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Impurity bands and quasi-Bloch waves for a

one-dimensional model of modulated crystal

Laurent Gosse ∗

IAC–CNR “Mauro Picone” (sezione di Bari)
Via Amendola 122/D - 70126 Bari, Italy

Abstract

This paper investigates a simple one-dimensional model of incommensurate “har-
monic crystal” in terms of the spectrum of the corresponding Schrödinger equation.
Two angles of attack are studied: the first exploits techniques borrowed from the
theory of quasi-periodic functions while the second relies on periodicity properties
in a higher-dimensional space. It is shown that both approaches lead to essentially
the same results; that is, the lower spectrum is splitted between “Cantor-like zones”
and “impurity bands” to which correspond critical and extended eigenstates, respec-
tively. These “new bands” seem to emerge inside the band gaps of the unperturbed
problem when certain conditions are met and display a parabolic nature. Numerical
tests are extensively performed on both steady and time-dependent problems.

Key words: Quasi-periodic potential, impurity band, quasi-Bloch wave, quantum
chaos, spectral algorithm, deformed crystal, Charge-Density Wave (CDW).
1991 MSC: 81Q05, 81Q20

1 Introduction

This article is a step further in the numerical study of electronic motion in a one-dimensional
model of ”harmonic crystal”, that is to say, a modeling in solid-state physics going beyond
the rigid periodic lattice picture. Indeed, it consists in assuming that, within the Born-
Oppenheimer approximation (the motion of nucleons is much slower than the electron’s ones
and thus decouples adiabatically), ionic cores are linked together by springs and vibrate like
classical coupled oscillators; consult the book [1] and the recent paper [14] to which we are
about to borrow notation.

In [14], the following rescaled problem describing the motion of a free electron inside a
1-D lattice of atoms which display single-mode vibrations has been investigated within the
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WKB semi-classical framework [5,19] for the following Schrödinger equation,

iλ∂tψ +
λ2

2
∂xxψ = cos

(

x

λ
− ε sin

(

kx

λ
− Ω(k)t

))

ψ, ε¿ 1, λ¿ 1 (1)

and under the fundamental assumption that k and Ω(k) = | sin(kπ)| are rational and com-
mensurate. This is perhaps the simplest non-trivial model available which describes the
effects of phonons onto electronic conduction and is sometimes referred to as the “modu-
lated crystal” [1,9,25,26,32]. Since the potential in (1) isn’t of the form cos(x − 1

2
at2), the

unitary transform propsed in [35] and leading to Bloch oscillations doesn’t apply here (see
also [33] for an AC-type modulation). A particular feature pointed out in [39] and called
lattice tracking which refers to the dragging effect of heavy nucleons onto the much lighter
electron was easily observed in the numerical results.

The commensurability hypothesis is of critical importance in this global picture in order to
keep on applying the classic Bloch decomposition for (1); we assume the reader familiar with
this theory and refer only to [1,5,15,19] for details. The first step in this line of thinking is
the derivation of “energy bands”, which are dispersion relations for electrons around certain
levels of excitation. Solids are classified in metals, semi-conductors and insulators depending
if the Fermi energy level lies inside a partially filled conduction band or somewhere inside
a gap being of moderate or big size, respectively. Generally, semi-classical approximation
restricts itself to considering only the propagation of charge carriers in valence and con-
duction bands: lower ones correspond to inner shells electrons strongly tied to the atomic
cores and higher ones are usually empty except in special cases of intense excitation. It has
been observed that the use of modern shock-capturing numerical techniques allow for quite
satisfying computations of wave packets in increasingly complex environments including
possibly self-interactions: see [14–18].
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Fig. 1. Band structures for ε = 0.15 with commensurate (middle) and incommensu-

rate models: k =
√

5−1

2
(left), k = 2√

5−1
(right). Abscissas and ordinates correspond

to the “quasi-momentum” κ and the energies E in (6) respectively.

However, a simple linearization around the Mathieu (or Hill) potential in (1) reveals that
in case k and Ω(k) become incommensurate, one has to deal with a quasi-periodic per-
turbation 1 inside the Schrödinger equation. It is commonly believed that as long as the

1 A precise definition of this term is to be given in §2.1 of this text.
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strength of the perturbation remains small (how small ?), its effect onto the energy bands is
negligible and corresponding Bloch states vibrate according to the same wavenumber k, see
e.g. [39] §IV. One could argue that this would be at best a perturbative KAM-type 2 result,
expressing the fact that the Hamiltonian structure in phase space remains mostly unaltered.
We intend to show here that this picture is overmuch simplified. New phenomena can
and do occur according to the modulated potential in (1): to convince at once the reader of
this fact, we present in Fig. 1 the band structure of (1) for k = 5

3
, k = 2√

5−1
(the so–called

golden mean) and its inverse inside the Brillouin zone of the classical Mathieu equation, i.e.
[− 1

2
, 1

2
]. Comparing with Fig. 1 in [15], hard would it be to see anything they might share!

Looking more carefully at the picture on the right corresponding to the golden mean, one
may observe an amazing phenomenon: inside the intervals occupied by the energy bands of
the unperturbed Mathieu equation, messy states appear whereas it is exactly inside the “ex-
band gaps” that seemingly new bands show up. How could this be heuristically explained ?
First, let us stress the fact that, in case k = 5

3
, the perturbed potential remains periodic in

the x variable with t fixed, even if the period has become quite big. Consequently, the real
Brillouin zone (like the ones considered previously in [14]) is tiny. Hence looking at this scale
can give the feeling that these “new bands” look like constant states related to an isolated
impurity (this has a lot to do with the “hydrogenic donor” approximation, see [1,37] and Fig.
9 in [16]). Obviously, when k has become totally irrational, the real Brillouin zone is reduced
to a point. Further, one sees on the right picture of Fig. 1 that original (unperturbed) bands
have completely collapsed: this is a consequence of a phenomenon called band nesting and
beautifully illustrated in [21]. Loosely speaking, it refers to a mechanism which creates
smaller and smaller “mini-gaps” inside a given band thus splitting it into a Cantor-like
structure, see again [26,23].

In §2.1, we shall review briefly the rigorous mathematical results on eigenfunctions for
quasi-periodic 1-D problems which followed the seminal article by Dinaburg and Sinai,
[7]. They all rely on difficult KAM arguments and are mostly concerned with bounded
solutions of the quasi-periodic Hill’s equation y′′ + (E − εq(x)) = 0, for small ε or high E,
see [30,22,11,40,8]. However, our situation here is slightly different as we are dealing with a
periodic Hill equation with a (possibly small) incommensurate perturbation added: our main
theoretical references should be therefore [3,12], even if it doesn’t exactly fit in (1). §2.2 is
devoted to presenting a spectral algorithm to compute eigenvalues and eigenfunctions in the
quasi-Bloch wave form. §3 presents some results for a simple quasi-periodic potential of the
Mathieu type: the main emphasis is given to the appearance of “new bands” which look like
being k-periodic, see Figs. 2 and 3. In §4, we study eigenvalues and eigenfunctions for the
equation (1). Again, when k is incommensurate, we observe k-periodic “new bands” which
are seemingly parabolic, see especially Fig. 8. To these “new parabolic bands” correspond
eigenstates which are extended, in sharp contrast to the critical states associated to the
lower levels of Cantor-type nature as explained in §4.4. We shall even see that these critical
states are localized on the iso-values of the potential. In §5, we study briefly what happens
for different values of k.

Let us close this introduction emphasizing that defining a linearized potential in (1) like

V (t, x)
def
= cos(x) + ε sin(x) sin(kx− Ω(k)t), 0 ≤ ε¿ 1, (2)

there are still periodicity properties that can be exploited:

V
(

t+ 2π/Ω(k), x
)

= V (t, x), V
(

t+ 2kπ/Ω(k), x+ 2π
)

= V (t, x). (3)

This fact, already noticed in [26], opens the way to perform a “quasi-Bloch decomposition”
in 2-D for problems of the flavour of (1) for arbitrary values of k. The price to pay is of
course a much higher computational cost as two indices will show up in the corresponding

2 for Kolmogorov, Arnold and Moser.
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Fourier series; but it also turns out that steady quasi-periodic problems ask for the same
effort (see [40] for an example and Appendix A for the corresponding illustration).

Remark 1 In every figure displaying a band structure, like Fig. 1, abscissas will always
correspond to the Bloch “quasi-momentum” denoted hereafter and in (6) by κ. Ordinates
stand for the associated energies E respectively.

2 Theoretical framework for “quasi-Bloch” decompositions

There are (at least) two ways to attack the eigen-functions problem given by a potential like
(2): one follows techniques borrowed from existing papers on quasi-periodic equations, the
other tries to take advantage of the space/time periodic structure (3) that still remains. We
shall see in the sequel that both lead essentially (and fortunately) to the same algorithm in
the two-dimensional case, but let us first recall some basic “quasi-periodic techniques”.

2.1 Quasi-periodic potentials: a short overview of known results

Following [36], let us begin with:

Definition 1 Let q(x) be a smooth function R → R; q is said to be quasi-periodic if there
exist d ∈ N constants ~ω = (ω1, ..., ωd) ∈ Rd and a continuous function Q : Rd → R 2π–
periodic in each of its arguments such that:

∀x ∈ R, q(x) = Q(~ω x)
def
= Q(ω1x, ..., ωdx).

The d constants ~ω are called the basic frequencies of q and Q is the (non unique) lift of q.

When dealing with quasi-periodic functions, we shall always use capital letters for the corre-
sponding lifts. It is generally assumed that the components of ~ω are rationally independent
otherwise the function q is simply periodic and Q might become ambiguous. Notice that
this definition is compatible with the one we gave in [15]; it is a bit more general though.

It may sometimes be interesting to work with quasi-periodic functions endowed with an
“initial phase” φ ∈ Rd, for which qφ(x) = Q(~ω x + φ). Roughly speaking, one can figure
out what quasi-periodic functions are by thinking about functions of a single real variable
admitting a multi-dimensional Fourier series: indeed, we write

q(x) =
∑

~k∈Zd

Q̂~k exp(i <
~k, ~ω x >), Q̂~k =

1

(2π)d

∫

Td

Q(θ) exp(−i < ~k, θ >).dθ. (4)

The notation < ., . > stands for the scalar product in Rd and the d-dimensional torus Td,
for [0, 2π]d. It is generally assumed that the Fourier series (4) converges uniformly 3 . In
this context, it makes sense to wonder if the elegant Floquet-Bloch theory for the one-
dimensional periodic 4 Schrödinger equation

y′′ + (E − εq(x)) = 0, y(x) polynomially bounded (5)

3 This trongly depends on the smoothness of Q.
4 This is the case where d = 1.
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extends in some sense to quasi-periodic potentials q. As soon as q is bounded, general
spectral theory ensures that the corresponding operator is essentially self-adjoint on R; we
shall denote H its self-adjoint extension to L2(R).

Proposition 1 ([36]) Let qφ(x) = Q(~ω x + φ) where Q is continuous Td → R and ~ω is
rationally independent. Then the spectrum of the corresponding Schrödinger operator H on
L2(R) doesn’t depend on φ. Moreover, it doesn’t have any isolated eigenvalues.

The study of quantum particles submitted an incommensurate potential started with [34]
and electrons moving inside a magnetic field. In a nutshell, the theory for quasi-periodic
(5) states that both eigenfunctions and eigenvalues E strongly depend on ε. For large ε,
eigenfunctions are known to decay exponentially, this phenomenon is referred to as Anderson
localization, see e.g. [11]. But for small ε and/or big E, there exist quasi-Bloch waves, that
is to say eigenfunctions of the form (according to the former notation),

y(x) = exp(iκ(E)x)z(x), z(x) = Z(~ω x), (6)

the lift Z being 2π-periodic in each of its arguments. KAM techniques are used in the
proofs, which means that small divisors are to be controlled during the process. To do so,
it is necessary to assume that ~ω is Diophantine, i.e. there exist constants C0, τ for which,

∀~ν 6= ~0 ∈ Zd, | < ~ω, ~ν > | ≥ C0|~ν|−τ , |κ(E)+ < ~ω, ~ν > | ≥ C0|~ν|−τ . (7)

Quasi-Bloch waves for (5) with κ(E) = 1
2
< ~ω,~t >, with ~t 6∈ Zd and | < ~ω,~t > | ≥ C0|~t|−τ

have been found in [7,22,30,8] along with the presence of gaps in the spectrum. Actually, to
any quasi-periodic potential q and any eigenvalue E∗ can be associated a rotation number

β(ε, E∗) = (2π)−d lim
x→∞

1

x
arg

(

y′(x) + iy(x)
)

,

where y solves (5) for the particular eigenvalue E∗; this number is independent of the selected
solution y. It realizes a continuous function R2 → R. Moreover, it is a nondecreasing function
of E∗ for ε fixed. The Gap Labelling theorem expresses the fact that β(ε, E) is constant inside
any connected component of the resolvent set:

Theorem 1 ([22]) Let q be quasi-periodic with basic frequencies ~ω and I, an open interval

inside a spectral gap. There exist integers ~k ∈ Zd such that:

∀E ∈ I, β(ε, E) =
1

2
< ~k, ~ω > .

The converse is also true: intervals of constancy for β are exactly the spectral gaps of H.

Definition 2 ([3]) Let ~k ∈ Zd; the resonance tongue of (5) associated to ~k is the set:

R(~k) =
{

(ε, E) ∈ R2 such that β(ε, E) =
1

2
< ~k, ~ω >

}

.

This notion is interesting because it helps in validating numerical results indicating where
spectral gaps can be for small ε, see [4,3]; we shall use it in Appendix A. Recently, an
extension to the slightly more involved situation

y′′ + (E − p(x)− εq(x)) = 0, x ∈ R, (8)

where p is periodic has been treated in [12] (see also [3]); it led to the same kind of results,
but for completeness we state the theorem:
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Theorem 2 ([12]) Let p : R → R be real analytic and periodic with frequency ω0 ∈ R
and such that the fundamental solutions of y′′ + p(x) = 0 are quasi-periodic with a proper
frequency Ω0 ∈ R. Let furthermore q : R→ R be real analytic and quasi-periodic with basic
frequencies ~ω ∈ Rd. Define ω̃ := (~ω, ω0,Ω0) ∈ Rd+2 and assume ω̃ is rationally independent
with, moreover

∀~ν 6= ~0 ∈ Zd+2, | < ω̃, ~ν > | ≥ C0|~ν|−τ ,
for two fixed positive constants C0 and τ > d + 1 (Diophantine conditions). Then there
exist ε0 > 0 small and a Cantor set E ⊂ [−ε0, ε0] such that, for all ε ∈ E, the equation
y′′ + p(x) + εq(x) = 0 admits a quasi-periodic solution of the form:

y(x) = exp(iΩεx)
∑

~m,n∈Zd+1

ỹ~m,n(ε) exp
(

i(< ~m, ~ω > +nω0)x
)

, (9)

and the above sum is absolutely and uniformly convergent for all x ∈ R and ε ∈ E.

Clearly (9) is a quasi-Bloch wave in the aforementioned sense. In the sequel, we shall mainly
use Theorem 2 with d = 1. Let us finally stress that either (6) (and thus (9)) do agree with
the ansatz suggested by experimentalists, see the conclusion of [38] and [42].

Remark 2 Theorem 2 can be recast into Eliasson’s theory as we briefly explain now: any
periodic Hill’s equation is endowed with Floquet reducibility, meaning that a periodic change
of variables takes it to constant coefficients. The existence of Bloch waves depends on the
form of this constant coefficient Floquet matrix. Now, considering the quasi-periodic problem
(8) and performing periodic reducibility, one obtains a small ε-quasi-periodic perturbation
of a matrix with constant coefficients to which Eliasson’s results can be applied.

2.2 An algorithm adapted to quasi-periodic potentials

The idea is to extend the spectral algorithm used in [15,16] to compute eigenvalues and
Bloch waves in the periodic case to the more involved case of potentials q of the type (4).
Indeed, assuming there exist quasi-Bloch waves solving the eigenvalue problem for H, we
can project the differential equation onto the Fourier base corresponding to q. Taking into
account for the quasi-periodic modulation z(x), we see that (6) rewrites

Ψ(x) =
∑

~k∈Zd

Ẑ~k exp
(

i
(

< ~k, ~ω > +κ(E)
)

x
)

, (10)

where the coefficients of the lift Ẑ~k are computed as in (4):

∀~k ∈ Zd, Ẑ~k =
1

(2π)d

∫

Td

Z(θ) exp(−i < ~k, θ >).dθ.

At this level, we follow [15], §2.2 and compute for ~k,~k′ ∈ Zd:

∫

T
∂xx{exp(i(< ~k, ~ω > +κ)x)} exp(−i(< ~k′, ~ω > +κ)x).dx = −(< ~k, ~ω > +κ)2,

where we used the L2-orthogonality of the base, and using (4)

∫

T





∑

~̀∈Zd

Q̂~̀ exp(i < ~̀, ~ω x >)



 exp(i < ~k − ~k′, ~ω x >).dx = Q̂~k−~k′
.

6



The eigenvalue problem for H thus rewrites:

(

< ~k, ~ω > +κ
)2

Ẑ~k +
∑

~k′∈Zd

Q̂~k−~k′
Ẑ~k′

= E(κ)Ẑ~k. (11)

As long as ~k,~k′ belong to a finite set, (11) leads to an eigenvalue problem for a (very big!)

structured matrix when the eigenvectors Ẑ~k are arranged in a convenient way. Truncations
and error estimates can be computed following the method presented in Chap. 3, §11 of
the book [41], relying on the existence results of [3,12]. Concerning the convergence of the

algorithm (11) as |~k|, |~k′| → +∞, we recall from [28,46] the following definition:

Definition 3 Given any matrix A = (ai,j)i,j with complex entries, its determinant is said
to be of Hill’s type if the following condition holds:

∑

i,j

|ai,j − δi,j | < +∞, δi,j the Kronecker symbol. (12)

Dividing each line of (11) by its diagonal term is the first step to study whether the resulting

matrix is of Hill’s type, for instance when Q is analytic, i.e. |Q̂~k| ≤ CQ exp(−ξ|~k|) or when
Q is a finite sum of Fourier modes. Indeed, it comes

Ẑ~k +
∑

~k′∈Zd

Q̂~k−~k′

| < ~k, ~ω > +κ− E(κ)|2
Ẑ~k′

= 0,

to which we apply the Diophantine condition (7) stating that:

∀~k ∈ Zd,
1

| < ~k, ~ω > +κ|
≤ C0|~k|τ .

And the behavior for large Fourier modes with small divisors is ruled by terms of the

type |~k|2τ exp(−ξ|~k − ~k′|); other cases are like | < ~k, ~ω > +κ|−2 exp(−ξ|~k − ~k′|). Hence
if small divisors are very few, condition (12) can be met and according to the theory in
[28], the diagonalization process (11) should converge (for the values of E(κ) for which the
denominator doesn’t vanish).

3 A steady quasi-periodic potential

3.1 Quasi-periodic perturbation of the Mathieu potential

The behavior of eigenvalues for the following time-independent equation has been studied
theoretically in [11,40,45], numerically in [6,21,46] and experimentally in [44] (see also [42]):

1

2
∂xxΨ+

(

E − εq(x)
)

Ψ = 0, q(x) = cos(x) + cos(kx). (13)

From §2.1, we know that, provided the Diophantine condition (7) holds,

∀m,n 6= 0 ∈ Z2, |m+ nk| ≥ C0

n2
,

7



for ε small enough and/or E big, “quasi-Bloch waves” Ψ(x) = exp(iκx)z(κ, x) do solve the
quasi-periodic eigenvalue problem (13). In this last case, z(κ, .) and q share the same kind
of quasi-periodicity: according to (4) they read,

q(x) =
∑

n,m

Q̂n,m exp(i(n+mk)x), z(κ, x) =
∑

n,m

Ẑn,m(κ) exp(i(n+mk)x). (14)

Of course, the potential is very well compressed in this base, Q̂±1,0 = 1
2
, Q̂0,±1 = 1

2
and the “quasi-momentum” κ(E) ∈ R doesn’t belong to any Brillouin zone. This clearly
allows for the use of the spectral algorithm (11) to compute the admissible values of E
and their corresponding “quasi-Bloch waves” Ψ; we present numerical results in Appendix
A. However, by analogy with the original problem (2), we decided to work with a slightly
different equation: namely the corresponding potential reads with ε ∈ [0, 1],

q(x) =
1

2

(

cos(x) + ε cos(kx)
)

, Q̂±1,0 =
1

4
, Q̂0,±1 =

ε

4
. (15)

This is rather a “small quasi-periodic perturbation” of a periodic problem hence we follow
the ideas recalled in Prop. 2 and the algorithm proposed by Surace extends easily:

(n+mk + κ)2Ẑn,m +
1

2

(

Ẑn−1,m + Ẑn+1,m + εẐn,m−1 + εẐn,m+1

)

= 2EκẐn,m. (16)

This special case of (11) loops on κ ∈ [−1, 1] (say!) and we chosed to restrict the computation

to n,m ∈ {−15, 15}. The eigenvectors read (Ẑ−15,−15, Ẑ−15,−14, ...Ẑ−15,15, Ẑ−14,−15, ...). The
differential equation has therefore been reduced to the diagonalization of a 312×312 penta-
diagonal symmetric matrix. We consider first two different cases k = 5

3
and k = 2√

5−1
:

these two numbers are close to each other, but the second one is Diophantine thus enters
completely in the theoretical framework of [12,40] which rigorously ensures the existence of
quasi-Bloch solutions.

3.2 Some numerical results with ε = 0.02 and ε = 0.2

The numerical outcome κ 7→ Eκ is presented in Figs. 2 and 3 for ε = 0.02 and ε = 0.2
respectively. Several comments are in order: first, for k = 5/3 there’s no need 5 for the
algorithm (16) as the period of the problem is 6π. Hence the corresponding Fourier base
should be exp(inx/3), the Brillouin zone, κ ∈ [−1/6, 1/6] and the standard procedure
explained in [15,16] can be used up to minor changes: its outcome is actually displayed on
the left in Figs. 2 and 3. Nevertheless, we also iterated the quasi-periodic algorithm (16)
in order to study both its accuracy and its transition between the commensurate and the
incommensurate case. We observe that high in the spectrum, bands are always 1/3-periodic
as expected; the lower ones should be also, but it isn’t visible. However, something does
show up inside the band gaps: a “new band” which doesn’t look like being 1/3-periodic at
all. It seems to survive the “band clustering” that destroys all the other ones when we put
k = 2√

5−1
(on the right in Figs. 2 and 3).

For ε = 0.2, Fig. 3 reveals the same type of pattern. That is, usual Bloch bands are easily
noticeable on the left, and they are 1/3-periodic. There is an agreement between the left
and middle figure, except for similar “new bands 6 ”. Usual bands collapse when choosing
k = 2√

5−1
because of the band nesting phenomenon illustrated in [21] and become an

intricate set that a computer cannot calculate properly. However, the new bands looking

5 Using it even seems to decrease a lot the accuracy of the numerical outcome.
6 which are spurious for k = 5/3, we explain why in §3.3.
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Fig. 2. Band structure with ε = 0.02 and k = 5/3 (left and middle), k = 2√
5−1

(right). The figure on the left is obtained with the optimal Fourier base exp(inx/3).
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Fig. 3. Band structure with ε = 0.2 and k = 5/3 (left and middle), k = 2√
5−1

(right).

The figure on the left is obtained with the optimal Fourier base exp(inx/3).

like being k-periodic (roughly repeating themselves from κ = −0.8 to κ = 0.8) survive the
process thus remain the only ones on the messy right figure.

3.3 Impurity bands ?

Concerning the presence of the “new bands” in case k = 5/3: we know from Floquet-Bloch
theory [19] that since the problem is 6π-periodic, they shouldn’t appear and this is what
we get when using the algorithm based on exp(inx/3). Especially the problem is quite
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degenerate as many eigenvalues look like being very close to each other: this shows that
the choice of the Fourier base by means of which one expresses both V (x) and Ψ(x) is of
paramount importance in terms of numerical accuracy. For the same type of reason, putting
ε = 0 inside (16) isn’t likely to lead to satisfying numerical results as the selected Fourier
base may not be the optimal one; hence the performances of the (quasi-periodic) algorithm
on a periodic problem are quite low. Let us stress that in both cases (k rational and ε = 0),
the algorithm (16) is built by projecting the differential equation (13) on the set of functions
exp(i(n+mk)x); n,m in a finite subset of Z2. However, when ε = 0, the m index is useless;
and when k = 5/3, we notice that for e.g. n = 3, m = 0 and n = 0, m = 5, L2-orthogonality
is lost, along with the derivation of (11). This last remark suggests that (16) should work
correctly as long as orthogonality is kept within the selected finite set of indices (n,m).
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Fig. 4. Spectrum with k = −1+
√

5

2
and ε = 0.02 (left), ε = 0.05 (middle), ε = 0.2

(right).

However, we ran the algorithm (16) with another value of k = 1
2
(−1+

√
5) in order to check

its behavior in case the quasi-periodic perturbation is endowed with a frequency lower than
the one of the underlying periodic potential. The numerical outcome is shown on Fig. 4;
one notices at once the striking difference compared to Figs. 2 and 3, namely the absence
of any “new band”. This suggests that the former results may not be spurious as (16) is
able to produce neat band gaps in the quasi-periodic regime (31 Fourier modes have been
used in this computation). One can also consult [44,20] where seemingly parabolic bands
are being observed in a similar context.

An heuristic explanation can be given relying on [31] where it is argued that band gaps in
the spectrum are associated to long-range order in the potential, i.e. usually periodicity,
see e.g. [24] for a rigorous illustration of this fact. However, even if one cannot expect to
obtain forbidden energies for a completely disordered system, it is known that for small
enough perturbations, gaps still appear in the spectrum. More precisely, we recall Theorem
3.1 from [31]:

Theorem 3 Let H0 = − 1
2
∂xx + V (x) with V periodic and Hδ = − 1

2
∂xx + V (x + δh(x))

with h a C3(R) function having all its derivatives uniformly bounded by 1. Suppose [α, β]
belong to the resolvent set of H0, then for δ small enough, there exist α ≤ αδ ≤ βδ ≤ β such
that the same property holds for [αδ, βδ] and Hδ. Moreover,

lim
δ→0

αδ = α, lim
δ→0

βδ = β.
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For δ > 0, periodicity is lost, but the result somewhat expresses the fact that a weaker
short-range order still exists in Hδ. Of course, long-range order is recovered in the limit
δ → 0. In the present quasi-periodic context, we can think about using Theorem 3 with a
linearized potential Q(~ωx) := V (x) + δh(kx), for which the basic frequencies are ~ω = (1, k)
(this situation is related to the one considered in [13], §IV.2). For k ≤ 1, the perturbation
is sufficiently slowly-varying in order to maintain band gaps like in Fig. 4, but for k > 1,
the result no longer applies and the spectrum’s structure becomes more complex. Assuming
that the “small perturbation” in εcos(kx) stands for the smoothered Coulomb interaction
with impurities molten in the periodic lattice, one may be tempted to call the new bands
impurity bands, following the terminology of [27]. A possible interpretation of this phe-
nomenon showing up for k ≥ 1 in this context is the overlapping of wave functions when
more that one impurity appears in an elementary cell. These metastable states are of great
use in real-life applications such as LASERs and fluorescent light emitters.

4 Time-dependent model in the incommensurate case

Owing to the preceding results, we won’t try to explore the Cantor-like structure of the
“collapsed bands”; since a Cantor set is infinite, but nowhere dense, it is impossible to get
it computed accurately in practice (one may just say that something messy appears here or
there inside the spectrum); we recall that a Cantor spectrum obtained from (8) has positive
measure. Moreover, it isn’t possible to label the bands in the absolute; only can be done to
label the “new bands” among themselves.

4.1 2-D periodicity: reciprocal lattice and Bloch ansatz

We are now concerned with the study of the band structure for (1) with the linearized
potential (2). Since it is endowed with some two-dimensional periodicity properties (3), it
becomes completely possible to follow the canvas of the standard Bloch decomposition in
order to handle the problem, whatever the values of k ∈ R−Q and ε > 0. Let us define the
periodic lattice for V (t, x) in R2 as spanned by the two vectors:

~a1 = (2πk/Ω(k), 2π)T , ~a2 = (2π/Ω(k), 0)T .

The reciprocal lattice is spanned by ~b1 and ~b2 such that < ~ai,~bj >= 2π.δi,j , the Christoffel
symbol. This yields:

~b1 = (0, 1)T , ~b2 = (Ω(k),−k)T .
These vectors are useful to write down the Fourier series for the potential; indeed,

V (t, x) =
∑

m,n∈Z2

V̂m,n exp(imx) exp(in(kx− Ω(k)t)x),

with

V̂±1,0 =
1

2
, V̂1,±1 = ∓ε

4
, V̂−1,±1 = ±ε

4
.

This produces a 2-D Brillouin zone (see [43] for some illustrations). However, we observe
that there’s no second derivative in time inside (1), thus the eigenvalue problem repeats
itself exactly when t→ t+2π/Ω(k). Thus there is no quasi-periodic boundary condition in
the time variable, and the Bloch ansatz reads simply

Ψ(κ, x) = exp(iκx)zκ(t, x),

11



the modulation zκ having the same periodicity as V , hence it can be written as a similar
Fourier series. There is only one index κ which belongs to the interval

κ ∈
[

−max(1, |k|)
2

,
max(1, |k|)

2

]

. (17)

Following the last step in [15], we obtain an algorithm which is very close to the two-
dimensional version of (11): (we dropped the κ index for clarity here)

(

(m+ nk + κ)2 − 2E
)

ẑm,n + ẑm−1,n + ẑm+1,n+

ε
2

(

ẑm−1,n+1 − ẑm−1,n−1 + ẑm+1,n−1 − ẑm+1,n+1

)

= 0.
(18)

Once again, it is possible to obtain a structured matrix on which iterative diagonalization
routines can reveal their efficiency. It is because of the similarity between (11), (16) and (18)
that we wrote at the beginning of §2 that both quasi-periodic and 2-D periodic approaches
lead to the same algorithm. Remark however that presently, Diophantine assumptions on k
shouldn’t be needed in order to ensure the existence of Bloch wave solutions.

4.2 The corresponding band structure: crossing levels

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fig. 5. Band structures with n,m ∈ {−15, 15} (left) and n,m ∈ {−25, 25} (right).

On Fig. 5, we display the band structure obtained out of (18) for both n,m ∈ {−15, 15}
(left) and n,m ∈ {−25, 25} (right; this one asked for several CPU-days to get done) with
the value k = 2√

5−1
. This shows that involving many Fourier modes in the computation

doesn’t lead to qualitative changes in the solution, especially the “Cantor zones” stay in
the same places. The nature of the “new bands” remain also roughly the same; the main
difference is that the ones being closest to a “Cantor zones” seem to flatten.

On Fig. 6, we present a zoom on the “new bands”, especially in the vicinity of their crossing
points. The lower ones cross only at the extremities of the interval [− k

2
, k

2
] or in k = 0, but

the higher ones cross elsewhere. Now, this last feature might be a consequence of a shortage
of Fourier modes: when passing from n,m ∈ {−15, 15} to n,m ∈ {−25, 25}, some of the
“new bands” seem to flatten (this is visible on the bottom of Fig. 6, somewhat less on the
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Fig. 6. Band crossings with n,m ∈ {−15, 15} (left) and n,m ∈ {−25, 25} (right).

top). It might therefore be that, for a even higher set of Fourier modes, only remain pieces
of the k-periodic parabolas displayed on the left of Fig. 8 separated by Cantor-like zones.
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Fig. 7. Upper spectrum for n,m ∈ {−15, 15}: k = 21/13 (left) and k = 34/21
(right).

Even if we don’t want to explore what lies inside the “Cantor zones”, we display on Fig. 7
the band structures for two Fibonacci approximants of the golden mean k = 2√

5−1
computed

by means of (18) with n,m ∈ {−15, 15}. One observes that the upper part of the spectrum
respects a periodicity in κ, even if it becomes more and more intricate. The amazing thing
is that a parabolic structure seems to emerge in this area (as also suggested in [6], Fig. 6).
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4.3 The new bands of parabolic nature ?

It has been suggested in [6] the possibility that an electron represented by a wave-packet
whose motion is described by (1) may nearly not feel the quasi-periodic potential and then
display a quadratic dispersion relation. The mere influence of the vibrating lattice would
be noticeable only through an effective mass which would significantly differ from the one
calculated out of the conduction band of the periodic lattice at rest. We follow this idea
here and recall that the value m∗ ' 0.28 has been obtained for the static case in [15]. In
Fig. 8, we juxtapose a parabolic approximation with the band picture where all the “Cantor
states” have been removed. The agreement is quite interesting, but the values of the effective
masses are notingly higher: we have m∗ ' 1.8 for the lowest states and m∗ ' 0.98 for the
higher ones.
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Fig. 8. Band structure for the incommensurate model: parabolic approximations
periodically repeated (left), real values coming from the spectral algorithm (right)
and superimposed (middle).

The parabolic dispersion framework is appealing in terms of computational costs: indeed,
it has already been explained in [15] that this allows for a direct implementation of shock-
capturing routines to simulate the time-evolution of WKB wave-functions. However, the
obstruction on this route can be formulated as follows: which modulation should be used
to form the ansatz in case a band-crossing occurs ? (see e.g. [10])

4.4 Associated modulations: critical and extended states

In this section, we are about to recall some of the features observed in [23,26], that is to
say, localized, critical and extended eigenstates. A state is said to be localized if it belongs
to L2(R) and its position density decays exponentially when |x| → +∞. On the contrary,
it is extended when its L2(R) norm is infinite. Critical states refer to those quasi-Bloch
waves which position density exhibits spikes arranged in a periodic manner in the space-
time plane. Our algorithm (18) is unable to compute localized states, as it is meant to look
for periodic modulations zκ(t, x) associated to some eigenvalue Eκ. However, we can see on
the top of Figs. 9 and 10 that critical states do show up; namely they are the ones associated
with the two lowest “Cantor zones” in the band structure.
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Fig. 9. Position density for increasingly energetic modulations with κ = 0: ground
state (top) and extended one corresponding to the lower parabola (bottom).

In sharp contrast, the eigenstates associated to the “new parabolic bands” are extended, as
can be seen on the bottom of Figs. 9 and 10. Moreover, one may observe that their position
densities behave like the simpler ones in [15], Fig. 2: more precisely, the extended states
corresponding to lower energies tend to be supported inside the potential well (even if it
moves in time) whereas the higher ones are located above. The same seems to hold also for
critical states, see Fig. 10 which displays spikes located on the potential’s banks.

We found interesting to observe that critical eigenstates can actually be found at energy
levels higher than extended ones. Indeed, to the critical state on top of Fig. 10 corresponds
a “Cantor band” higher in the structure than the parabola associated to the extended state
in the bottom of Fig. 9. This hasn’t been noticed in [26].

On Fig. 11, we display the iso-lines of position densities associated to certain eigenstates
with ε = 0.15: the left one refers to the lowest extended state, which is mainly situated in the
vincinity of the potential’s minima. The middle one is related to the highest critical state in
the second “Cantor zone”: one can notice how it follows the potential’s high iso-lines. The
right one corresponds to the extended state located immediately above in the spectrum;
it is mainly located outside the potential’s minima too, but its structure is obviously very
different as it may be a good candidate to figure a conduction electron. They all correspond
to the 3-D representations of Figs. 9 and 10. Higher eigenstates reveal more uniformly
located oscillations.
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Fig. 11. Lower extended (left), critical (middle) and higher extended (right) eigen-
states. (absissae are for space, ordinates for time)

We didn’t observe any localized states like in [26]; however, their presence in the spectrum
could be questionable as the potential (2) is genuinely 2-D periodic. Hence its eigenstates
should be given by 2-D Bloch waves having only the particularity of being exactly periodic
in time. However, the position densities of the critical states we found by means of (18)
follow nicely the iso-lines of the potential (2). We shall see in the next section that this is
quite a robust property since it still holds while changing the value of the parameter ε which
controls the strength of the modulation: a stronger modulation giving a more oscillating
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potential.

4.5 Effects of the modulation’s strength: from ε = 0.05 to ε = 0.5
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Fig. 12. Band structures for ε = 0.05 (left), ε = 0.15 (middle) and ε = 0.5 (right).

Increasing the value of the parameter ε doesn’t seem to change the structure of the overall
band picture: namely, it widens the “Cantor-like zones” inside the spectrum, as can be
seen on Fig. 12 with n,m ∈ {−15, 15}. The “new bands” aren’t much changed during the
process, except that their interval of variation has shrinked. One can imagine that for a
really big value of ε, no band can show up no more, and the spectrum will therefore display
a completely singular structure, like on the top of Fig. 7 (or in [26], Fig. 1). The associated
eigenfunctions would display the Anderson localization.
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Fig. 13. Ground states superimposed with potential’s iso-values for ε = 0.05 (left),
ε = 0.15 (middle) and ε = 0.5 (right).

For completeness, we also displayed the behavior of the (critical) ground state when ε is
increased on Fig. 13. The main observation is that the spikes keep on being located on the
iso-values of the potential, even when it shows quite severe oscillations in the space/time
plane. This suggests that the whole algorithm (18) produces solutions which remain consis-
tent with the data, even if they reveal a more singular structure than e.g. the Bloch waves
in [14].
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5 What happens for different values of k ?

We have seen in the last two sections that for both static and time-dependent models, “new
bands” appear and look like being k-periodic. Hence it might be that reducing the value of
k is likely to make them more difficult to observe, like in §3.3 (however, the interpretation
as impurity bands doesn’t really hold here). This is what we want to study in this section

working with the inverse k =
√

5−1
2

. We shall also have a look at k = π
3
, for which the

“parabolic structure” previously discussed should appear.

5.1 k is smaller than one

We still consider the potential (2) and we use (18) to investigate numerically its eigenvalues

in case k =
√

5−1
2
≤ 1: the results are shown on Fig. 14. It is interesting to observe that

now, band gaps are easily noticeable and for ε = 0.05, they are located approximately like
in the unperturbed case, see Fig.1 in [15]. When ε increases, more gaps of smaller size open
in the spectrum; this is somehow similar to what we observed on Fig. 12. However, the big
difference is that new bands don’t seem to show up like before; this is again consistent with
the results obtained with the static model and displayed on Fig. 4.
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Fig. 14. Spectrum for ε = 0.05 (left), ε = 0.15 (middle) and ε = 0.5 (right) with

k =
√

5−1

2
.

“New bands” might really be a quasi-periodic phenomenon which appearance stems only
from the set of basic frequencies present in the potential V . In both cases given by (2) and
(15), basic frequencies are ~ω = (1, k) at any fixed time t; “new bands” could develop better
with |k| getting bigger, meaning that the (small) perturbation term oscillates at a frequency
higher than the one of the lattice at rest. This gives for both potentials a threshold value
of k̄ ' 1, in agreement with the numerical results. On the contrary, owing again to Figs. 4
and 14, the number of band gaps seems to increase when ε/|k| grows.

We also present position densities for some eigenstates chosen around some energy level like
in Fig. 11; results are shown in Fig. 15. One sees that as ε grows, these states pass from
being “nearly extended” (for ε = 0.05) to clearly critical (for ε ≥ 0.15): this may indicate
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a locally smooth dependence in ε. The energy level we considered here corresponds to the
eigenstate displayed on the right of Fig. 11.
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(right).

5.2 k is bigger than one

In order to decide whether the (incommensurate) value of k has an influence on the “new
bands”, we ran the algorithm (18) with k = π

3
≥ 1 and ε = 0.15. Looking at Fig. 16, one

can see the big difference compared to Fig. 14: no band gaps remain, and the upper part
of the spectrum doesn’t really appear like a Cantor set anymore. Seemingly “parabolic new
bands” are visible and display a k–period as in the previous sections; there is some sort of
similarity with Fig. 7. (41 Fourier modes have been used in this computation)
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Fig. 16. Spectrum for k = π

3
, ε = 0.15: full picture (left) and detail (middle);

comparison with k = π

4
(right).

6 Conclusion

In order to compute accurately the spectrum of a Schrödinger equation modelling a one-
dimensional modulated (or deformed) incommensurate crystal without any tight-binding
approximation, we derived in this paper a spectral algorithm which can be built out of the
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recent theory of quasi-periodic functions or by taking advantage of periodicity properties of
the potential in a 2-D space. The numerical results revealed several unexpected features:

• New “seemingly parabolic bands” emerge in the spectrum. The band diagram is there-
fore split into “Cantor-like” domains which result from the band nesting phenomenon,
[21] and these “impurity bands” which turn out to be k-periodic. When computing the
corresponding effective masses, one finds values much bigger than the ones coming from
the usual conduction band of the unperturbed lattice (in our case, the Mathieu equation
treated in [15–17]). Hence two competing effects appear: metallic conductivity can be
achieved this way, like e.g. in highly-doped semiconductors, but scattering effects due to
quasi-periodicity are important.

• Two different types of eigenstates appear: in the terminology of [23,26], we speak about
critical states generally found in the bottom of the spectrum and always associated with
a Cantor-like area. These states are very peaked and their spikes are located on the iso-
lines of the potential. The other type of eigenstate is the more usual extended state,
which looks essentially like a Bloch wave: those are the only ones which may represent
conduction electrons.

• The value of the wave number k in (2) is very important in many aspects: even if one
assumes it is Diophantine, its magnitude has a huge influence on the overall spectrum
picture, recall e.g. the Figs 14 and 16: the threshold value in this case looks like being
k̄ ' 1, which means that “new bands” show up only in case the frequency of the small
perturbation is higher than the one of the underlying periodic lattice. This seems to be
supported by Theorem 3.1 in [31], which holds in multi-dimension and states essentially
that weak and slowly-varying deformations of periodic potentials still admit band gaps.

This suggests that a semiclassical WKB approximation to (1) should take into account for
these features. The main obstruction in this direction lies in understanding what happens at
the band-crossing points, since it looks clear from Fig. 7 and 16 that the parabolas extend
very far inside the band diagram on the top of the spectrum.

A Numerical visualization of a continuous “almost-Mathieu” model

For completeness, and even if this case doesn’t exactly fit in our general framework 7 , we
display here the numerical outcome of the algorithm written in [40] to solve the problem
(13); it is just a special case of (11). Namely what we want to check is the ability of this
numerical processing to recover well-known results, like e.g. the existence of band gaps
for ε small enough. Unfortunately, it isn’t possible to achieve conclusive computations for
ε ≤ 0.1 with a reasonable number of Fourier modes (typically, between 31 and 51) because
the corresponding outcome is blurred with spurious oscillations (like on the left of Fig. A.1).
In this figure, one sees that for ε = 0.5, a lot of eigen-states are constant in κ but, for all
values of ε, at least one band gap shows up in the structure. For ε > 0.7, the algorithm
becomes unstable; we recall that in this case, the parameter ε acts on the whole potential,
which isn’t really a perturbated periodic function no more.

We finally wanted to observe what happens for a small value of k in this case, and we took

again k =
√

5−1
2

; results are displayed in Fig. A.2. This seems to have no effect on the
presence of “new bands”, whose presence can be questionable as the lower ones on Figs.
A.1 and A.2 appear inside a range of energies where the computations reported in [4,46]
predict a band gap. They don’t seem to be neither parabolic nor k-periodic as in the former
sections, hence we think they are spurious. Actually, our outcome with ε = 0.5 could also
be compared with Fig. 3 in [6] where periodic approximations are studied by means of a
spectral scheme like in [15]; the corresponding potential is displayed on Fig. 2 in the same

7 It is better suited for 1-D quasicrystals.
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article. Similarly, something appears in the band gaps for another case study of the type
(13) reported in [21]: see Fig. 3, p/q ' 30/61 and p/q ' 31/61
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Fig. A.2. Spectrum for Surace’s model with k =
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2
: ε = 0.05 (left), ε = 0.15

(middle) and ε = 0.5 (right).

In order to provide some explanation about the figures A.1 and A.2, we turn back to the
notion of “resonance tongue”, see Definition 2 and [3,4]. In case the eigenvalue problem is
given by (13), we observe that ~ω = (1, k) ∈ R2 thus the set of resonances is given by

1

2
(i+ jk), (i, j) ∈ Z2, (A.1)

hence is dense in R. Owing to the continuity of the rotation number β, we just want to check
that the gaps we found in the preceding figures for ε small do correspond to resonances of
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the form (A.1) for small values of i, j. Indeed on Fig. A.1, for both ε = 0.1 and ε = 0.3, we
observe a gap roughly in [0.25,0.45]; this may emanate from the elementary resonance:

α =
3

2
(−1 + k) ' 0.927051,

α2

2
' 0.4297118, k =

2√
5− 1

.

As the frequency vector ~ω is identical, we may think that the little gap around E = 0.4 on
both figures 2 and 3 has the same origin. A simpler resonance is proposed in Fig. 2 of [4]

(according to their notation, E = a2

2
and ε = b

2
) for (13): it is based on the choice i = 0,

j = 1 in (A.1) and yields E ' 0.33. It marches our results quite well (and also Fig. 5.1
in [46]) but one may prefer our former value because it meets also the outcome of §3.2.
Concerning Fig. A.2, there seems to be a gap inside the interval [0.1,0.15] for both ε = 0.05
and ε = 0.15; this may correspond to the most elementary resonance:

α =
1

2
(1 + 0k) = 0.5,

α2

2
= 0.125, k =

√
5− 1

2
.

Still, the basic frequencies vector ~ω is the same compared to the one which led to the results
of Fig. 4 even if the potential is different; nevertheless, we observe that a gap opens around
the same energy value in that case. Looking at Figs. 2.1, 3.1, 5.1 and 5.2 in [46] while
according to their notation (ε = ε/2 and E = δ/2), we see that very different algorithms
led to the finding of a very stable gap (in terms of k) for this range of energies. Of course,
this is too weak as a validation for our results. However, the fact that our gaps are stable
for small values of ε and are roughly located around commonly found resonances is rather
encouraging.

Remark 3 The results in this appendix are related to the ones in [4] (and also in [46]);
reference [4] concentrates on the eigen-problem (5) where q(x) = cos(ω1x) + cos(ω2x) with
incompatible frequencies. Different notations are used as their (a2, b) correspond here to
(E, ε). Figures 1 and 2 in [4] are a different view of the band structure disregarding the
κ-dependence of E(κ, ε) but emphasizing the influence of the size of ε. Summarizing, in the
present paper, we plot κ 7→ E for different values of ε (see Figs. A.1 and A.2) whereas
ε 7→ E is shown in Figs. 1 and 2 of [4]. Later, a study of instability pockets is conducted for
q(x) = cos(ω1x) + cos(ω2x) + cos((ω1 + ω2)x), which isn’t touched here. Similarly as [46]
Figure 3.1, the authors of [4] study numerically the Lyapunov exponent λ and the rotation
number ρ associated to (5), both as functions of E in Figs. 4–7. At last, the remaining of
[4] is concerned with a very detailed numerical study of phenomena near the collapse line
of resonances, thus goes beyond the scope of the present work.
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[11] J. Fröhlich, J. Pöschel, P. Wittawer, Localization for a class of one-dimensional
quasi-periodic Schrödinger operators, Comm. Math. Phys. 132 (1990) 5–25.

[12] G. Gentile, D.A. Cortez, J.C.A. Barata, Stability for the quasi-periodically
perturbed Hill’s equation, Comm. Math. Phys. 260 (2005) 403–443.
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