulations can be normalized so as to form an orthonormal base of L 2 (0, 2π/k) for each t > 0.

At this level, we introduce a WKB Ansatz for ψ considering a two-scale amplitude:

A t, x, y = x ε = A 0 (t, x, y) + εA 1 (t, x, y) + • • • ; A t, x, y + 2π/k = A(t, x, y). ( 6 
)
Plugging the approximation A(t, x, x/ε) exp(iϕ(t, x)/ε) inside ( 4) and balancing the O(1) terms following carefully [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF][START_REF] Dimassi | Semiclassical asymptotics in magnetic Bloch bands[END_REF][START_REF] Guillot | Semiclassical asymptotics in solid-state physics[END_REF] can be shown to lead to an Hamilton-Jacobi equation for the phase:

∂ t ϕ + E n (t, ∂ x ϕ) = 0. (7)

Derivation of the transport equation

The principal amplitude stems from balancing O(ε) terms and is usually handled by means of the "Feschbach method", see the paper [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF] to which we refer for a detailed presentation of the computation. Here we shall limit ourselves to specify the changes occuring in the derivation because of the time-dependence of Ṽper . Actually, everything proceeds as in the Appendix A of [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF], except for the last step that we explain now §: let us denote L the usual geometric optics transport operator associated to the Bloch theory:

La := E n (t, ∂ x ϕ)∂ x a + 1 2 ∂ x (E n (t, ∂ x ϕ))a,
where E n stands for the partial derivative with respect to κ. The principal amplitude is defined as a 0 (t, x) such that there holds: A 0 (t, x, y) = a 0 (t, x)z n,κ (t, y) for κ = ∂ x ϕ(t, x). From (A.4), (A.5), (A.6) in [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF], we obtain the following equation for a 0 :

∂ t a 0 + a 0 2π/k 0 g n ∂ t g n .dy + E n (t, ∂ x ϕ)a 0 2π/k 0 g n ∂ x g n .dy + La 0 = 0, ( 8 
)
where g n (t, x, y) = z n,κ=∂xϕ(t,x) (t, y). Now, as a consequence of the modulation's normalization, z n,κ (t, .) L 2 (0,2π/k) = 1, we observe that the first coefficient acting on a 0 is purely imaginary,

∂ t 2π/k 0 g n g n .dy = 0 = 2 2π/k 0 g n ∂ t g n .dy ,
and since E n ∈ R, the next one as well. It remains to make use of the definition of g n , the chain rule, and the equation ( 7) to compute:

2π/k 0 g n ∂ t g n + E n (t, ∂ x ϕ)∂ x g n .dy = 2π/k 0 z n,∂xϕ(t,x) ∂ t z n,κ κ=∂xϕ(t,x) .dy.
We denote this term β(t, x) ∈ iR; it identifies with a Berry phase, [START_REF] Berry | Proc. R. Soc. Lond. A[END_REF], and stems from the time-dependence of the Bloch states. In case another slowly-varying potential V (t, x)ψ was added on the right-hand side of (4), one would get another phase-shift too reading

∂ x V (t, x) 2π/k 0 z n,∂xϕ(t,x) ∂ κ z n,κ κ=∂xϕ(t,x)
.dy ∈ iR like in [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF][START_REF] Dimassi | Semiclassical asymptotics in magnetic Bloch bands[END_REF][START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice -II. Impurities, confinement and Bloch oscillations[END_REF]. Anyway, it now remains to multiply the resulting equation ( 8) by ā0 and take its real part to derive the usual continuity equation for |a 0 | 2 :

∂ t |a 0 | 2 + ∂ x E n (t, ∂ x ϕ)|a 0 | 2 = 0. ( 9 
)
All in all, we have shown that an approximate n th -band solution for (4) reads

ψ ε (t, x) = a 0 (t, x) exp iϕ(t, x)/ε z n,∂xϕ(t,x) t, x/ε , t ≥ 0, (10) 
§ We shall use the same notations for easiness in reading.

and evolves in time according to the WKB system made of ( 7) and [START_REF] Gosse | Using K-branch entropy solutions for multivalued geometric optics computations[END_REF]. A first consequence is that an initial datum concentrated on a given band will necessary give rise to an approximate solution in the same band. Lattice vibrations aren't supposed to make electrons trigger interband transitions; hence from now on, we consider some electron moving according to some energy band whose index n ∈ N is fixed.

"Lattice tracking" phenomenon

Clearly, each primitive cell of the "perturbed lattice" contains 1 |k| ∈ N atomic cores. We modified the algorithm in [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice -II. Impurities, confinement and Bloch oscillations[END_REF], §2.2 in order to compute numerically E n (t, κ), Ψ n,κ (t, y) by means of a spectral method. We write down:

Ψ n,κ (t, y) = ∈Z Ψ n,κ (t) exp(i(n + κ)y/k), Ψ n,κ (t) = 2π/k 0 z n,κ (t, y) exp(-iny/k) 2π .dy.
The same decomposition is carried out for the perturbed potential and one is led to diagonalize a matrix H κ similar to that in [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice -II. Impurities, confinement and Bloch oscillations[END_REF] with kinetic energy terms reading now

k 2
2 (κ + ) 2 , = -N, ..., N . Modulations z n,κ are recovered by Fast Fourier transform (fft) of corresponding eigenvectors and there holds for some t ∈ R + , n ∈ N: Since there are 1/k atoms per period, bands "stick together" and constitute sets of 1/k (for k small, there would be "bands of bands" emerging inside a tiny Brillouin zone). In the ground state, each of the 1/k modulations is very peaked around the corresponding atom in the elementary cell: see Fig. 2 where Ṽper (t, y) = cos y + π 2 sin(ky + Ω(k)t) . It is interesting to make a link with a feature pointed out in [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects[END_REF], namely the tendency for the lattice to drag the electron with its displacement motion, called "lattice tracking". First, observe that even if supplying the WKB system ( 7)- [START_REF] Gosse | Using K-branch entropy solutions for multivalued geometric optics computations[END_REF] with initial data such that a 0 ≡ 1 and ∂ x ϕ ≡ 0, we would have ψ ε (t, x) = ψ ε (t = 0, x) because of the time-dependence of z n,κ . In other words, a small current is created from the motion of the atoms even if the macroscopic quantities remain constant in time. On Fig. 3, we displayed the deformations of the 5 lowest modulations with respect to the changes in the same potential Ṽper as in Fig. 2. According to [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF], §3.2, this implies the dragging effect suggested in [START_REF] Sundaram | Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects[END_REF]. 

E n (t, κ) = Ê0 (t) 2 + q∈N * Êq (t) cos(2πqκ/k), Êq (t) = 4 k 2 0 E n (t, κ) cos(2πqκ/k).dκ.

Numerical approximation with K-branch solutions

This method has been originally introduced in [START_REF] Gosse | Using K-branch entropy solutions for multivalued geometric optics computations[END_REF][START_REF] Runborg | Some new results in multiphase geometrical optics[END_REF] following the seminal work by Brenier and Corrias [START_REF] Brenier | A kinetic formulation for multibranch entropy solutions of scalar conservation laws[END_REF]. Is is based on the remark that geometrical solutions to ( 7)-( 9) can be recovered from the solving of a rather simple system of nonlinear conservation laws through the moment closure of a kinetic equation. This opens the way of using all the results from the numerical analysis of this kind of problems instead of using the classical Lagrangian framework of ray-tracing algorithms, which may ask for repetitive regridding procedures. Let us also note that the inclusion of the Poisson self-consistent potential wouldn't be easy within a ray-tracing approach. We don't plan to recall it completely instead we refer to [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF][START_REF] Gosse | Multiphase semiclassical approximation of an electron in a one-dimensional crystalline lattice -II. Impurities, confinement and Bloch oscillations[END_REF] where it has been explained how to extend it to the case where semi-classical dynamics are driven by energy bands obtained from Bloch's decomposition. The inclusion of the Poisson term for systems endowed with translational invariance in two directions has been described in [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -III. From ab-initio models to WKB for Schrödinger-Poisson[END_REF] and will be used in §4.3. Here we just explain how to handle the time-dependence of the energy bands in the processing of the WKB system (7)-(9).

General procedure

It has been observed [START_REF] Brenier | Averaged multivalued solutions for scalar conservation laws[END_REF] that the geometric solutions of scalar conservation laws with a flux E n (., u) ≥ 0 can be recovered out of a kinetic problem,

∂ t f + E n (t, ξ)∂ x f = 0, f (t = 0, x, ξ) = H(u(t = 0, x) -ξ)H(ξ),
with H the Heaviside function. Beyond breakup time, the form of f must express the fact that several particles with different velocities can cross at the same point x. Thus a more correct representation would be,

f (t, x, ξ) = K j=1 (-1) j-1 H(u j (t, x) -ξ), (11) 
as long as no more than K folds appear. A remarkable feature is that (11) can be obtained from an entropy minimization process; this eventually led to the definition of K-multivalued solutions in [START_REF] Brenier | A kinetic formulation for multibranch entropy solutions of scalar conservation laws[END_REF]:

Definition 1 We call K-multivalued solution any measurable function f (t, x, ξ) ∈ {0, 1} on R × R + × R + satisfying the following equation in the sense of distributions

∂ t f + E n (t, ξ)∂ x f = (-1) K-1 ∂ K ξ µ, f (t, x, ξ) = K j=1 (-1) j-1 H(u j (t, x) -ξ), ( 12 
)
where µ is a nonnegative Radon measure on R × R + × R + and K ∈ N is given.

The set of u j (t, x)'s is called the K-branch entropy solution; as usual, moments

m i (t, x) = 1 i K j=1 (-1) j-1 u j (t, x) i-1 , i = 1, 2, .
.., K can be computed, for which an equivalence result holds:

Theorem 1 (Brenier & Corrias, [6]) A measurable function f (t, x, ξ) = K j=1 (-1) j-1 H(u j (t, x) -ξ) is a K-multivalued solution if
and only if all the following entropy inequalities hold for any θ, ∂ K ξ θ ≥ 0:

∂ t R + θ(ξ)f (t, x, ξ).dξ + ∂ x R + E n (t, ξ)θ(ξ)f (t, x, ξ).dξ ≤ 0. ( 13 
)
Equality holds in case ∂ K ξ θ ≡ 0, especially for θ(ξ) = ξ j , j = 0, 1, ..., K -1. We close this section mentioning that the map R K m → u is called the "finite Markov moment problem"; this delicate inversion has been recently tackled in [START_REF] Gosse | Finite moment problems and applications to multiphase computations in geometric optics[END_REF].

Moment systems and intensity recovery

Using fft routines in 2-D (t and κ or y), it is possible to obtain numerically good approximations of the following periodic functions, (T per < +∞)

[0, T per ] × B t, κ → E n (t, κ), and, [0, T per ] × 0, 2π k × B t, y, κ → z n,κ (t, y).
The fact that we restricted ourselves to commensurate crystals is fundamental here. These two representations wouldn't hold in Fourier space without assuming that Ṽper is periodic in both its variables. This leads to restrictions on the k's allowed to show up in [START_REF] Bao | On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime[END_REF]. If one introduces a velocity variable u = ∂ x ϕ in [START_REF] Carles | Semiclassical asymptotics for weakly nonlinear Bloch waves[END_REF], then a scalar conservation law with a time-dependent flux appears,

∂ t u + ∂ x E n (t, u) = 0, u(t = 0, .) = ∂ x ϕ(t = 0, .),
for which the multivalued (or geometric) solution is to be sought according to the moment system [START_REF] Gosse | Finite moment problems and applications to multiphase computations in geometric optics[END_REF]. As soon as one completes this program, the principal intensity |a 0 | 2 can be easily recovered; indeed, at any time t > 0, one deduces from (9) that

|a 0 | 2 (t, x) = |a 0 | 2 (t = 0, x 0 ) ∂x 0 ∂x ,
and from ( 7) that x = x 0 + t 0 E n (s, u(t = 0, x 0 )).ds = x 0 + t 0 E n (s, u(t, x)).ds with u(t, x) supposedly known from the solving of (13). In the homogeneous case, the most accurate way to derive the intensity follows from

∂x 0 ∂x = ∂x ∂x 0 -1 = 1 1 + ∂ x u(t = 0, x 0 ) t 0 E n (s, u(t, x)).ds
, which leads to the expression:

|a 0 | 2 (t, x) = a 0 (t = 0, x 0 ) 1 + ∂ x u(t = 0, x 0 ) t 0 E n (s, u(t, x)).ds 2 , x 0 = x- t 0 E n (s, u(t, x)).ds.

Numerical results

We now aim at showing results of K-branch solutions in the context of simple phonon scattering via the WKB approach ( 7)-( 9) and to compare them to direct computations of solutions to (4) using the time-splitting Fourier schemes proposed in [START_REF] Bao | On time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime[END_REF]. We shall try to show that the smaller ε, the closer the solutions' observables become. However, only weak convergence of observables can generally be hoped for [START_REF] Markowich | A Wigner-function approach to semiclassical limits: electrons in a periodic potential[END_REF], hence we shall look at the L 1 (R) norm of the antiderivative of the difference between position densities:

x → x 0 ε W KB (T, s) -|ψ(T, s)| 2 .ds, T ∈ R + . (14) 
This function can be expected to flatten as ε is decreased. ε W KB stands for the position density obtained from the WKB ansatz (10). It's been sometimes necessary to filter numerically the Fourier schemes; here we used a standard convolution receipe involving a Gaussian kernel exp(-aξ 2 ), a ∈ R + . 512 discretization points have been used for both algorithms.

One wavenumber

We first consider the perturbed potential which is 4π-periodic:

Ṽper (t, y) = cos y - π 6 sin(ky -t) , ω = k = 1 2 . ( 15 
)
The corresponding Brillouin zone is therefore B = [-1 4 , 1 4 ] and Fig. 4 displays both the first conduction band and its associated modulation |z n,κ=0 | 2 . The n index corresponds to the first conduction band, namely the first one with positive effective mass lying partially above the potential well. As time t goes by, the band is slightly deformed and not just translated. The initial data is of the form [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF] with ϕ(t = 0, x) = cos(x -π)/10 and |a 0 | 2 (t = 0, x) = exp(-(x -π) 2 )/π. We iterated up to T = 5 and the comparison between position densities is shown in Fig. 5 for ε = 1/35. The agreement is very satisfying and one even observes the weak convergence as ε decreases from 1/5 to 1/35 by checking the L 1 norm of ( 14). The following perturbed potential is still 4π-periodic, but slightly more involved, Ṽper (t, y) = cos x -π 6 0.7 sin(ky -t) + 0.3 cos(ky -t) ,

where ω = k = 1 2 . Results in T = 5 are shown in Fig. 6; once again, the agreement between both computations can be considered satisfying especially for ε = 1/47. 

Two different wavenumbers

We switch to the perturbed potential which is 12π-periodic:

Ṽper (t, y) = cos x -π 10 sin(y/2 -t) + sin(y/6 -Ω(1/6)t) .

This case is difficult because the Brillouin zone is very small (k 1 = 1 6 and k 2 = 1 2 ) thus (by smoothness) the bands are nearly flat and one must iterate for a long time to observe the dynamics. Fig. 7 displays the outcome in T = 30 of both WKB approach and direct Schrödinger computations from the initial data [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF] with ϕ(t = 0, x) = cos(x -π)/12 and |a 0 | 2 (t = 0, x) = exp(-(x -π) 2 )/π. We chosed the two vibration modes k = 1 2 and k = 1 6 because the resulting Ṽper is still a periodic function in y and t. Periodicity in t is important if one doesn't want to store all values of E n involved in the computation. The agreement between position densities is less clear in this case, however the two central spikes are correctly located. 3-branch solutions are very good approximations of the ray-tracing picture, see again Fig. 7.

Inclusion of the Poisson potential

We move back to the simple perturbed potential (15) but we include now repulsive self-interaction effects between electrons. That is to say, we add a term V P (t, x)ψ on the right-hand side of (4), where -∂ xx V P = |ψ| 2 . As a consequence, it hasn't been possible to obtain a breakup and multivalued K-branch solutions for K > 1. The perturbed potential and the initial data are the same than in §4.1 but iterations went only up to T = 3. It wasn't possible to display a ray-tracing solution in this weakly nonlinear case, thus we just observe a quite good adequation between position densities on Fig. 8. The L 1 (R) norm of ( 14) decreases slowly indeed with ε → 0, as shown in Fig. 9, whereas strong L 1 convergence doesn't seem to be visible. 

Conclusion

We have proposed an original two-scale WKB technique adapted to electronic conduction in 1-D harmonic crystals, see ( 7)-( 9)- [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF]. A numerical processing has been presented further together with a validation against direct Schrödinger computations. The main shortcoming in this general approach is that in case B becomes really tiny (that is to say, many small wave numbers are present in (2)), band gaps are likely to shrink so much as to allow electrons to perform interband transitions rather easily, thus a mixed state

I i=1 λ i ψ ε ni (t, x), λ i ≥ 0, I i=1 λ i = 1,
with I = 1/k for instance, should be better considered (like in [START_REF] Bechouche | Semiclassical limit for the Schrödinger-Poisson equation in a crystal[END_REF] for steady potentials) instead of the pure state [START_REF] Gosse | Multiphase semiclassical approximation of an electron in a onedimensional crystalline lattice -I. Homogeneous problems[END_REF]. Still, our ansatz ( 10) is more precise compared to standard phonon modelling as a collision term in a kinetic equation. Indeed, one central hypothesis in this last approach is to assume that the resulting scattering effects are instantaneous; in other terms, ε = 0 and an adiabatic decoupling takes place. A major open problem lies in extending our analysis in §2 to non-periodic potentials, this would match the so-called incommensurate quasicrystals, [START_REF] De Lange | Electrons in incommensurate crystals: spectrum and localization[END_REF][START_REF] Quilichini | Phonon excitations in quasicrystals[END_REF].
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 1 Figure 1. Time evolution for periodic potential in (4) with Vper(y) = cos(y) and u(t, y) = sin(ky + Ω(k)t), k 0.02, ε = 1.
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 2 Figure 2. Two lowest modulations |z n,κ=0 | 2 for k = 0.5 and t = 0.1.

Figure 3 .

 3 Figure 3. Potentials (left) and lowest modulations |z n,κ=0 | 2 (right) for t = 0, 0.3.
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 4 Figure 4. Time evolution of En (top) and |z n,κ=0 | 2 (bottom) for (15).
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 5 Figure 5. Position density for (15) in T = 5 and ε = 1/35 (left) and weak convergence as ε → 0 (L 1 (R) norm of (14)).

Figure 6 .

 6 Figure 6. Position density for (16) in T = 5 and ε = 1/35 (top) and ε = 1/47 (bottom). Figures on the right are in log-scale.
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 73 Figure 7. 3-branch velocity and intensity for (17) in T = 30 (top) and corresponding position density for ε = 1/26, ε = 1/50 (bottom).
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 83 Figure 8. 3-branch velocity and intensity for (17) in T = 3 (top) and corresponding position density for ε = 1/35 (bottom).

Figure 9 .

 9 Figure 9. Decay of the L 1 (R) norm of (14) for ε ∈ [1/65, 1/5].
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