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Optimal control of trading algorithms: a general impulse

control approach

Bruno Bouchard∗, Ngoc-Minh Dang † and Charles-Albert Lehalle ‡

November 14, 2009

Abstract

We propose a general framework for intra-day trading based on the control of trading
algorithms. Given a generic parameterized algorithm, we control the dates (τi)i at which
it is launched, the length (δi)i of the trading period and the value of the parameters (Ei)i

kept during the time interval [τi, τi + δi[. This gives rise to a non-classical impulse control
problem where not only the regime Ei but also the period [τi, τi +δi[ has to be determined
by the controller at the impulse time τi. We adapt the weak dynamic programming
principle of Bouchard and Touzi (2009) to our context and provide a characterization of
the associated value function as a discontinuous viscosity solution of a system of PDEs
with appropriate boundary conditions, for which we prove a comparison principle. We
also propose a numerical scheme for the resolution of the above system and show that it
is convergent. We finally provide an example of application to a problem of optimal stock
trading with a non-linear market impact function.

Key words: optimal impulse control, discontinuous viscosity solutions, intra-day trading.
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1 Introduction

The financial crisis put the emphasis on the role of market liquidity during the exchanges of
financial products. Since the formalisation of the so-called optimal liquidation problem in the
late nineties (see [4] and [6]), each inclusion of a new effect in the “optimal-control-oriented”
original framework gave birth to a specific extension. It has been the case for taking into
account some statistical effects [15], specific properties of the price diffusion process as being
Ornstein Uhlenbeck [14], information at an orderbook level [11], or Bayesian estimation of
the market trend [3].
This paper presents a generic framework that has the ambition to be able to include any
effect.
In short, the optimal liquidation problem arises when one needs to buy and sell an arbitrary
combination of stocks on a finite time horizon. The structure of auction markets implies the
existence of a “liquidity effect” often called “market impact” or “execution costs” [17]: buying
an amount v of shares of a stock during an interval of length δ beginning at time τ generates
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an over-cost that is a function of the “market depth” over [τ, τ + δ]. Some empirical studies
have shown that the combination of the volatility σ, the bid-ask spread ψBA and the usual
traded volume V over this time interval are an efficient proxy of the market depth [12], giving
birth to the following class of model linking the market impact η(v) to market-observations:

(1.1) η(v; τ, τ + δ) = α · ψBA(τ, τ + δ) + κ · σ(τ, τ + δ)

(

v

V (τ, τ + δ)

)γ

where α, κ and γ are positive parameters taking different values from one stock to another (see
[10] to have an overview of several models and for the viability domains of their parameters).
This market impact has to be added to the last traded price Sτ to obtain the average price
to buy the needed v shares.
One may want to trade slowly to avoid paying too much of this premium to other market
participants (increasing δ decreases the participation rate ρ(τ) = v/V (τ, τ + δ)), but it will
generate a more important exposure to market moves.
The considered utility function to optimize (rendering the balance between market impact that
demands to trade slowly and market risk that demands to trade rapidly) and the hypothesis
on the price formation process (dependent moves of the price, the volatility, the bid-ask spread
and the traded volumes) generate sophisticated stochastic optimization problems that are the
core of the quantitative trading field including the optimal portfolio liquidation problem.
The original framework is built on an a priori discretization of the trading phases in N time
intervals as the inclusion of some specific effects like taking into account real time analytics
came from continuous time models [1].
None of those two approaches is optimal. Firstly because the root of the market impact is
the market microstructure that takes place at an event-driven and consequently discretized
time scale [18]. Also because an a priori discretization is not compatible with the algorithmic
trading processes, that are based on the launch of “slices” of buy or sell orders in the markets,
whose durations are not the same over the whole trading phase.
From the point of view of this paper, the algorithmic trading process is the one of switching
between those states:

• the passive regime: where no slice is in the market. During such a state, the price
formation process will continue to take place without interaction with the controlled
order.

• the active regime: with a parametrized slice in the market. The duration of each slice
is bounded from below by a constant δ, and the characteristics of a slice are chosen just
before its launch and cannot be modified until it ends.

The framework proposed in this paper takes precisely into account the reality of the “slicing”
of parent orders into child orders and their interactions with the market microstructure. It
also offers the capability to model the market underlying moves via time-continuous models.
The generic market modelXν used in this paper is the one of the strong solution of a controlled
stochastic differential equation with jumps:

(1.2) Xν(t) = x0 +

∫ t

0
(b(Xν(s), νs) ds+ a(Xν(s), νs) dWs) +

∑

i

β(Xν(τνi −), Eνi , δνi )1τν
i ≤t .

The control ν, which corresponds to the current regime, is identified to sequence of triplets
(τν , Eν , δν) where τν is the launch time of a slice, δν the duration of the slice, and Eν the
value of the parameters of the slice (e.g. its participation rate).
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The aim of the controller is to maximize the expected value of a gain functional of the form

g(Xν(T )) +
∑

τν
i +δν

i ≤T

f(Xν(τνi + δνi ), Eνi ) .

This model can be used to control the launch of any type of slices, from very simple ones (as
in [4]) to the launch of “trading robots” (incorporating Smart Order Routing capabilities like
the ones described in [2] and [16]). Using such algorithmic trading models for the launch of
simple slices will lead to an optimized not-uniformly sampled sequence of slices, taking into
account the market rhythm.
Such a model can also be used to control “meta trading algorithms”, that are dedicated to
the optimal launch of sequences of traditional algorithms. This paper is the first to proposed
a framework to optimize such meta-algo, despite the fact that a lot of trading desk demand
such optimal combinations of well-known algorithms.
On the other hand, the continuous-time aspect of the market model opens the door to the
use of traditional models and tools from quantitative finance.
From the mathematical point of view, it gives rise to a non-classical impulse control problem.
When the current regime is the passive one, i.e. the trading algorithm is not running, the
controller can launch it at any moment τi with a given set of parameters Ei and for a period
of length δi. This leads to a characterization of the value function in terms of a standard
quasi-variational inequality in the region corresponding to the passive regime. However, once
the algorithm is launched, no change in the value of the parameters can be made before the
end of the period [τi, τi + δi[. This implies that the value function satisfies a linear parabolic
equation on the active region.
In this paper, we provide a rigorous characterization of the value function as a discontinuous
viscosity solution of such equations, together with suitable boundary conditions. To this
end, we adapt the approach of [7] who proposes a weak version of the dynamic programming
principle. The main advantage of this weak formulation is that it does not require any a-
priori continuity of the value function. We also provide a comparison principle for the above
equations and construct a finite difference numerical scheme, which we prove to be convergent.
The rest of the paper is organized as follows. The model is described in Section 2. In Section 3,
we provide the PDE characterization of the value function and the associated comparison
principle. The proofs of these results are given in Section 4. The numerical scheme is studied
in Section 5 . In the last section, we discuss an example of application to a particular model of
optimal stock liquidation. It shows how the proposed framework naturally allows a real-time
adaptive control of the trading algorithm, by switching optimally after the end of each slice
given the current state of the market.

Notations: All over this paper, we shall use the following notations. Given x ∈ R
k, for k

given by the context, we denote by |x| its Euclidean norm and by Br(x) the open ball of
center x and radius r > 0. The scalar product is denoted by 〈·, ·〉. Given a set A ⊂ R

k,
we denote by ∂A its boundary. Given d ∈ N, we denote by M

d the set of d-dimensional
square matrices. For M ∈ M

d, M∗ is the associated transposed matrix. For a function
(t, x, y) ∈ R+ × R

d × R
k 7→ ϕ(t, x, y), we denote by Dϕ and D2ϕ its gradient and Hessian

matrix with respect to x, whenever they are well defined. The other partial derivatives will
be written by using standard notations.
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2 Problem formulation

Let (Ω,F ,P) be a probability space supporting a d-dimensional Brownian motion W , d ≥ 1.
Let F := (Ft)t≥0 denote the right-continuous complete filtration generated by W , and let
T > 0 be a finite time horizon.

2.1 Control policies

A control policy of the trading algorithm is described by a non-decreasing sequence of stopping
times (τi)i≥1 and a sequence of E × [δ,∞)-valued random variables (Ei, δi)i≥1. The stopping
times τi describe the times at which an order is given to the algorithm, Ei is the value of the
parameters with which the algorithm is run and δi the length of the period (latency period)
during which it is run with the value Ei. The set E is a compact subset of R

d, d ≥ 1, which
represents the possible values of the parameters, the quantity

0 < δ < T

denotes the minimum length of the time period during which the algorithm can be run. To
be consistent we impose that

τi + δi ≤ τi+1 and (δi > 0 ⇒ τi + δi ≤ T ) , i ≥ 1 .(2.1)

The first condition expresses the fact that a new order can not be given before the end of the
time period associated to the previous order. The second one means that an order should be
given only if it ends before the final time horizon T . As usual the value of the parameters
and the size of the latency period can not be chosen in some anticipative way, i.e. we impose
that

(δi, Ei) is Fτi-measurable , i ≥ 1 .(2.2)

At time t ∈ [τi, τi + δi), the value of the parameter of the trading algorithm is denoted by νt.
For t ∈ A((τi, δi)i≥1), defined as

A((τi, δi)i≥1) := R+ \





⋃

i≥1

[τi, τi + δi)



 ,

we set νt = ̟, where ̟ ∈ R
d \E can be viewed as a cimetary point, recall that E is compact.

It follows that the value of the parameters of the trading algorithm ν can be written as

νt = ̟1t∈A((τi,δi)i≥1) +
∑

i≥1

1t∈[τi,τi+δi)Ei , t ∈ [0, T ] ,(2.3)

where νt = ̟ means that the algorithm is not running at time t.

We denote by S the set of adapted processes ν that can be written in the form (2.3) for
some sequence of stopping times (τi)i≥1 and of E× [δ,∞)-valued random variables (δi, Ei)i≥1

satisfying (2.1) and (2.2).
For ease of notations, we shall now write

(τνi , δ
ν
i , Eνi )i≥1 the sequence associated to ν ∈ S,
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and define, for all stopping times ϑ1 and ϑ2 satisfying ϑ1 ≤ ϑ2 P-a.s., the quantity

I
ν
ϑ1,ϑ2

:= {i ≥ 1 : ϑ1 < τνi + δνi ≤ ϑ2} ,

which denotes the number of orders whose execution ends between ϑ1 and ϑ2.

Remark 2.1. Note that the constraint δνi ≥ δ for all i ≥ 1 and ν ∈ S implies that

∣

∣I
ν
0,T

∣

∣ ≤ |{τνi ≤ T, i ≥ 1}| ≤ T/δ .

For ease of notations, we also set
Ē := E ∪ {̟} ,

and introduce the processes

∆ν
t :=

∑

i≥1

[τνi + δνi − t]+1t≥τν
i
, t ∈ [0, T ] .

The quantity ∆ν
t denotes the remaining latency period during which no new order can be

passed to the algorithm. When ∆ν
t > 0, the algorithm is running with a value of the parame-

ters νt. When ∆ν
t = 0, the algorithm is not running anymore and a new order can be passed.

The following picture sums up the dynamics of the control.

✻

✲

ν

T ime

̟

Eνi [ [

Eνi+1 [ [

τνi

✲✛
δνi

[
τνi + δνi

[
τνi+1

✲✛ δνi+1

t

✲✛ ∆ν
t

τνi+1 + δνi+1

2.2 Output of the trading algorithm and gain function

Given some initial data (t, x) ∈ [0, T ] × R
d, the output of the trading algorithm associated

to some control policy ν ∈ S is defined as the strong solution Xν
t,x on [0, T ] of the stochastic

differential equation
(2.4)

Xν
t,x(s) = x+1s≥t





∫ s

t
b(Xν

t,x(r), νr)dr +

∫ s

t
a(Xν

t,x(r), νr)dWr +
∑

i≥1

β(Xν
t,x(τ

ν
i −), Eνi , δνi )1t<τν

i ≤s



 ,
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where b, β : R
d × Ē × [δ, T ] 7→ R

d and a : M
d × Ē 7→ M

d are continuous functions satisfying,
for all x, x′ ∈ R

d, e, e′ ∈ Ē, δ, δ′ ∈ [δ, T ],







|ψ(x, e, δ) − ψ(x′, e, δ)|) ≤ K|x− x′|
|ψ(x, e, δ)| ≤ K(1 + |x|)

|ψ(x, e, δ) − ψ(x, e′, δ′)| ≤ K(1 + |x|)(|e− e′| + |δ − δ′|)
for ψ = b, a, β ,(2.5)

for some K > 0.

Remark 2.2. Observe that Xν does not jump when the regime is switched to the passive
regime ̟.

We do not differentiate here between the components that correspond to real outputs of the
algorithm (cumulated gains, cumulated volumes executed by the algorithm, etc...) and others
that simply describe the evolution of financial data or market factors (prices of the traded
assets, global traded volumes on the markets, volatilities, etc...).
The jumps on the dynamics are introduced to model the change in the initial conditions on
the variable of interest for the trading algorithm when it is launched (e.g. volume to be
executed between τνi and τνi + δνi ).

Remark 2.3. Note that (2.5), the fact that E is bounded and Remark 2.1 imply that, for
all t ∈ [0, T ], x ∈ R

d and ν ∈ S,

E

[

sup
s∈[t,T ]

|Xν
t,x(s)|p

]

≤ CpK(1 + |x|p)(2.6)

where CpK depends only on K and p ≥ 1.

The aim of the controller is to maximize the expected value of the gain functional

ν ∈ S 7→ Πt,x(ν) := g(Xν
t,x(T )) +

∑

i∈I
ν
t,T

f(Xν
t,x(τ

ν
i + δνi −), Eνi ) ,

with the usual convention
∑

∅ = 0, among the set

St,δ,e :=
{

ν ∈ S : νs = e for s ∈ [t, t+ δ) and ∆ν
t+δ = 0

}

,

where (δ, e) ∈ R+ × Ē denotes the initial state of the remaining latency time and value of the
parameters.

Here, g and f are assumed to be continuous on R
d × Ē and to satisfy, for some γ > 0,

sup
(x,e)∈Rd×E

|f(x, e)| + |g(x)|
1 + |x|γ <∞ , f(·, ̟) = 0 .(2.7)

In view of (2.6), this ensures that the quantity

J(t, x; ν) := E [Πt,x(ν)]

is well defined for all ν ∈ S and satisfies

|J(t, x; ν)| ≤ CγK (1 + |x|γ)(2.8)
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where CγK depends only on K and γ.

For technical reason related to the dynamic programming principle, see [7] and the proof of
Lemma 4.1 below, we shall restrict to admissible trading strategies ν ∈ St,δ,e such that ν is
independent on Ft, see Remark 5.2 in [7]. We denote by Sat,δ,e the associated set of controls
and therefore define the value function as:

V (t, x, δ, e) := sup
ν∈Sa

t,δ,e

E [Πt,x(ν)] .

We refer to Section 6 for examples of application.

Remark 2.4. It follows from (2.8) that there exists CγK > 0 which depends only on K and
γ such that

|V (t, x, δ, e)| ≤ CγK (1 + |x|γ) for all (t, x, δ, e) ∈ [0, T ] × R
d × R+ × Ē s.t. Sat,δ,e 6= ∅ .

Note that for δ = T − t and e ∈ E, (2.1) implies that

V (t, x, T − t, e) = V(t, x, e) := E
[

g(X e
t,x(T )) + f(X e

t,x(T ), e)
]

,(2.9)

where X e
t,x is the solution of

X e
t,x(s) = x+

∫ s

t
b(X e

t,x(r), e)dr +

∫ s

t
a(X e

t,x(r), e)dWr , s ∈ [t, T ] .(2.10)

Remark 2.5. Under (2.5), the continuity assumption on f, g and (2.7), it follows from stan-
dard arguments that the auxiliary value function V is continuous, and that, for each e ∈ E,
it is a viscosity solution of

− Leϕ(t, x) = 0 on [0, T ) × R
d , ϕ(T, x) = g(x) + f(x, e) on R

d ,(2.11)

where, for e ∈ Ē, and a smooth function ϕ,

Leϕ(t, x) :=
∂

∂t
ϕ(t, x) + 〈b(x, e) , Dϕ(t, x)〉 +

1

2
Tr

[

aa∗(x, e)D2ϕ(t, x)
]

.

3 Viscosity characterization of the value function

The aim of this section, is to provide a PDE characterization of the value function V . Before
to state our main result, we need to introduce some additional notations and definitions.

In view of (2.1), (2.9) and the constraint that the latency period should be bigger than δ, the
natural domain of definition of the value function V is

D :=
{

(t, x, δ, e) ∈ [0, T ) × R
d × (((0,∞) × E) ∪ {0, ̟}) : δ ≤ t+ δ < T or e = ̟

}

,

which can be decomposed in two main regions. We call the active region, the region where
δ > 0 and e 6= ̟:

DE,>0 :=
{

(t, x, δ, e) ∈ [0, T ) × R
d × (0,∞) × E : δ ≤ t+ δ < T

}

.
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It corresponds to the set of initial conditions where the algorithm is running and the controller
has to wait the end of the latency period before passing a new order. We call the passive
region, the region where e = ̟, and therefore δ = 0:

D̟ := [0, T ) × R
d × {0, ̟} .

It corresponds to the set of initial conditions where the algorithm is not running and can be
launched immediately with a new set of parameters. These two regions are complemented by
the natural boundaries of the active region when δ → 0 and t+ δ → T :

DE,0 := [δ, T )×R
d×{0}×E , DE,T :=

{

(t, x, δ, e) ∈ [0, T ) × R
d × (0,∞) × E : δ ≤ t+ δ = T

}

,

and the time boundary:
DT := {T} × R

d × R+ × Ē .

The closure of the natural domain of definition of the value function V is therefore

D̄ :=
{

(t, x, δ, e) ∈ [0, T ] × R
d × R+ × Ē : δ ≤ t+ δ ≤ T or e = ̟

}

.

As usual, we shall rely on the dynamic programming principle, see Lemma 4.1 below for a
precise statement, to deduce the behavior of the value function on each component of D̄:

V (t, x, δ, e) = sup
ν∈Sa

t,δ,e

E



V (ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) +
∑

i∈I
ν
t,ϑ

f(Xν
t,x(τ

ν
i + δνi ), Eνi )



 ,(3.1)

for any [t, T ]-valued stopping time ϑ.

In the passive region. For (t, x, δ, e) ∈ D̟, the controller can immediately launch the
trading algorithm with a new set of parameters (δ′, e′) ∈ [δ, T − t]×E. Taking ϑ = t in (3.1)
thus implies that

V (t, x, 0, ̟) ≥ M[V ](t, x)

where
M[V ](t, x) := sup

(δ′,e′)∈[δ,T−t]×E
V (t, x+ β(x, e′, δ′), δ′, e′) ,

with the usual convention sup ∅ = −∞. The controller can also decide to wait before passing
a new order to the algorithm, i.e. choose ν = ̟ on some time interval [t, t+ δ′) with δ′ > 0.
In view of (3.1) applied to an arbitrarily small stopping time ϑ < t+ δ′, this implies that

−L̟V (t, x, 0, ̟) ≥ 0 .

The dynamic programming principle (3.1) formally implies that one of the two above choices
should be optimal, i.e.

min {−L̟V (t, x, 0, ̟) ; V (t, x, 0, ̟) −M[V ](t, x)} = 0 .

In the active region. For (t, x, δ, e) ∈ DE,>0, the controller can not change the parameter
of the algorithm before the end of the initial latency period δ > 0. Choosing ϑ arbitrarily
small in (3.1) thus implies that V should satisfy

(

−Le +
∂

∂δ

)

V (t, x, δ, e) = 0 .
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It is naturally complemented with the boundary conditions

V (t, x, δ, e) = V (t, x, 0, ̟) + f(x, e) , if (t, x, δ, e) ∈ DE,0 ,

and
V (t, x, δ, e) = V(t, x, e) , if (t, x, δ, e) ∈ DE,T ,

recall (2.9).

Terminal boundary condition. As usual, the boundary condition as t ↑ T should be given
by the terminal condition:

V (t, x, δ, e) = g(x) + f(x, e) , if (t, x, δ, e) ∈ DT ,

where we recall that f(·, ̟) = 0 by convention.

The above discussion shows that V should solve the equation

Hϕ = 0(3.2)

on D̄, where, for a smooth function ϕ defined on D̄,

Hϕ(t, x, δ, e) :=























(

−Le + ∂
∂δ

)

ϕ(t, x, δ, e) on DE,>0 ,
ϕ(t, x, δ, e) − ϕ(t, x, 0, ̟) − f(x, e) on DE,0 ,

ϕ(t, x, δ, e) − V(t, x, e) on DE,T ,
min

{

− L̟ϕ(t, x, δ, e) ; ϕ(t, x, δ, e) − M[ϕ](t, x)
}

on D̟ ,
ϕ(t, x, δ, e) − g(x) − f(x, e) on DT .

However, since V may not be smooth, it has to be stated in terms of viscosity solutions, see
[8], in the following sense.

Definition 3.1. We say that a lower-semicontinuous (resp. upper-semicontinuous) function
U on D̄ is a viscosity supersolution (resp. subsolution) of (3.2) on D̄ if for any function
ϕ ∈ C1,2,1,0([0, T ] × R

d × R+ × Ē) and (t0, x0, δ0, e0) ∈ D̄, which achieves a global minimum
(resp. maximum) of U − ϕ on D̄ such that (U − ϕ)(t0, x0, δ0, e0) = 0, we have

Hϕ(t0, x0, δ0, e0) ≥ 0 ( resp. Hϕ(t0, x0, δ0, e0) ≤ 0) .

If U is continuous, we say that it is a viscosity solution of (3.2) if it is a super- and a
subsolution.

In all this paper, we shall say that a function ϕ is smooth if it belongs to C1,2,1,0([0, T ]×R
d×

R+ × Ē).

As usual, showing that V is a-priori continuous is a rather difficult task. As a first step,
we shall therefore prove the super- and subsolution property only for the upper- and lower-
semicontinuous enveloppes V ∗ and V∗ of V defined as

V ∗(t, x, δ, e) := lim sup
(t′,x′,δ′,e′)∈D→(t,x,δ,e)

V (t′, x′, δ′, e′)

V∗(t, x, δ, e) := lim inf
(t′,x′,δ′,e′)∈D→(t,x,δ,e)

V (t′, x′, δ′, e′) , (t, x, δ, e) ∈ D̄ .

Theorem 3.2. The function V∗ (resp. V ∗) is a vicosity supersolution (resp. subsolution) of
(3.2) on D̄.
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The following comparison result combined with Remark 2.4 insures a-posteriori that V is
continuous and that it is the unique viscosity solution of (3.2) on D̄ with polynomial growth.

Theorem 3.3. Let u and v be respectively a lower semicontinuous viscosity supersolution of
(3.2) on D̄ and a upper-semicontinuous viscosity subsolution of (3.2) on D̄. Assume that v+

and u− have polynomial growth. Then, u ≥ v on D̄.

4 Proof of the viscosity characterization

4.1 Dynamic programming

As usual, the derivation of the partial differential equation relies on the so-called dynamic
programming principle, a formal version of which is given in (3.1) above. In this section,
we provide a rigorous formulation which follows ideas introduced in [7]. Namely, we only
provide a weak formulation in terms of test functions. The main advantage of this approach
is that it does not require any regularity on the value function V itself, but only some lower-
semicontinuity of the objective function J(·; ν), see below. We refer to [7] for a general
discussion.

Lemma 4.1 (Weak Dynamic Programming Principle). Fix (t, x, δ, e) ∈ D and let {ϑν , ν ∈
Sat,δ,e} be a family of [t, T ]-valued stopping times independent of Ft. Then, we have
(4.1)

V (t, x, δ, e) ≤ sup
ν∈Sa

t,δ,e

E



[V ∗, g](ϑν , Xν
t,x(ϑ

ν),∆ν
ϑν , νϑν ) +

∑

i∈I
ν
t,ϑν

f(Xν
t,x(τ

ν
i + δνi −), Eνi )



 ,

where [V ∗, g](s, ·) := V ∗(s, ·)1s<T + g1s=T , and

sup
ν∈Sa

t,δ,e

E



ϕ(ϑν , Xν
t,x(ϑ

ν),∆ν
ϑν , νϑν ) +

∑

i∈I
ν
t,ϑν

f(Xν
t,x(τ

ν
i + δνi −), Eνi )



 ≤ V (t, x, δ, e)(4.2)

for all upper semi-continuous function ϕ such that V ≥ ϕ on D̄.

As in [7], the proof of the above result relies on some lower-semicontinuity property of the
function J . Because of the latency time δ, we can however not apply their result directly and
need to adapt their arguments by exploiting the lower-semicontinuity of the map

(t, x, δ, e, ν) ∈ D̄ × S 7→ J(t, x,Pe
t+δ(ν))

where, for s1 ≤ s2 ∈ [0, T ],

P
e
s1,s2 : ν ∈ S 7→ P

e
s1,s2(ν) := e1[0,s1) +̟1[s1,s2) + ν1[s2,T ] .

Lemma 4.2. Fix (t, x, δ, e) ∈ D and ν ∈ St,δ,e. Let (tn, xn, δn, en)n≥1 be a sequence in D
such that (tn, xn, δn, en)→ (t, x, δ, e) as n→ ∞ and

tn ≤ t and tn + δn ≤ t+ δ for all n ≥ 1.(4.3)

Then, lim inf
n→∞

J(tn, xn;P
en

tn+δn,t+δ
(ν)) ≥ J(t, x; ν).
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Proof. We only prove the result in the case where δ > 0. The case δ = 0 can be handled
similarly. In this case we have tn ≤ t < tn + δn ≤ t + δ for n large enough since tn → t
and δn → δ > 0. For ease of notations, we set X := Xν

t,x and Xn := Xνn

tn,xn
where νn :=

P
en

tn+δn,t+δ
(ν). In all this proof, we let C > 0 denote a generic constant which does not

depend on n but whose value may change from line to line.
1. We first prove that, for any fixed integer p ≥ 1:

lim
n→∞

E

[

sup
t≤s≤T

|Xn(s) −X(s)|2p
]

= 0 .(4.4)

First note that νn = ν on [t + δ, T ]. By using standard computations based on Burkholder-
Davis-Gundy’s inequality, Gronwall’s Lemma and the Lipschitz continuity of b, a and β, we
thus deduce that

E

[

sup
t+δ≤s≤T

|Xn(s) −X(s)|2p
]

≤ C E
[

|Xn(t+ δ−) −X(t+ δ−)|2p
]

.

Since (νn, ν) = (̟, e) on [tn + δn, t+ δ), the Lipschitz continuity of b and a implies that

E

[

sup
tn+δn≤s<t+δ

|Xn(s) −X(s)|2p
]

≤ C
(

|t+ δ − tn − δn|p + E
[

|Xn(tn + δn) −X(tn + δn)|2p
])

.

We similarly have, since (νn, ν) = (en, e) on [t, tn + δn) and (Xn, X) does not jump at time
tn + δn, recall Remark 2.2:

E

[

sup
t≤s≤tn+δn

|Xn(s) −X(s)|2p
]

≤ C
(

|en − e|2p + E
[

|Xn(t) − x|2p
])

.

Finally, by the linear growth condition on b and a, the fact that νn = en on [tn, t) and that
Xn does not jump at time t,

E

[

sup
tn≤s≤t

|Xn(s) − x|2p
]

≤ C

(

|xn − x|2p + E

[

sup
tn≤s≤t

|Xn(s) − xn|2p
])

≤ C
(

|xn − x|2p + |tn − t|p
)

.

2. We now use the above estimate to conclude the proof. We first note that

(4.5) Πtn,xn(νn) − Πt,x(ν) =

(

g(Xn(T )) − g(X(T ))

)

+

(

∑

i∈I
νn

tn,T

f(Xn(τni + δni −), Eni ) −
∑

i∈I
ν
t,T

f(X(τνi + δνi −), Eνi )

)

,

with (τn, δn, En) := (τν
n
, δν

n
, Eνn

). In view of (4.4), we can assume that

sup
t≤s≤T

|X(s) −Xn(s)| −→ 0 P-a.s.(4.6)

after possibly passing to a subsequence. Similar estimates show that, after possibly passing
to a subsequence,

|Xn(tn + δn−) −Xn(t+ δ−)| −→ 0 P-a.s. and in Lp, p ≥ 1(4.7)

11



Since g is continuous, it follows that

lim
n→∞

g(Xn(T )) = g(X(T )) P-a.s.(4.8)

Moreover, by definition of νn, we have
∑

i∈I
νn

tn,T

f(Xn(τni + δni −), Eni ) = f(Xn(tn + δn−), en) +
∑

i∈I
ν
t+δ,T

f(Xn(τνi + δνi −), Eνi ) .

It then follows from the continuity of f , (4.6) and (4.7) that

lim
n→∞

∑

i∈I
νn

tn,T

f(Xn(τni + δni −), Eni ) = f(X(t+ δ−), e) +
∑

i∈I
ν
t+δ,T

f(X(τνi + δνi −), Eνi )

=
∑

i∈I
ν
t,T

f(X(τνi + δνi −), Eνi ) P-a.s.(4.9)

The required result then follows from (4.8), (4.9), (2.7), and Fatou’s Lemma combined with
(4.4) and (2.6) which insure that the sequence (Πtn,xn(νn)−)n≥1 is uniformly integrable.

We now turn to the proof of the dynamic programming principle.

Proof. [Lemma 4.1] In this proof, we consider (Ω,F ,F,P) as the d-dimensional canonical
filtered space equipped with the Wiener measure and denote by ω or ω̃ a generic point. The
Brownian motion is thus defined as W (ω) = (ωt)t≥0. For ω ∈ Ω and r ≥ 0, we set ωr := ω.∧r
and Tr(ω) := ω.+r − ωr. In the following, we omit the dependence of ϑν with respect to ν
and simply write ϑ, for ease of notations.
1. The proof of (4.1) is standard and is based on the observation that, for all ν ∈ Sat,δ,e,

J(t, x; ν) = E



E



g(Xν
t,x(T )) +

∑

i∈I
ν
ϑ,T

f(Xν
t,x(τ

ν
i + δνi −), Eνi ) | Fϑ







(4.10)

+ E





∑

i∈I
ν
t,ϑ

f(Xν
t,x(τ

ν
i + δνi −), Eνi )





where, by the flow property of Xν ,

(4.11) E



g(Xν
t,x(T )) +

∑

i∈I
ν
ϑ,T

f(Xν
t,x(τ

ν
i + δνi ), Eνi −) | Fϑ



 (ω) = J(ϑ(ω), Xν
t,x(ϑ)(ω); ν̃ω)

with, for each ω ∈ Ω,

ν̃ω : ω̃ ∈ Ω 7→ ν̃ω(ω̃) = ν(ωϑ(ω) + Tϑ(ω)(ω̃))

which can be viewed, for each ω ∈ Ω, as a control independent of Fϑ(ω). Since the dynamic

of X ν̃ω

ϑ(ω),Xν
t,x(ϑ)(ω) depends on ν̃ω only through its path after ϑ(ω), this implies that, for each

ω ∈ Ω,

J(ϑ(ω), Xν
t,x(ϑ)(ω); ν̃ω) ≤ sup

{

J(ϑ(ω), Xν
t,x(ϑ)(ω); ν̄), ν̄ ∈ Saϑ(ω),∆ν

ϑ
(ω),νϑ(ω)

}

≤ [V ∗, g](ϑ(ω), Xν
t,x(ϑ)(ω),∆ν

ϑ(ω), νϑ(ω)) ,
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and the result follows from (4.10) and (4.11).
2. We now prove the second inequality.
2.a. We first show that, for any ε > 0, we can find two sequences (tn, xn, δn, en, An)n≥1 in
D × BD and (νn)n≥1 in S such that (An)n≥1 forms a partition of D and, for each n,

νn ∈ Satn,δn,en
and J(t′, x′;Pe′

tn+δn
(νn)) ≥ ϕ(t′, x′, δ′, e′) − 3ε for all (t′, x′, δ′, e′) ∈ An

An ⊂ Qrn(tn, xn, δn, en) ∩D for some rn > 0,(4.12)

where we use the notation

Qr̊ (̊t, x̊, δ̊, e̊) :=

{

(t′, x′, δ′, e′) ∈ Br̊ (̊t, x̊, δ̊, e̊) : t′ ≤ t̊ , t′ + δ′ ≤ t̊+ δ̊

}

.

By definition of V ≥ ϕ, for each (̊t, x̊, δ̊, e̊) ∈ D and ε > 0, we can find ν̊ = ν̊ (̊t,̊x,̊δ,̊e),ε in S
such that

(4.13) ν̊ ∈ Sa
t̊,̊δ,̊e

and J (̊t, x̊; ν̊) ≥ V (̊t, x̊, δ̊, e̊) − ε ≥ ϕ(̊t, x̊, δ̊, e̊) − ε .

Moreover, it follows from Lemma 4.2 and the upper-semicontinuity of ϕ that we can find
r̊ = r̊(̊t,̊x,̊δ,̊e) in (0,∞) such that

J(t′, x′;Pe′

t̊+δ̊
(̊ν)) ≥ J (̊t, x̊; ν̊) − ε and ϕ(̊t, x̊, δ̊, e̊) ≥ ϕ(t′, x′, δ′, e′) − ε(4.14)

for all (t′, x′, δ′, e′) ∈ Qr̊ (̊t, x̊, δ̊, e̊) .

Clearly {Qr (̊t, x̊, δ̊, e̊) : (̊t, x̊, δ̊, e̊) ∈ D, 0 < r ≤ r̊(̊t,̊x,̊δ,̊e)} forms a Vitali covering of D. It then

follows from the Vitali’s covering Theorem, see e.g. Lemma 1.9 p10 in [9], that we can find a
countable sequence (tn, xn, δn, en, rn)n≥1 of elements of D×R, with 0 < rn < r̊(tn,xn,δn,en) for
all n ≥ 1, such that D ⊂ ∪n≥1Qrn(tn, xn, δn, en). We finally construct the sequence (An)n≥1

by setting A1 := Qr1(t1, x1, e1, δ1) ∩D, C0 = ∅ and

An := (Qrn(tn, xn, δn, en) ∩D)\Cn−1 , Cn−1 := Cn−2 ∪An−1 for n ≥ 2 .

The sequence (νn)n≥1 is defined by νn := ν̊(tn,xn,δn,en),ε for all n.
2.b. We are now in position to prove (4.2). Let ν be a arbitrary element of Sat,δ,e and define

ν̂ := ν1[0,ϑ) + 1[ϑ,T ]

∑

n≥1

P
νϑ

ϑ+∆ν
ϑ
,tn+δn

(νn)1(ϑ,Xν
t,x(ϑ),∆ν

ϑ
,νϑ)∈An

.

Since ν ∈ Sat,δ,e, we have (ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) ∈ D = ∪n≥1An. Moreover, on {(ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) ∈
An}, we have ϑ+ ∆ν

ϑ ≤ tn + δn. It follows that ν̂ ∈ Sat,δ,e, and therefore

V (t, x, δ, e) ≥ J(t, x; ν̂)

= E






g(X ν̂

t,x(T )) +
∑

i∈I
ν̂
ϑ,T

f(X ν̂
t,x(τ

ν̂
i + δν̂i −), E ν̂i ) +

∑

i∈I
ν̂
t,ϑ

f(X ν̂
t,x(τ

ν̂
i + δν̂i −), E ν̂i )






,

where, by the flow property of X ν̂ , the fact that νn is independent of Ftn and that ϑ ≤ tn on
{(ϑ,Xν

t,x(ϑ),∆ν
ϑ, νϑ) ∈ An},

E

[

g(X ν̂
t,x(T ))

]

=

∫ ∫

g
(

X
ν̃ω(ω̃)
ϑ(ω),Xν

t,x(ϑ)(ω)(T )(ω̃)
)

dP(ω̃)dP(ω)
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and

E







∑

i∈I
ν̂
ϑ,T

f(X ν̂
t,x(τ

ν̂
i + δν̂i −), E ν̂i )







=

∫ ∫

∑

i∈I
ν̃ω(ω̃)
ϑ(ω),T

f(X
ν̃ω(ω̃)
ϑ(ω),Xν

t,x(ϑ)(ω)((τ
ν̃ω

i + δν̃ω

i −) ∧ T )(ω̃), E ν̃ω

i (ω̃))dP(ω̃)dP(ω)

where, for ω ∈ Ω,

ν̃ω : ω̃ ∈ Ω 7→ ν(ω)1[0,ϑ(ω)) + 1[ϑ(ω),T ]

∑

n≥1

P
νϑ(ω)
ϑ(ω)+∆ν

ϑ
(ω),tn+δn

(νn(ω̃))1(ϑ(ω),Xν
t,x(ϑ)(ω),∆ν

ϑ
(ω),νϑ(ω))∈An

.

Hence, (4.12) implies that

V (t, x, δ, e) ≥ E






J(ϑ,X ν̂

t,x(ϑ); ν̂) +
∑

i∈I
ν̂
t,ϑ

f(X ν̂
t,x(τ

ν̂
i + δν̂i −), E ν̂i )







= E





∑

n≥1

J(ϑ,Xν
t,x(ϑ);Pνϑ

ϑ+∆ν
ϑ
,tn+δn

(νn))1(ϑ,Xν
t,x(ϑ),∆ν

ϑ
,νϑ)∈An





+ E





∑

i∈I
ν
t,ϑ

f(Xν
t,x(τ

ν
i + δνi −), Eνi )





≥ E



ϕ(ϑ,Xν
t,x(ϑ),∆ν

ϑ, νϑ) +
∑

i∈I
ν
t,ϑ

f(Xν
t,x(τ

ν
i + δνi −), Eνi )



 − 3ε.

By arbitrariness of ε > 0 and ν ∈ Sat,δ,e, this proves the required inequality.

Remark 4.3. Note that, by replacing ϕ in (4.2) by a sequence (ϕk)k≥1 of upper semi-
continuous functions satisfying

ϕk ≤ V and ϕk ր [V∗, g] on D,

we can deduce a stronger version of (4.2):

sup
ν∈Sa

t,δ,e

E



[V∗, g](ϑ
ν , Xν

t,x(ϑ
ν),∆ν

ϑν , νϑν ) +
∑

i∈I
ν
t,ϑ

f(Xν
t,x(τ

ν
i + δνi −), Eνi )



 ≤ V (t, x, δ, e) ,

where [V∗, g](s, ·) := V∗(s, ·)1s<T + g1s=T . In particular, if V is continuous, combining (4.1)
and the previous inequality leads to the classical version of the dynamic programming principle
(3.1).

4.2 Viscosity properties

Now we are in position to prove Theorem 3.2. We split the proof in different propositions.
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4.2.1 Supersolution property

We start with the supersolution property in the domain D = DE,>0 ∪D̟.

Proposition 4.4. The function V∗ is a viscosity supersolution of (3.2) on D.

Proof. The proof follows from standard arguments except that we use the non classical for-
mulation of the dynamic programming principle (4.2). Fix (t0, x0, δ0, e0) ∈ D and let ϕ be a
smooth function such that (t0, x0, δ0, e0) achieves a (global) minimum of V∗ − ϕ on D such
that

0 = (V∗ − ϕ)(t0, x0, δ0, e0).

Let (tk, xk, δk, ek)k≥1 be a sequence in D such that
(4.15)

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V∗(t0, x0, δ0, e0) as k −→ ∞ ,

and observe that

(ϕ− V )(tk, xk, δk, ek) −→ 0 when k −→ ∞ .(4.16)

Case 1. We first assume that (t0, x0, δ0, e0) ∈ DE,>0 and that

− Le0ϕ(t0, x0, δ0, e0) +
∂

∂δ
ϕ(t0, x0, δ0, e0) =: −2ε < 0 ,(4.17)

and work towards a contradiction. Define the function ϕ̄ by

ϕ̄(t, x, δ, e) := ϕ(t, x, δ, e) − |x− x0|4 − |t− t0|2 − |δ − δ0|2 ,(4.18)

so that ϕ̄ also satisfies (4.17). By continuitiy of b and a, we can find r > 0 such that

(

−Leϕ̄+
∂

∂δ
ϕ̄

)

(t, x, δ, e) ≤ 0 for (t, x, δ, e) ∈ B := Br(t0, x0, δ0, e0) ∩DE,>0 .(4.19)

Given k large enough so that (tk, xk, δk, ek) ∈ B, let νk be any control in Satk,δk,ek
. Set

(Xk,∆k) := (Xνk

tk,xk
,∆νk

) and define

θk := inf{s ≥ tk : (s,Xk(s),∆k
s) /∈ B} .

For r small enough we have ∆νk

θk > 0 and therefore νk = ek on [tk, θ
k]. Using Itô’s Lemma,

(4.19) and the definition of ϕ̄, we thus obtain that

ϕ̄(tk, xk, δk, ek) ≤ E

[

ϕ̄(θk, Xk(θk),∆k
θk , ek)

]

≤ E

[

ϕ(θk, Xk(θk),∆k
θk , ν

k
θk)

]

− η

where η := inf{|x − x0|4 + |t − t0|2 + |δ − δ0|2, (t, x, δ, ek) ∈ ∂Br(t0, x0, δ0, e0)} > 0, observe

that |ek − e0| < r. Since Iν
k

tk,θk = ∅, the above inequality combined with (4.16) and (4.18)

contradict (4.2) for k large enough.
Case 2. We now assume that (t0, x0, δ0, e0) ∈ D̟. Since E is closed and ̟ /∈ E, (4.15)
implies that

(δk, ek) = (0, ̟) for k large enough.(4.20)
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We now assume that

min {−L̟ϕ(t0, x0, 0, ̟) , ϕ(t0, x0, 0, ̟) −M[ϕ](t0, x0)} =: −2ε < 0 ,(4.21)

and work toward a contradiction. If

−L̟ϕ(t0, x0, 0, ̟) = −2ε < 0 ,

we can argue as above to obtain a contradiction to (4.2). If

ϕ(t0, x0, 0, ̟) −M[ϕ](t0, x0) =: −2ε < 0 ,

we can find (δ̂, ê) ∈ [δ, T − t0) × E and r > 0 such that

ϕ(t, x, 0, ̟) − ϕ(t, x+ β(x, ê, δ̂), δ̂, ê) ≤ −ε , for (t, x) ∈ B := Br(t0, x0) .(4.22)

Let ν̄ denote the constant control that takes the value ̟ on [0, T ], set X̄k := X ν̄
tk,xk

and

θk := inf{s ≥ tk : (s, X̄k(s)) /∈ B} ∧ (tk + k−1) .

Note that for k large enough, we have tk + k−1 + δ̂ ≤ T . We can then define νk ∈ Satk,0,̟ by

νkt := ê1t∈[θk,θk+δ̂) +̟1t/∈[θk,θk+δ̂) , t ≤ T ,

and set (Xk,∆k) := (Xνk

tk,xk
,∆νk

). Using Itô’s Lemma and (4.22), we obtain that

ϕ(tk, xk, 0, ̟) ≤ E

[

ϕ(θk, Xk(θk),∆k
θk , ν

k
θk) − ε

]

+ C/k ,

for some C > 0 which does not depend on k. The above inequality combined with (4.16)
contradict (4.2) for k large enough.

We now turn to the proof of the boundary conditions.

Proposition 4.5. Fix (t0, x0, δ0, e0) ∈ D̄. Then,

V∗(t0, x0, 0, e0) ≥







V∗(t0, x0, 0, ̟) + f(x0, e0) if (t0, x0, δ0, e0) ∈ DE,0

V(t0, x0, e0) if (t0, x0, δ0, e0) ∈ DE,T

g(x0) + f(x0, e0) if (t0, x0, δ0, e0) ∈ DT .

Proof. We only prove the first inequality. The two other ones follow from similar arguments.
Let (tk, xk, δk, ek)k≥1 be a sequence in D such that

(4.23) (tk, xk, δk, ek) −→ (t0, x0, 0, e0) and V (tk, xk, δk, ek) −→ V∗(t0, x0, 0, e0) as k −→ ∞ .

For each k ≥ 1, define

νk := ̟1[0,tk+δk) + ek1[0,tk+δk) ∈ Satk,δk,ek
,

and set Xk := Xνk

tk,xk
. It follows from Remark 4.3 that

(4.24) V (tk, xk, δk, ek) ≥ E

[

V∗(tk + δk, X
k(tk + δk), 0, ̟) + f(Xk(tk + δk−), ek)

]

, k ≥ 1 .

Using standard estimates, see e.g. the proof of Lemma 4.2, one easily checks that Xk(tk +
δk−) → x0 in Lp for all p ≥ 1, and in particular P-a.s., after possibly passing to a subsequence.
It thus follows from the lower-semicontinuity of V∗ and f that, up to a subsequence,

lim inf
k→∞

V∗(tk + δk, X
k(tk + δk), 0, ̟) + f(Xk(tk + δk−), ek) ≥ V∗(t0, x0, 0, ̟) + f(x0, e0) P-a.s.

The required result then follows from (4.23), (4.24), and the last inequality combined with
polynomial growth property of f and V , see Remark 2.4, and Fatou’s Lemma.
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4.2.2 Subsolution property

We start with the subsolution property in the domain D = DE,>0 ∪D̟.

Proposition 4.6. The function V ∗ is a viscosity subsolution of (3.2) on D.

Proof. Fix (t0, x0, δ0, e0) ∈ D and let ϕ be a smooth function such that (t0, x0, δ0, e0) achieves
a (global) maximum of V ∗ − ϕ such that

0 = (V ∗ − ϕ)(t0, x0, δ0, e0) .

In the following, we denote by (tk, xk, δk, ek)k≥1 a sequence in D satisfying
(4.25)

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V ∗(t0, x0, δ0, e0) as k −→ ∞ .

Case 1. We first assume that (t0, x0, δ0, e0) ∈ DE,>0 and that

−Le0ϕ(t0, x0, δ0, e0) +
∂

∂δ
ϕ(t0, x0, δ0, e0) =: 2ε > 0 ,

and work towards a contradiction. By continuity of b and a, we can find r > 0 such that

(4.26)

(

−Leϕ+
∂

∂δ
ϕ

)

(t, x, δ, e) ≥ ε for (t, x, δ, e) ∈ B := Br(t0, x0, δ0, e0) ∩DE,>0 .

Moreover, we can always assume that (t0, x0, δ0, e0) achieves a strict local maximum, so that
after possibly changing the value of ε, we have

sup
∂pB

(V ∗ − ϕ) =: −ε < 0 ,(4.27)

where ∂pB is the parabolic boundary of B. Fix νk ∈ Stk,δk,ek
and set

θk := inf{s ≥ tk : (s,Xk(s),∆k
s , ν

k
s ) /∈ B} ,

where (Xk,∆k) := (Xνk

tk,xk
,∆νk

). Observe that, for r small enough, ∆k
θk > 0 and therefore

νk = ek on [tk, θ
k]. Applying Itô’s Lemma to ϕ and using (4.26) and (4.27), we deduce that

ϕ(tk, xk, δk, ek) ≥ E

[

ϕ(θk, Xk(θk),∆k
θk , νθk)

]

≥ E

[

V ∗(θk, Xk(θk),∆k
θk , νθk)

]

+ ε .

Since I
νk

tk,θk = ∅, this contradicts (4.1) for k large enough, recall (4.25) .

Case 2. We now assume that (t0, x0, δ0, e0) = (t0, x0, 0, ̟) ∈ D̟ and

min{−L̟ϕ(t0, x0, 0, ̟), ϕ(t0, x0, 0, ̟) −M[ϕ](t0, x0)} =: 2ε > 0 ,

and work towards a contradiction. By continuity of b and a, we can find r > 0 such that

(4.28) min{−L̟ϕ(·, 0, ̟), ϕ(·, 0, ̟) −M[ϕ]} ≥ ε on B := Br(t0, x0) ∩ ([0, T ) × R
d) .

Moreover, without loss of generality we can assume that (t0, x0) achieves a strict local maxi-
mum, so that after possibly changing the value of ε

sup
∂pB

(V ∗(·, 0, ̟) − ϕ(·, 0, ̟)) =: −ε < 0 ,(4.29)
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where ∂pB is the parabolic boundary of B. Also observe that, since E is closed and ̟ /∈ E,
(4.25) implies that

(δk, ek) = (0, ̟) for k large enough.(4.30)

Let νk ∈ Satk,0,̟ = Satk,δk,ek
be arbitrary, set (Xk,∆k, (τki )i≥1) := (Xνk

tk,xk
,∆νk

, (τν
k

i )i≥1) and
define

θk := inf{s ≥ tk : (s,Xk(s)) /∈ B} , ϑk := inf{τki , i ≥ 1 s.t. τki ≥ tk} and ξk := θk ∧ ϑk .

Applying Itô’s Lemma to ϕ, using (4.28), (4.29), and recalling (4.30) lead to

ϕ(tk, xk, δk, ek) ≥ E

[

ϕ(ξk, Xk(ξk−), 0, ̟)
]

≥ E

[

ϕ(ξk, Xk(ξk),∆k
ξk , ν

k
ξk) + ε1ξk=ϑk

]

≥ E

[

V ∗(ξk, Xk(ξk),∆k
ξk , ν

k
ξk)

]

+ ε .

In view of (4.25) this leads to a contradiction with (4.1) for k large enough.

We now turn to the boundary condition δ → 0.

Proposition 4.7. For all (t0, x0, δ0, e0) ∈ DE,0, we have

V ∗(t0, x0, 0, e0) ≤ V ∗(t0, x0, 0, ̟) + f(x0, e0) .

Proof. By following similar arguments as in the second step of the proof of Proposition 4.6
above, one easily checks that, for any smooth function ϕ̄ such that (t0, x0, 0, e0) achieves a
global maximum of V ∗ − ϕ̄ satisfying (V ∗ − ϕ̄)(t0, x0, 0, e0) = 0, we have

min

{

−Le0ϕ(t0, x0, 0, e0) +
∂

∂δ
ϕ̄(t0, x0, 0, e0) , ϕ̄(t0, x0, 0, e0) − ϕ̄(t0, x0, 0, ̟) − f(x0, e0)

}

≤ 0 .

Let now ϕ be a smooth function such that (t0, x0, 0, e0) achieves a global maximum of V ∗−ϕ
satisfying (V ∗ − ϕ)(t0, x0, 0, e0) = 0, and consider the function ϕ̄ defined as

ϕ̄ε(t, x, δ, e) := ϕ(t, x, δ, e) +
√
ε+ δ −√

ε

for some ε > 0. Observe that (t0, x0, 0, e0) achieves a global maximum of V ∗ − ϕ̄ε. It thus
follows that either

ϕ̄ε(t0, x0, 0, e0) − ϕ̄ε(t0, x0, 0, ̟) − f(x0, e0) ≤ 0

or

−Le0ϕ(t0, x0, 0, e0) +
∂

∂δ
ϕ(t0, x0, 0, e0) + ε−

1
2 ≤ 0 .

Clearly, the second assertion can not hold for ε > 0 small enough. It follows that

ϕ̄ε(t0, x0, 0, e0) − ϕ̄ε(t0, x0, 0, ̟) − f(x0, e0) ≤ 0

for all ε > 0 small enough, which provides the required result.

We next consider the boundary conditions as t+ δ → T .
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Proposition 4.8. For all (t0, x0, δ0, e0) ∈ DE,T , we have

V ∗(t0, x0, δ0, e0) ≤ V(t0, x0, e0) .

Proof. Let (tk, xk, δk, ek)k≥1 be a sequence in D satisfying

(tk, xk, δk, ek) −→ (t0, x0, δ0, e0) and V (tk, xk, δk, ek) −→ V ∗(t0, x0, δ0, e0) as k −→ ∞ .

For k large enough, we have tk + δk > T − δ so that, for any νk ∈ Satk,δk,ek
, we have νk = ek

on [tk, tk + δk) and νk = ̟ on [tk + δk, T ], recall (2.1). It follows that

V (tk, xk, δk, ek) = E

[

g(Xνk

tk,xk
(T )) + f(X ek

tk,xk
(tk + δk), ek)

]

,

recall the definition of X in (2.10). Moreover, since tk + δk → t0 + δ0 = T , standard estimates

based on (2.5) and Remark 2.2 imply that (Xνk

tk,xk
(T ),X ek

tk,xk
(tk+δk)) → (X e0

t0,x0
(T ),X e0

t0,x0
(t0+

δ0)) as k → ∞ in Lp for all p ≥ 1. The result then follows by taking the limsup as k → ∞ in
the above equality and using (2.7) as well as the dominated convergence theorem.

We finally discuss the boundary condition at t = T .

Proposition 4.9. For all (T, x0, δ0, e0) ∈ DT , we have

V ∗(T, x0, δ0, e0) ≤ g(x0) + f(x0, e) .

Proof. This is proved by similar arguments as in the proof of Proposition 4.8 above.

4.3 A comparison result

In this section, we provide the proof of Theorem 3.3. We first show that (3.2) admits a
classical strict supersolution in the following sense:

Proposition 4.10. For any integer p ≥ γ, there exists a function Λ on R
d × R+ × Ē and

̺ > 0 satisfying

(i) Λ ∈ C2,1,0(Rd × R+ × Ē),

(ii) Λ ≥ g+ + f+ + V+ ,

(iii) inf
(δ,e)∈[0,T ]×Ē

Λ(x, δ, e)/|x|p → ∞ as |x| → ∞ ,

(iv) 〈b,DΛ〉 + 1
2Tr[aa∗D2Λ] ≤ ̺Λ and −∂Λ/∂δ + 〈b,DΛ〉 + 1

2Tr[aa∗D2Λ] ≤ ̺Λ on
R
d × R+ × Ē,

(v) Λ(x, 0, e)−f(x, e)−q(x) ≥ Λ(x, 0, ̟) ≥ Λ(x+β(x, e, δ), δ, e)+δ for all x ∈ R
d, δ ∈ [δ, T ]

and e ∈ E, where q is a continuous and (strictly) positive function on R
d.

Proof. Let ϕ be a C1(R+) function with bounded first derivative such that ϕ ≥ 0, ϕ(0) = 1
and ϕ(δ) = 0 for δ ≥ δ and let Λ be defined by:

Λ(x, δ, e) = µ (1 + |x|2p)(1 + κ1e=̟) +
(

2κµ (1 + |x|2p) − δ
)

ϕ(δ)1e6=̟

for some κ > 0 and µ > T such that f(x, e)+ + g(x)+ + V(t, x, e)+ ≤ µ (1 + |x|2p), recall
(2.7) and Remark 2.4. The first three assertions clearly hold for µ large enough, recall that

19



̟ /∈ E where E is closed. As for the fourth assertion, we recall that b and a are uniformly
Lipschitz, so that the left-hand side is of order (1 + |x|2p), which is dominated by ̺Λ for ̺
large enough. The right-hand side inequality holds for ̺ large enough by similar arguments.
Finally, recalling (2.5), we observe that, for µ and κ large enough,

Λ(x, 0, e) − f(x, e) − Λ(x, 0, ̟) = κµ (1 + |x|2p) − f(x, e) ≥ µ (1 + |x|2p) ,
Λ(x, 0, ̟) − Λ(x+ β(x, e, δ), δ, e) = µ (1 + |x|2p)(1 + κ) − µ (1 + |x+ β(x, e, δ)|2p)

≥ µκ/2 ≥ δ

for all x ∈ R
d, δ ≤ δ ≤ T and e ∈ E, which provides the last assertion for q(x) := µ (1 +

|x|2p).

We can now provide the proof of Theorem 3.3.

Proof. [Theorem 3.3] Let u and v be as in Theorem 3.3 and let p ≥ γ be large enough so that

[v(t, x, δ, e) − u(t, x, δ, e)]+ ≤ C(1 + |x|p) on D̄(4.31)

for some C > 0. We assume that

sup
D̄

(v − u) ≥ 2η for some η > 0(4.32)

and work toward a contradiction.
1. Let ̺ > 0 and Λ be as in Proposition 4.10 for p ≥ γ satisfying (4.31). It follows from
(4.32) that for λ ∈ (0, 1) small enough there is some (tλ, xλ, δλ, eλ) ∈ D̄ such that

max
D̄

(ṽ − w̃) = (ṽ − w̃)(tλ, xλ, δλ, eλ) ≥ η > 0 ,(4.33)

where for a map ϕ on D̄, we write ϕ̃(t, x, δ, e) for e̺tϕ(t, x, δ, e), and w := (1 − λ)u + λΛ.
Observe that ũ, ṽ are super- and subsolution of

H̃ϕ = 0(4.34)

on D̄, where, for a smooth function ϕ defined on D̄,
(4.35)

H̃ϕ(t, x, δ, e) :=























(

̺ ∂∂t − Le + ∂
∂δ

)

ϕ(t, x, δ, e) on DE,>0 ,

ϕ(t, x, δ, e) − ϕ(t, x, 0, ̟) − f̃(x, e) on DE,0 ,

ϕ(t, x, δ, e) − Ṽ(t, x, e) on DE,T ,

min
{

(̺ ∂∂t − L̟)ϕ(t, x, δ, e) ; ϕ(t, x, δ, e) − M[ϕ](t, x)
}

on D̟ ,

ϕ(t, x, δ, e) − g̃(x) − f̃(x, e) on DT .

Also note that

(tλ, xλ, δλ, eλ) /∈ DE,T ∪DT(4.36)

since otherwise the super- and subsolution property of u and v would imply

(v − w)(tλ, xλ, δλ, eλ) ≤ λ (V(tλ, xλ, eλ) ∨ (g(xλ) + f(xλ, eλ)) − Λ(tλ, xλ, δλ, eλ))

which, in view of (ii) in Proposition 4.10, would contradict (4.33).

20



2. For (t, x, δ, e) ∈ D̄ and n ≥ 1, we now set

Γ(t, x, y, δ, e) := ṽ(t, x, δ, e) − w̃(t, y, δ, e)

Θn(t, x, y, δ, e) := Γ(t, x, y, δ, e) − ϕn(t, x, y, δ, e) ,

where

ϕn(t, x, y, δ, e) := n|x− y|2p + |x− xλ|2p+2 + |t− tλ|2 + |δ − δλ|2 + |e− eλ| .

By the growth assumption on v, u and the fact that Ē is compact, there is (tn, xn, yn, δn, en) ∈
D̄2, with

D̄2 := {(t, x, y, δ, e) : ((t, x, δ, e), (t, y, δ, e)) ∈ D̄ × D̄} ,

such that

max
D̄2

Θn = Θn(tn, xn, yn, δn, en) .

Since

Γ(tn, xn, yn, δn, en) ≥ Θn(tn, xn, yn, δn, en) ≥ (ṽ − w̃)(tλ, xλ, δλ, eλ) ,

it follows from the growth condition on v and u, (iii) of Proposition 4.10 and the upper-
semicontinuity of Λ that, up to a subsequence,

(tn, xn, yn, δn, en) −→ (tλ, xλ, xλ, δλ, eλ)(4.37)

ϕn(tn, xn, yn, δn, en) −→ 0(4.38)

Γ(tn, xn, yn, δn, en) −→ Γ(tλ, xλ, xλ, δλ, eλ) .(4.39)

3. It follows from (4.36) and (4.37) that, after possibly passing to a subsequence,

(tn, xn, δn, en) /∈ DE,T ∪DT for all n ≥ 1 .(4.40)

3.1. We now assume that, up to a subsequence, en 6= ̟ for all n ≥ 1.
If |{n : δn = 0}| = ∞, then we can assume that, up to a subsequence, δn = 0, i.e.,
(tn, xn, δn, en) ∈ DE,0 for all n ≥ 1. It then follows from the super- and subsolution property
of ũ and ṽ, and (v) of Proposition 4.10, that

ṽ(tn, xn, 0, en) ≤ ṽ(tn, xn, 0, ̟) + f̃(xn, en)

ũ(tn, yn, 0, en) ≥ ũ(tn, yn, 0, ̟) + f̃(yn, en)

Λ̃(yn, 0, en) ≥ Λ̃(yn, 0, ̟) + f̃(yn, en) + e̺tnq(yn) ,

and therefore

(4.41) Γ(tn, xn, yn, 0, en) ≤ Γ(tn, xn, yn, 0, ̟) +
(

f̃(xn, en) − f̃(yn, en)
)

− λe̺tnq(yn) .

Sending n→ ∞ and using (4.37) and (4.39) leads to

Γ(tλ, xλ, xλ, δλ, eλ) ≤ Γ(tλ, xλ, xλ, 0, ̟) − λe̺tλq(yλ)

which, recalling that q > 0 on R
d, contradicts (4.33).
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It follows from the above arguments that |{n : δn = 0}| < ∞. In this case, (tn, xn, δn, en) ∈
DE,>0 for all n ≥ 1 large enough, recall (4.40). Using the viscosity property of ũ and ṽ, (iv)
in Proposition 4.10, and standard arguments based on Ishii’s Lemma, see [8], together with
(4.37) allows to deduce that

̺Γ(tn, xn, yn, δn, en) ≤ Oλ(n
−1) ,

where Oλ(n
−1) → 0 as n→ ∞. Since ̺ > 0, combining the above inequality with (4.39) leads

to a contradiction to (4.33).
3.2. We now assume that, up to a subsequence, en = ̟, so that (tn, xn, δn, en) ∈ D̟ for all
n ≥ 1. Note that we can not have

ṽ(tn, xn, 0, ̟) − sup
(δ,e)∈[δ,T−tn]×E

ṽ(tn, xn, δ, e) ≤ 0

along a subsequence, since otherwise the supersolution property of ũ and (v) of Proposition
4.10 would imply

Γ(tn, xn, yn, 0, ̟) ≤ sup
(δ,e)∈[δ,T−tn]×E

Γ(tn, xn, yn, δ, e) − λe̺tnδ ,

which would contradict (4.33) for n large enough, recall (4.37), (4.39) and the fact that δ > 0.
We can thus assume that ṽ(tn, xn, 0, ̟) − sup(δ,e)∈[δ,T−tn]×E ṽ(tn, xn, δ, e) > 0 for n large
enough. Using again the viscosity properties of ũ and ṽ, (iv) of Proposition 4.10, standard
arguments based on Ishii’s Lemma, see [8], and (4.37) then leads

̺Γ(tn, xn, yn, δn, en) ≤ Oλ(n
−1) ,

where Oλ(n
−1) → 0 as n→ ∞. As above, this leads to a contradiction.

5 Numerical approximation

In this section, we construct a finite difference scheme to solve the PDE (3.2) numerically,
and prove the convergence of the numerical scheme.

5.1 Space discretization

Given a positive integer N , we discretize the set

T := {(t, δ) ∈ [0, T ] × R+ : δ ≤ t+ δ ≤ T}

in

TN := {ihN ∧ T, (i+ j)hN , i = 0, . . . , N and j = 0, . . . , N − i}

where
hN := T/N .

We next fix a positive integer M and R > 0 and approximate Rd
R := BR(0) ⊂ R

d by

Rd
MR := {−R+ khMR, k = 0, . . . , 2M}d
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where
hMR := R/M .

We finally consider an increasing sequence (EL)L≥1 of finite subsets of E such that

∪L≥1EL = E .

For ease of notations, we set

D̄RL
NM :=

{

(t, x, δ, e) ∈ D̄ : (t, δ) ∈ TN , x ∈ Rd
MR , e ∈ EL ∪ {̟}

}

.

5.2 Finite difference approximation

From now on, we denote by xi the i-th component of a vector x ∈ R
d, and by Aij the (i, j)-

component of a matrix A ∈ M
d. We use the notation li for the unit vector of R

d in the ith

coordinate direction.

We use the standard finite difference approximation, see [13] for a full description.

Space component:

∂ψ

∂xi
(t, x, δ, e) ∼











ψ(t,x+hMRli,δ,e)−ψ(t,x,δ,e)
hMR

≡ ∆hMR+
xi ψ(t, x, δ, e) if bi(x, e) ≥ 0

ψ(t,x,δ,e)−ψ(t,x−hMRli,δ,e)
hMR

≡ ∆hMR−
xi ψ(t, x, δ, e) if bi(x, e) < 0

,

∂2ψ

∂x2
i

(t, x, δ, e) ∼ ψ(t, x+ hMRli, δ, e) − 2ψ(t, x, δ, e) + ψ(t, x− hMRli, δ, e)

h2
MR

≡ ∆hMR

xixi ψ(t, x, δ, e) .

If aij(x, e) ≥ 0, i 6= j, then

∂2ψ

∂xixj
(t, x, δ, e) ∼ 2ψ(t, x, δ, e) + ψ(t, x+ hMR(li + lj), δ, e) + ψ(t, x− hMR(li + lj), δ, e)

h2
MR

−ψ(t, x+ hMRli, δ, e) + ψ(t, x− hMRli, δ, e)

2h2
MR

−ψ(t, x+ hMRlj , δ, e) + ψ(t, x− hMRlj , δ, e)

2h2
MR

≡ ∆hMR+
xixj ψ(t, x, δ, e) .

If aij(x, e) < 0, i 6= j, then

∂2ψ

∂xixj
(t, x, δ, e) ∼ − [2ψ(t, x, δ, e) + ψ(t, x+ hMR(li − lj), δ, e) + ψ(t, x− hMR(li − lj), δ, e)]

h2
MR

+
ψ(t, x+ hMRli, δ, e) + ψ(t, x− hMRli, δ, e)

2h2
MR

+
ψ(t, x+ hMRlj , δ, e) + ψ(t, x− hMRlj , δ, e)

2h2
MR

≡ ∆hMR−
xixj ψ(t, x, δ, e) .
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For ease of notations we write:

∆hMR
x ψ(t, x, δ, e) :=

(

∆hMR+
xi ψ(t, x, δ, e)1bi(x,e)≥0 + ∆hMR−

xi ψ(t, x, δ, e)1bi(x,e)<0

)

i≤d
∈ R

d

and

∆hMR
xx ψ :=

(

∆hMR+
xixj ψ(t, x, δ, e)1aij(x,e)≥0 + ∆hMR−

xixj ψ(t, x, δ, e)1aij(x,e)<0

)

i,j≤d
∈ M

d .

Time component:

∂ψ

∂t
(t, x, δ, e) ∼ ψ(t+ hN , x, δ, e) − ψ(t, x, δ, e)

hN
≡ ∆hN

t ψ(t, x, δ, e) .

Latency duration:

∂ψ

∂δ
(t, x, δ, e) ∼ ψ(t, x, δ, e) − ψ(t, x, δ − hN , e)

hN
≡ ∆hN

δ ψ(t, x, δ, e) .

5.3 Approximation scheme of (3.2) and convergence

We now define Ṽ R
NM as the solution on D̄RL

NM of:

HRL
NMϕ(t, x, δ, e)1x/∈∂Rd

R
+ (ϕ(t, x, δ, e) − g(x))1x∈∂Rd

R
= 0

where HRL
NMϕ(t, x, δ, e) is given by



























(

−LR,eNM + ∆hN

δ

)

ϕ(t, x, δ, e) on D̄RL
NM ∩DE,>0 ,

ϕ(t, x, δ, e) − ϕ(t+ hN , x, 0, ̟) − f(x, e) on D̄RL
NM ∩DE,0 ,

ϕ(t, x, δ, e) − V(t, x, e) on D̄RL
NM ∩DE,T ,

min
{

− L̟NMϕ(t, x, δ, e) , ϕ(t, x, δ, e) − MR
LM [ϕ](t, x)

}

on D̄RL
NM ∩D̟ ,

ϕ(t, x, δ, e) − g(x) − f(x, e) on D̄RL
NM ∩DT ,

(5.1)

with

LR,eMNϕ(t, x, δ, e) := ∆hN
t ϕ(t, x, δ, e) + 〈b(x, e) , ∆hMR

x ϕ(t, x, δ, e)〉 +
1

2
Tr

[

aa∗(x, e)∆hMR
xx ϕ(t, x)

]

.

MR
LM [ϕ](t, x) := max

{δ′,e′)∈([δ,T−t]∩{ihN}1≤i≤N )×EL

ϕ(t,ΠR
M (x+ β(x, e′, δ′)), δ′, e′) .

Here, ΠR
M denotes the projection operator on Rd

MR

ΠR
M (x) :=

(

[(−R ∨ xi ∧R)/M ]M
)

i≤d
,

with [·] denoting the integer part.
From now on, we write Ṽn for Ṽ RnLn

NnMn
where (Nn,Mn, Rn, Ln)n≥1 is a sequence of positive

integers such that
Nn,Mn, Rn, Ln ↑ ∞ as n→ ∞ ,

and we denote by V and V the relaxed semilimits of Ṽn:

V (t, x, δ, e) := lim sup
(ihhN , ixhMR, iδhN , e′) ∈ D̄ → (t, x, δ, e)

n → ∞

Ṽn(ihhN , ixhMR, iδhN , e
′)

V (t, x, δ, e) := lim inf
(ihhN , ixhMR, iδhN , e′) ∈ D̄ → (t, x, δ, e)

n → ∞

Ṽn(ihhN , ixhMR, iδhN , e
′) .
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One easily checks that the above scheme is monotone, in the terminology of [5]. Moreover,
recalling (2.7) and (2.8), easy computations based on a induction argument also lead to the
following uniform polynomial control on V and V under the additional classical condition:

h2
MR = hN .(5.2)

Proposition 5.1. The above scheme is monotone. If the condition (5.2), then there exists a
constant C > 0, independent on N,M,L and R, such that

|V (t, x, δ, e)| + |V (t, x, δ, e)| ≤ C(1 + |x|γ) on D̄ .

Using the fact that f(·, ̟) = 0 and V(T, ·) = g + f , recall (2.7) and Remark 2.5, we now
observe that, if a function ϕ satisfies

max {ϕ− V , ϕ− ϕ(·, 0, ̟) − f , ϕ− g − f}1e6=̟ + (ϕ− g − f)1e=̟ ≥ 0 on DT ,

then it also satisfies
ϕ− g − f ≥ 0 on DT .

Similarly, if it satisfies

min {ϕ− V , ϕ− ϕ(·, 0, ̟) − f , ϕ− g − f}1e6=̟ + (ϕ− g − f)1e=̟ ≤ 0 on DT ,

then it also satisfies
ϕ− g − f ≤ 0 on DT .

It then follows from the arguments of [5], and the continuity of f, g and V, see Remark 2.5,
that V is a supersolution on D̄ of H∗ϕ = 0 and that V is a subsolution on D̄ of H∗ϕ = 0
where

H∗ϕ :=























HE,>0ϕ :=
(

−Le + ∂
∂δ

)

ϕ on DE,>0 ,
H̟ϕ := max

{

− L̟ϕ ; ϕ − M[ϕ]
}

on D̟ ,
max {HE,>0ϕ , ϕ− ϕ(·, 0, ̟) − f} on DE,0 ,

max {HE,>0ϕ , ϕ− V} on DE,T ,
max

{

HE,>0ϕ1E +H̟ϕ1{̟} , ϕ− g − f
}

on DT .

(5.3)

and

H∗ϕ :=























HE,>0ϕ :=
(

−Le + ∂
∂δ

)

ϕ on DE,>0 ,
H̟ϕ := min

{

− L̟ϕ ; ϕ − M[ϕ]
}

on D̟ ,
min {HE,>0ϕ , ϕ− ϕ(·, 0, ̟) − f} on DE,0 ,

min {HE,>0ϕ , ϕ− V} on DE,T ,
min

{

HE,>0ϕ1E +H̟ϕ1{̟} , ϕ− g − f
}

on DT .

(5.4)

In order to conclude that V = V = V on D̄, it remains to prove the following result.

Proposition 5.2. Let ψ be lower-semicontinuous function with polynomial growth. If ψ is
a viscosity supersolution (resp. subsolution) of H∗ϕ = 0 (resp. H∗ϕ = 0) on D̄, then ψ is a
viscosity supersolution (resp. subsolution) of Hϕ = 0.
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Proof. We only prove the supersolution property, the subsolution property being proved by
similar arguments. Let ψ be a supersolution of H∗ϕ = 0. Let (t0, x0, δ0, e0) ∈ D̄ and let ϕ be
a smooth function such that (t0, x0, δ0, e0) achieves a (global) minimum of ψ − ϕ satisfying
(ψ − ϕ)(t0, x0, δ0, e0) = 0. If (t0, x0, δ0, e0) ∈ DE,>0 ∪ D̟ then Hϕ(t0, x0, δ0, e0) ≥ 0. If
(t0, x0, δ0, e0) ∈ DE,0 ∪DT , then similar arguments as in the proof of Proposition 4.7 shows
that Hϕ(t0, x0, δ0, e0) ≥ 0 too.
It remains to study the case where (t0, x0, δ0, e0) ∈ DE,T . We claim that, the map (t, x) ∈
[0, T ) × R

d → ψ(t, x, T − t, e0) is a supersolution of

max {−Le0ϕ , ϕ− V} (·, e0) ≥ 0 on [0, T ) × R
d

with the terminal condition

max {ϕ− g − f, ϕ− V} (T, ·, e0) ≥ 0 on R
d .

Since V is a subsolution of the same equation, recal Remark 2.5, applying a standard com-
parison principle (recall our Lipschitz continuity and growth assumptions and see e.g. [8]),
will readily implies that ψ ≥ V.
We conclude this proof by proving the above claim. Fix e0 ∈ E, and let (t0, x0) ∈ [0, T ]× R

d

and ϕ be smooth function such that (t0, x0) achieves a global minimum (equal to 0) of (t, x) 7→
ψ(t, x, T − t, e0)−ϕ(t, x). For n ≥ 1, we define ϕn by ϕn(t, x, δ, e) := ϕ(t, x)− n(T − t− δ)−
|t− t0|2p − |x− x0|2p − |e− e0|2p, for p ≥ 1 such that (t, x, δ, e) ∈ D̄ 7→ |ψ(t, x, δ, e)|/(1 + |x|p)
is bounded. Let (tn, xn, δn, en)n be a global minimum point of ψ − ϕn. Writing that

ψ(t0, x0, T − t0, e0) − ϕ(t0, x0) ≥ (ψ − ϕn)(tn, xn, δn, en)

= (ψ − ϕ)(tn, xn, δn, en)

+ n(T − tn − δn) + |tn − t0|2p + |xn − x0|2p + |en − e0|2p
≥ (ψ − ϕ)(tn, xn, δn, en)

one easily checks that
(5.5)
(tn, xn, en) → (t0, x0, e0), n(T − tn − δn) → 0 and ψ(tn, xn, δn, en) → ψ(t0, x0, T − t0, e0) .

Note that, since e0 ∈ E, we have en 6= ̟ for n large enough. Moreover, the supersolution
property of ψ implies that H∗ϕn(tn, xn, δn, en) ≥ 0. Since −∂ϕn/∂t + ∂ϕn/∂δ = −∂ϕ/∂t +
2p(tn − t0)

2p−1, it follows from (5.5) that, for n large enough,

−Lenϕ(tn, xn) ≥ εn if (tn, xn, δn, en) ∈ DE,>0 ,
−Lenϕ ∨ (ϕ− V) (tn, xn, en) ≥ εn if (tn, xn, δn, en) ∈ DE,T ,

−Lenϕ ∨ (ϕ− g − f) (tn, xn, en) ≥ εn if (tn, xn, δn, en) ∈ DT ,
(5.6)

where εn → 0 as n→ ∞. Taking the limit as n→ ∞ and using (5.5) then implies that

max {−Le0ϕ , ϕ− V} (t0, x0, e0) ≥ 0 if t0 < T

and
max {−Le0ϕ , ϕ− g − f , ϕ− V} (t0, x0, e0) ≥ 0 if t0 = T

which, by similar arguments as in the proof of Proposition 4.7, implies that

max {ϕ− g − f , ϕ− V} (t0, x0, e0) ≥ 0 if t0 = T .
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We can now conclude by using the comparison principle of Theorem 3.3, recall Proposition
5.2, Proposition 5.1, Theorem 3.2 and Remark 2.4.

Theorem 5.3. We have:
V = V = V on D̄ .

6 Examples of applications in algorithmic trading

6.1 Example 1

As a first example, we consider the case where the aim of the controller is to sell a number
Q0 of one stock S between 0 and T > 0. We denote by Vt the global volume instantaneously
traded on the market at time t. The dynamics of (S, V ) is given by the strong solution of the
SDE

St = S0 +

∫ t

0
µS(r, Sr, Vr) dr +

∫ t

0
σS(r, Sr, Vr) dWr ,

Vt = V0 +

∫ t

0
µV (r, Sr, Vr) dr +

∫ t

0
σV (r, Sr, Vr) dWr ,

where W denotes a two dimensional standard Brownian motion, and (µS , σS , µV , σV ) are Lip-
schitz continuous. We implicitly assume here that the above SDE has non-negative solutions
whatever the initial conditions are.
A control ν ∈ S is identified to a sequence (τνi , δ

ν
i , Eνi )i≥1 ∈ S as in Section 2. Here Eνi stands

for the proportion of the remain number of shares that have to be sold, Qντν
i
, which will be

traded on [τνi , τ
ν
i + δνi ). We assume that this quantity is sold uniformly on the corresponding

time interval. Namely, we sell Eνi Qντi/δνi dt on [t, t+ dt] for t ∈ [τνi , τ
ν
i + δνi ).

This means that the dynamics of the remaining number of stocks to sell is given by

Qνt = Q0 −
∑

i≥1

∫ τν
i +δν

i

τν
i

1s≤tEνi Qντν
i
/δνi ds .

Clearly, E has to be contained in [0, 1].
Due to the impact of the strategy on the market, the obtained price of the executed volume
under the regime Eνi is

S̃t = St − η(Eνi Qντν
i
/δνi , St, Vt) , t ∈ [τνi , τ

ν
i + δνi )

where η is the market impact function and is assumed to be Lipschitz continuous. It follows
that the cumulated wealth’s dynamic is

Y ν
t = 0 +

∑

i≥1

∫ τν
i +δν

i

τν
i

1r≤tS̃rEνi Qντν
i
/δνi dr .

The remain part QνT is instantaneously sold on the market at a price: ST − c(QνT , ST , VT ), for
some Lipschitz continuous function.
The total gain after the final transaction is thus given by:

Y ν
T + (ST − c(QνT , ST , VT )) (QνT )+ .

The aim of the controller is to maximize the expectation of the quantity

g(Y ν
T + (ST − c(QνT , ST , VT )) (QνT )+)

for some concave function g with polynomial growth.
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6.2 Example 2

As a second example, we consider the case where the aim of the controller is to buy a number
Q0 of one stock S between 0 and T > 0. The dynamics of (S, V ) is given as in the previous
example.
Here Eνi stands for the intensity at which the stocks are bought, i.e. the algorithm buys a
number Eνi dt = νt1νt 6=̟dt of stocks on [t, t+ dt], t ∈ [τνi , τ

ν
i + δνi ). We fix E := [0, Emax] for

some Emax > 0. For ease of notations, we introduce the function q : Ē 7→ R+ defined by
q(e) = e1e6=̟. The dynamics of the remaining number of stocks to be bought before T is
thus given by:

Qνt = Q0 −
∫ t

0
q(νs)ds .

Due to the impact of the strategy on the market, the obtained price of the executed volume
under the regime e is

S̃t = St + η(e, St, Vt) ,

where η is the market impact function which depends on the global volume instantaneously
traded on the market Vt, and is assumed to be Lipschitz continuous. It follows that the
cumulated wealth’s dynamic is

Y ν
t = 0 +

∫ t

0
S̃rq(νr)dr = 0 +

∫ t

0
(Sr + η(νr, Sr, Vr))q(νr)dr .

If the number Q0 of shares is not liquidated at time T , the remain part QνT is instantaneously
bought on the market at a price: ST + c(QνT , ST , VT ), for some Lipschitz continuous function.
The total cost after the final transaction is thus given by:

Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+ .

The aim of the controller is to minimize the expectation of the quantity

ℓ(Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+)

for some convex function ℓ with polynomial growth.

As an example of application, we provide here a numerical study of the impact of the instan-
taneous market volume on the optimal strategy. We consider the following set of parameters.
The trading period corresponds to one day of 7 hours, i.e. 240 minutes, which we discretize
in 150 steps of size ∆t. The price process is assumed to follow a Black and Scholes dynamics
St = S0e

− 1
2
σ2t+σWt , where S0 := 2.18 and σ = 0.06, which corresponds to an annual volatility

of 20%. We assume a deterministic evolution of the instantaneous volume traded on the
market (Vt)t≤T . The impact function η is given by η(e, v) = 0.03(e/v)1.1. We take δ = 24
minutes. The set of regimes is the interval [0, 34] which we discretize in 30 equidistant steps.
This corresponds to a maximal impact of approximately 4% of the initial stock value S0. The
final cost is given by c(q, v) = 0.03(q/(v∆t))1.1. The fact that v is multiplied by ∆t in the
last expression comes from the fact the last order is executed in a single step and not at a
rate q on a time interval of length ∆t. We simply consider the case where ℓ is the identity. In
this case, the value function is clearly linear in the y-variable which allows for simplifications
in the numerical resolution of the associated PDEs.
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U-shaped market volume

Figure 1: Optimal buying rate for different market regimes.

In Figure 1, we compare the case where the market volume is constant Vt = 100.000, on the
left, to the case where the market volume is strongly U-shaped: Vt = 100.000(1.1−sin(πt/T )).
Both figures provide the optimal buying rate in terms of the remaining time T − t and the
remaining quantity to buy Qt, for St = S0. As expected the rate strongly decreases in the
middle of the day, when the market volume is low and the impact on the price of the stock is
high. This is compensated by a higher rate at the beginning of the day.

6.3 Example 3

We finally consider a similar case as the previous one except that the controller as an incen-
tive to buy the shares more or less quickly. This can be modeled by adding a process Zν

corresponding to the number of stocks sold during a trading period. Namely,

Zνt :=

∫ t

τν
i

νsds for t ∈ [τνi , τ
ν
i + δνi ) .

By convention, we set Zν = Zντi+δi on [τνi + δνi , τ
ν
i+1). The aim of the controller is then to

minimize

E



ℓ(Y ν
T + (ST + c(QνT , ST , VT )) (QνT )+) + f(T, (QνT )+) +

∑

i≥1

1τν
i +δν

i ≤T
f(τνi + δνi , Z

ν
τi+δi

)





where the dependence of f in time means that the controller prefers the buy quickly, i.e. f is
increasing in time, or take more time, i.e. f is decreasing in time.

References

[1] R. Almgren. Optimal trading in a dynamic market. Technical Report 2, 2009.

29



[2] R. Almgren and B. Harts. A dynamic algorithm for smart order routing. Technical
report, StreamBase, 2008.

[3] R. Almgren and J. Lorenz. Bayesian adaptive trading with a daily cycle. Journal of
Trading, 2006.

[4] R. F. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of
Risk, 3(2):5–39, 2000.

[5] G. Barles and P. E. Souganidis. Convergence of approximation schemes for fully nonlinear
second order equations. Asymptotic analysis, 4:271–283, 1991.

[6] D. Bertsimas, A. W. Lo, and P. Hummel. Optimal control of execution costs for portfolios.
Computing in Science and Engg., 1(6):40–53, 1999.

[7] B. Bouchard and N. Touzi. Weak dynamic programming principle for viscosity solutions.
Technical report, CEREMADE, 2009.

[8] M. Crandall, H. Ishii, and P.-L. Lions. User’s guide to viscosity solutions of second order
partial differential equations. American Mathemtical Society, 27:1–67, 1992.

[9] K. J. Falconer. The Geometry of Fractal Sets (Cambridge Tracts in Mathematics). Cam-
bridge University Press, July 1986.

[10] J. Gatheral. No-dynamic-arbitrage and market impact. Social Science Research Network
Working Paper Series, October 2008.

[11] P. Hewlett. Optimal liquidation against a markovian limit order book. Quantitative
Methods in Finance Conference, 2007.

[12] R. Kissell and R. Malamut. Understanding the profit and loss distribution of trading
algorithms. Technical report, JP Morgan, February 2005.

[13] B. J. Lapeyre, A. Sulem, and D. Talay. Understanding Numerical Analysis for Option
Pricing. Cambridge University Press, February 2009.

[14] C.-A. Lehalle. Rigorous strategic trading: Balanced portfolio and mean-reversion. The
Journal of Trading, 4(3):40–46.

[15] C.-A. Lehalle. Rigorous optimisation of intra day trading. Wilmott Magazine, November
2008.

[16] G. Pagès, S. Laruelle, and C.-A. Lehalle. Optimal split of orders across liquidity pools:
a stochatic algorithm approach. Technical report, 2009.

[17] M. Wyart, J.-P. Bouchaud, J. Kockelkoren, M. Potters, and M. Vettorazzo. Relation
between bid-ask spread, impact and volatility in double auction markets. Technical
report, March 2006.

[18] L. Zhang, P. A. Mykland, and Y. A. Sahalia. A tale of two time scales: Determining
integrated volatility with noisy high-frequency data. Journal of the American Statistical
Association, 100(472), 2005.

30


	Introduction
	Problem formulation
	Control policies
	Output of the trading algorithm and gain function

	Viscosity characterization of the value function
	Proof of the viscosity characterization
	Dynamic programming
	Viscosity properties
	Supersolution property
	Subsolution property

	A comparison result

	Numerical approximation 
	Space discretization
	Finite difference approximation
	Approximation scheme of (3.2) and convergence

	Examples of applications in algorithmic trading
	Example 1
	Example 2
	Example 3


