Dejean's conjecture and letter frequency
Résumé
We prove two cases of a strong version of Dejean's conjecture involving extremal letter frequencies. The results are that there exist an infinite $\left({\frac{5}{4}^+}\right)$-free word over a 5 letter alphabet with letter frequency $\frac{1}{6}$ and an infinite $\left({\frac{6}{5}^+}\right)$-free word over a 6 letter alphabet with letter frequency $\frac{1}{5}$.
Domaines
Mathématique discrète [cs.DM]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...