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Abstract. In “Can we elect if we cannot compare” (SPAA’03), Barrière, Flocchini, Fraigniaud and
Santoro consider a qualitative model of distributed computing, where the labels of the entities are
distinct but mutually incomparable. They study the leader election problem in a distributed mobile
environment and they wonder whether there exists an algorithm such that for each distributed mobile
environment, it either states that the problem cannot be solved in this environment, or it successfully
elects a leader. In this paper, we give a positive answer to this question. We also give a characterization
of the distributed mobile environments where election and rendezvous can be solved.

1 Introduction

Consider an intercontinental highway network linking different cities in different countries. In each city, the
directions to the other cities are written in the language that is locally spoken. Consider now a set of different
drivers coming from different countries. Initially, each driver starts in his town and all the drivers want to
meet at a single place. The only mean they have to communicate is to leave messages in each city they reach,
but each driver can only speak his mother tongue: he can see that another driver left some message, but he
cannot understand it. Moreover, each driver can consistently distinguish the different directions in each city,
but the drivers cannot agree on an alphabetical order on these directions: a French driver would not be able
to figure out how to order Chinese words in the Chinese way, for example. We wonder whether there exists
a procedure that enables them to meet at a single point in a finite time.

In distributed computing, the links incident to each process are usually labelled by distinct numbers in
order to allow each process (or each mobile agent) to consistently distinguish its neighbours; this labelling is
usually called a port-numbering. In fact, these numbers enable not only to distinguish the links, but also to
order them. Many distributed algorithms assume also that all the processes can be unambiguously identified,
and therefore the processes are given numbers. Again, one can see that this enables to order the different
processes according to their labels. This usual setting is a quantitative model, since each label can be seen
as a number.

Nevertheless, as in the example presented above, one may be able to distinguish labels without being able
to order them. In this paper, we consider distributed mobile environments where mobile agents are scattered
all over a network. All the agents have distinct colors (their labels), which are mutually incomparable: each
agent can just check whether two colors are equal or not. The links incident to each vertex are also given
distinct incomparable colors. This model is close to the one introduced by Barrière et al. in [BFFS03]; it
is qualitative, in the sense that there is no a priori order between the labels. As in [BFFS03], we study the
impact of the lack of a total order on the set of labels in a distributed mobile environment. In this way,
we investigate the leader election problem, that is a classical problem to highlight the differences between
various models of distributed computing.

In usual models, there is always an implicit order over the set of labels, since for each agent, each
information is just a sequence of bits. Nevertheless, consider an algorithm designed to be executed by mobile
agents over a network. If the agents have been implemented by different companies, and if the specifications
of the algorithm do not specify how the integers must be represented, some agents can for instance store
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numbers with most significant bit first whereas other agents store numbers with least significant bit first;
in this case, the agents would not agree on the meaning of the sequence 01101. Moreover, it is always
interesting to deal with algorithms that need less specifications, since they are generally more robust, and
easier to implement in different models of distributed computing.

1.1 The Model

In this paper, an agent is an entity which executes an algorithm: it can move from place to place (with some
data and its algorithm) through communication links, it can make local computations on a place (a place
provides tools for local computations: data, memories and process) and leave messages on a place.

In our model, the environment is represented by a simple undirected connected graph G = (V (G), E(G))
and a set E of mobile agents is scattered over G. We suppose that the graph G is anonymous, i.e., vertices of G
do not have identities. Communications between agents is achieved through writing messages on whiteboards,
where agents can read, write, and erase messages. There is one whiteboard on each vertex of G, and access
to a whiteboard is in fair mutual exclusion.

Each agent r ∈ E is initially placed on a vertex of the graph and we denote by p the injection describing
the initial placement of the agents in G. The vertex p(r) is called the homebase of the agent r ∈ E and we
suppose that initially, the homebases are marked: they contain a marker that enables each agent to know
that a place is a homebase. We will denote such a distributed mobile environment by (G, E , p).

We consider an injective function color that associates to each agent r ∈ E a unique color from a set Ca.
There is no a priori order on the set of colors: each agent can give its own order on the set of colors, but the
agents do not necessarily agree on a particular order. If there is a message on some whiteboard, an agent
can always know the color of the message (i.e., the color of its author), but it cannot understand it if the
color of the message is different from its own color (i.e., it can only understand the messages it has written).
We also suppose that each time an agent r is on the homebase p(r′) of an agent r′, it can detect the color
of this homebase (i.e., the color of r′).

In each place, the incident links are labelled by different colors that enable each agent to consistently
distinguish the neighbours of the place: for each vertex u, there exists an injective function δu that associates
a color from a set Cδ (disjoint from Ca) to each edge incident to u. The set δ = {δu : u ∈ V (G)} constitutes
the port-labelling of G. Thanks to this labelling δ, each agent can make a distinction between the incident
edges of each vertex. As for Ca, the agents do not agree on an a priori order on the set of colors Cδ. Such a
distributed colored mobile environment will be denoted by (G, δ, E , p, color).

The agents are asynchronous, in the sense that every action they perform (computing, moving, etc.) takes
a finite but otherwise unpredictable amount of time. The actions an agent a located at a node v can perform
depends on the current state of a, the current state of the whiteboard at v, and the color of the port through
which a entered v. According to these information, a can decide to write a message on the whiteboard of v,
to leave v (through a port whose color may result from some computation), or to stay at v (for example, to
wait that another agent leaves a message on the whiteboard).

As in [BFFS03], we suppose that an agent has not an initial knowledge of the network topology, neither
of its size nor of the number of agents in the system. Nevertheless, the model considered in this paper is
more restrictive than the one presented in [BFFS03], since in the model of Barrière et al. the agents cannot
agree on an order on the set of colors, but they fully understand the symbols written by the other agents.
However, the necessary condition presented in our model is the same as the one presented in [BFFS03]: the
results presented in this paper remain true in the model of [BFFS03].

1.2 Election and Rendezvous

The election problem is one of the paradigms of the theory of distributed computing, that was first posed
by LeLann [LeL77]. In the distributed mobile setting, the aim of a leader election algorithm is to distinguish
one agent among the others. All the agents execute the same protocol, i.e., the only initial difference between
two agents is their colors. At the end of the execution of the algorithm, there is exactly one agent in the
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state elected, whereas all the other agents enter the state non-elected. Moreover, it is supposed that once an
agent enters the state elected or non-elected, it remains in such a state until the end of the computation.

Another important problem in this setting is the rendezvous problem. The aim of a rendezvous algorithm
is to reach a configuration where all the mobile agents gather in the same place. These two problems are
equivalent, since once an agent has been elected, if all the agents agree on the label elected, all the agents
can gather in the homebase of the elected agent. Reversely, once all the agents have gathered in some
place, the first agent that writes on the whiteboard of this place is elected, whereas all the others become
non-elected. There exists a large variety of results for these problems in the mobile agent setting assuming
different properties of the environment [BFFS06,DFNS05,DFP03,KKR06]. The election problem has also
been extensively studied in the distributed setting, and particularly in anonymous networks, where the
processes do not have distinct labels [Ang80,BCG+96,CM05,YK96,YK99].

In the model we consider, an election (or rendezvous) algorithm for a distributed mobile environment
must not use some particularity of the colors used to label the ports or the agents or make any assumption
on the set of colors (for example, one cannot design an algorithm that elects a red agent when there is such
an agent). Consider a graph G and a set of agents E scattered over the network according to a function p.
We say that we can solve the election (resp. rendezvous) problem on (G, E , p) if the problem can be solved on
(G, δ, E , p, color) for all port-labellings δ and all agent-coloring functions color. Note that, as for anonymous
networks in the distributed setting [CM05,YK96], the protocols must not depend on the port-labelling.
Indeed, the role of the port-labelling is just to enable an agent to make a distinction between the different
neighbours of a vertex.

As in [BFFS03], we say that an algorithm A is an effective election (resp. rendezvous) algorithm if for
each distributed mobile environment (G, E , p), each port-labelling δ and each coloring function color, for
all the executions of A on (G, δ, E , p, color), either all the agents detect that the election (resp. rendezvous)
problem cannot be solved in (G, E , p) (i.e., there does not exist any algorithm that can solve the problem in
this environment), or the agents successfully elect one of them (resp. gather in some vertex). In particular,
note that such an algorithm does not need any initial knowledge about the topology, the size, the diameter
of the network or about the number of agents.

In the following, we will mainly focus on the election problem, but we have to keep in mind the results
obtained remain true for the rendezvous problem.

1.3 Main Results

In this work, we give a characterization (Theorem 1) of distributed mobile environments, where the election
problem can be solved.

In [BFFS03], Barrière et al. wonder whether there exists an effective election algorithm for the qualitative
world. The algorithm we describe gives a positive answer to this question (Theorem 2).

To obtain a necessary condition (Proposition 3), we use well-balanced automorphisms that have been
introduced by Bougé in [Bou88].

Then, we show that this necessary condition is also sufficient: we use some links between fibrations and
automorphisms presented in [BV02] to describe an effective algorithm in Section 4.2 that solves the election
problem when the necessary condition is satisfied.

2 Preliminaries

2.1 Labelled Digraphs

In the following, we will consider directed graphs (digraphs) with multiple arcs and self-loops. A digraph
D = (V (D), A(D), sD, tD) is defined by a set V (D) of vertices, a set A(D) of arcs and by two maps sD and
tD that assign to each arc two elements of V (D): a source and a target (in general, the subscripts will be
omitted); if a is an arc, the arc a is said to be going out of s(a) and coming into t(a). We say that s(a) is a
predecessor of t(a) and that t(a) is a successor of s(a).
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A digraph D is strongly connected if for all vertices u, v ∈ V (D), there exists a sequence of arcs a1, a2, . . . ap

such that s(a1) = u, ∀i ∈ [1, p − 1], t(ai) = s(ai+1) and t(ap) = v. In the following, we will only consider
strongly connected digraphs.

A symmetric digraph D is a digraph endowed with a symmetry, that is, an involution Sym : A(D) →
A(D) such that for every a ∈ A(D), s(a) = t(Sym(a)).

Definition 1. A homomorphism γ between the digraph D and the digraph D′ is a mapping γ : V (D) ∪
A(D) → V (D′) ∪ A(D′) such that for each arc a ∈ A(D), γ(s(a)) = s(γ(a)) et γ(t(a)) = t(γ(a)).

An homomorphism γ is an isomorphism if γ is bijective.

Throughout the paper we will consider digraphs where the vertices and the arcs are labelled with labels
from a recursive label set L. A digraph G labelled over L will be denoted by (D, λ), where
λ : V (D) ∪ A(D) → L is the labelling function. The digraph D is called the underlying digraph and the
mapping λ is a labelling of D. A mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) is a homomorphism from
(D, λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which preserves the labelling, i.e., such
that λ′(γ(x)) = λ(x) for every x ∈ V (D) ∪ A(D). Labelled digraphs will be designated by bold letters like
D,G, . . . If D is a labelled digraph, then D denotes the underlying digraph.

Given a connected simple graph G = (V (G), E(G)), one associate a symmetric strongly connected digraph
denoted by Dir(G) and defined as follows: V (Dir(G)) = V (G) and for each edge {u, v} ∈ E(G), there
exist two arcs a(u,v), a(v,u) ∈ A(Dir(G)) such that s(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v and
Sym(a(u,v)) = a(v,u). Note that this digraph does not contain multiple arcs or self-loop.

Given a mobile environment (G, E , p), we define the labelling function χp of the vertices by χp(v) = 1
if there exists an agent a such that p(a) = v, and χp(v) = 0 otherwise. A distributed mobile environment
(G, E , p) can therefore be represented by the labelled digraph (Dir(G), χp).

2.2 Fibrations and Coverings

The notions of fibrations and coverings are fundamental in this work; definitions and main properties are
presented in [BV02].

A fibration is a homomorphism that induces a isomorphism between the incoming arcs of each vertex
and the incoming arcs of its image.

Definition 2. A digraph D is fibred over a digraph D′ via a homomorphism ϕ if ϕ is a homomorphism
from D to D′ such that each arc a′ ∈ A(D′) and for each vertex v ∈ ϕ−1(t(a)), there exists a unique arc
a ∈ A(D) such that t(a) = v and ϕ(a) = a′.

The homomorphism ϕ is then called a fibration from D to D′ and the digraph D′ is the base of ϕ.
The fibre over a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices of D (resp. the set ϕ−1(a′)

of arcs of D).

A covering projection is a fibration that also induces a isomorphism between the outgoing arcs of each
vertex and the outgoing arcs of its image.

Definition 3. A digraph D is a covering of a digraph D′ via a homomorphism ϕ if ϕ is a homomorphism
from D to D′ such that each arc a′ ∈ A(D′) and for each vertex v ∈ ϕ−1(t(a)) (resp. v ∈ ϕ−1(s(a)), there
exists a unique arc a ∈ A(D) such that t(a) = v (resp. s(a) = v) and ϕ(a) = a′.

The homomorphism ϕ is then called a covering projection from D to D′.

A symmetric covering projection is a covering projection between symmetric digraphs that preserves the
function Sym.

Definition 4. A symmetric digraph D is a symmetric covering of a symmetric digraph D′ via a homomor-
phism ϕ if D is a covering of D′ via ϕ and if for each arc a ∈ A(D), ϕ(Sym(a)) = Sym(ϕ(a)).

The homomorphism ϕ is a symmetric covering projection from D to D′.
A digraph D is symmetric-covering-minimal if there does not exist any digraph D′ not isomorphic to D

such that D is a symmetric covering of D′.
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An interesting property satisfied by any covering projection is that the preimage of all the vertices of the
base have the same size.

Proposition 1 ([BV02]). Given two strongly connected digraphs D and D′ and a covering projection ϕ
from D to D′, there exists q ∈ N such that for each x′ ∈ V (D′) ∪ A(D′), |ϕ−1(x′)| = q.

The notions of fibrations and coverings extend to labelled digraphs in a natural way: the homomorphisms
must preserve the labelling. Examples of fibrations and coverings are given in Figures 1, 2 and 4.

G/Γ (G)
1 2

BΓ (G)(G)
1 2

G

1 2 1

H/Γ (H)
1 2

BΓ (H)(H)
1 2

H

1 2

2 1

Fig. 1. The digraph G is fibred over BΓ (G)(G) via the homomorphism ϕG that maps each vertex of G labelled i
to the unique vertex labelled i of BΓ (G)(G). The digraph H is a covering of BΓ (H)(H) via the homomorphism ϕH

defined in the same way. The digraph G/Γ (G) (resp. H/Γ (H)) is the digraph whose vertices and arcs correspond to
equivalence classes of vertices and arcs of G (resp. H) under the action of Γ (G) (resp. Γ (H)).

2.3 Fibrations, Coverings and Automorphisms

We now describe some properties of the relations that exist between fibrations and the automorphisms of a
digraph. These results are described and proved in [BV02].

An automorphism σ of a digraph G is an isomorphism from the digraph G onto itself. Consider a
subgroup Γ of the group Γ (G) = Aut(G) of the automorphisms of a digraph G = (G, λ); we will denote by
Id the identity automorphism of G. The action of this group on G induces an equivalence relation over the
vertices and the arcs of G: for each x, x′ ∈ V (G) ∪ A(G), x ∼Γ x′ if there exists σ ∈ Γ such that σ(x) = x′.
The equivalence class of x is called the orbit of x and is denoted by [x]Γ . Recall that an automorphism of
(G, λ) must preserve the labelling, and therefore for all elements x1, x2 ∈ [x]Γ , λ(x1) = λ(x2). If Γ = Γ (G),
we will note x ∼ x′ (resp. [x]) for x ∼Γ x′ (resp. [x]Γ ).

Remark 1. For all vertices v, v′ ∈ V (G), if v ∼Γ v′, then there is a label-preserving bijection between the
incoming arcs of v and the incoming arcs of v′.

We will now describe two kinds of constructions. The first one allows us to build a digraph BΓ (G) from
a digraph G such that G is fibred over BΓ (G). The second one allows us to build the quotient-graph G/Γ .
Examples are presented in Figures 1 and 2 where Γ = Γ (G).

From the relation ∼Γ , we construct the directed graph BΓ (G) defined as follows: V (BΓ (G)) is the set of
the equivalence classes of V (G) under the action of Γ and there are as many arcs from [v]Γ to [w]Γ as each
vertex in [w]Γ has predecessors in [v]Γ . Due to Remark 1, this does not depend on the choice of the element
of [w]Γ . We define the labelling ν of BΓ (G) by ν([v]Γ ) = λ(v) for each v ∈ V (G). We label the arcs from [v]
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to [w] with the labels of the arcs from the elements of [v] to w in G. By Remark 1, there exists a fibration
ϕ from G to (BΓ (G), ν).

We consider also the quotient-graph G/Γ whose vertices and arcs are the equivalence classes of the
vertices and the arcs of G under the action of Γ and whose labelling µ is defined by µ([x]Γ ) = λ(x) for each
x ∈ V (G) ∪ A(G). There exists a natural surjective homomorphism from (BΓ (G), ν) to G/Γ which is the
identity on the vertices and which maps an arc a to [a]Γ (a can be seen as an arc of G).

We say that a subgroup Γ of Γ (G) acts freely on G if for each x, y ∈ V (G) ∪A(G), there is at most one
σ ∈ Γ such that σ(x) = y. Equivalently, Γ acts freely on G if and only if for each σ ∈ Γ \ {Id}, σ has no
fixpoint.

1

1

1 1

1

2

2

2 2

2

3

3

3 3

3

P

2 13
BΓ (P)(P)

2 13
P/Γ (P)

Fig. 2. The labelled digraph P is a covering of P/Γ (P): the automorphism group of P contains only well-balanced
automorphisms.

In the following, we will use a particular class of automorphisms: the class of well-balanced automorphisms.
These automorphisms have been introduced by Bougé in [Bou88] to study the importance of the guards in
CSP through the symmetric election problem. In [Pal03], Palamidessi uses also well-balanced automorphisms
to study the same problem in order to give a hierarchy between different subsets of the π-calculus.

Definition 5. An automorphism σ of a digraph G is well-balanced if there exists an integer q such that for
each vertex or arc x of G, |{σk(x) | k ∈ N}| = q.

Equivalently, σ is well-balanced if and only if the subgroup Γσ generated by σ acts freely on G.

The group Γ contains only well-balanced automorphisms if and only if Γ acts freely on G. Thanks to
this equivalence and the results of Boldi and Vigna [BV02], we have the following property.

Proposition 2. Given any strongly connected digraph G, the quotient projection Γ : G → G/Γ is a covering
projection if and only if for each σ ∈ Γ , σ is well-balanced.

3 Impossibility Result

The following proposition gives a necessary condition that the distributed mobile environment (G, E , p) must
satisfy if there exists an election algorithm for (G, E , p) that successfully elects an agent. This necessary
condition is equivalent to the one presented in [BFFS03].
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Proposition 3. Consider a graph G and an initial placement of the agents p. If there exists a non-trivial
well-balanced automorphism σ of the digraph G′ = (Dir(G), χp), then it is impossible to elect an agent over
the graph G with the initial placement of the agents p.

Proof. Consider a distributed mobile environment (G, E , p) such that there exists a well-balanced automor-
phism σ of G′ = (Dir(G), χp) different from Id. There exists an integer q ≥ 2 such that ∀v ∈ V (G), |{σk(v) |
k ∈ N}| = q.

Suppose that there exists an election algorithm A for (G, E , p). Consider a port-labelling such that each
port has a unique color. The automorphism σ induces a permutation of the agents and a permutation of the
colors of the agents and of the ports, that will also be denoted by σ. These permutations induce equivalence
relations on the agents and on the colors.

Initially, an agent r is on v if and only if σ(r) is on σ(v), and two equivalent agents are not in the same
place. Moreover, the information available to σ(r) is the same as the one available to the agent r, up to the
permutation σ of the colors. We can exhibit an execution of A such that these properties remain true all
along the execution and such that if a message is written with a color c on a vertex v, then the same message
is written on σ(v) with the color σ(c). Note that two equivalent agents should behave in the same way in
this execution and consequently, they should not gather in the same place during the execution. Indeed, if
this happens, then the symmetry between the two agents can be broken since one of them can access the
whiteboard before the other one.

If an agent r writes a message with its color c on the whiteboard of a vertex v, then for each k ∈ [1, q−1],
the agent σk(r) writes the same message with its color σk(c) on σk(v). Suppose now that an agent r leaves a
vertex v through a port colored c1 to arrive in a vertex w through a port colored c2. Then for each k ∈ [1, q−1],
the information available to σk(r) is the same as the one available to r (up to the permutation σk of the
colors), it leaves the vertex σk(v) through the port colored σk(c1) to arrive at the vertex σk(w) through the
port colored σk(c2) and obtains the same information from the whiteboard of σk(w) as r. Moreover, since σ
is well-balanced, we can ensure that two equivalent agents do not gather in a same vertex.

Consequently, if during the execution of A, an agent r takes the label elected, then the agent σ(r) takes
also this label, and therefore A is not an election algorithm. ⊓⊔

Using known results in the message-passing model [BCG+96,CM05,YK96] and the results of [CGMO06],
we can show that in the anonymous setting, i.e., when the agents can understand each other but do not
have distinct labels, there exists an election algorithm for an environment (G, E , p) if and only if the labelled
digraph G′ = (Dir(G), χp) is symmetric-covering-minimal. Moreover, from Proposition 2, we know that if
the symmetric digraph G′ = (Dir(G), χp) admits a non-trivial well-balanced automorphism σ, then G′ is a
symmetric covering of G′/Γσ that is not isomorphic to G′.

Consequently, an interesting corollary of Proposition 3 is that if the election problem cannot be solved
on (G, E , p) in the qualitative setting, then it cannot be solved on (G, E , p) in the anonymous setting. On the
other hand, we will show in the following that this necessary condition is also sufficient.

Since there exist symmetric digraphs that are not symmetric-covering-minimal and that does not admit
any non-trivial well-balanced automorphism, such as the graph G of Figure 3, it means that one can solve
the election problem in strictly more environments in the qualitative setting than in the anonymous one.

Example 1. On the Figure 3, we present a digraph G that is not covering minimal, whereas the underlying
digraph G does not admit any automorphism.

Consequently, if we consider the distributed mobile environment corresponding to the digraph (G, χp)
where χp(v) = 1 for each v ∈ V (G), we know from [BCG+96,CM05,YK96,CGMO06] that there does not
exist any election algorithm for this environment in the anonymous setting.

Nevertheless, from the results of the following sections, we can show that one can solve election and
rendezvous in this particular distributed mobile environment in the model we consider in this paper.
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1
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1
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3

4

4

4

1

2

3

4

H

Fig. 3. The digraph G is a symmetric covering of H via the homomorphism that maps each vertex of G labelled i
to the unique vertex labelled i of H.

4 An Effective Election Algorithm

In this section, we show that the necessary condition described in Proposition 3 is also sufficient. We first show
that even if the agents do not understand each other, they can agree on an order on some equivalence classes
of vertices and arcs. We then present an algorithm that solves the election problem on any distributed mobile
environment (G, E , p) whenever (Dir(G), χp) does not admit any non-trivial well-balanced automorphism.

4.1 How to order the equivalence classes?

We use the same ideas as Barrière et al. [BFFS03] to define a total order between the different equivalent
classes. The fact that graphs o size n can be canonically ordered is well-known [McK81]. We construct here
a total ordering on digraphs of size n labelled by elements of a totally ordered set.

Consider a labelled digraph G = (G, λ) without multiple arcs where λ is a labelling function from
V (G)∪A(G) to a totally ordered set L with a minimal element ⊥. We suppose that ∀x ∈ V (G)∪A(G), λ(x) ∈
L \ {⊥}.

Let n = |V (G)| and consider an enumeration function num of the vertices (i.e., num is a one-to-one
mapping from V (G) onto [1, n]). We say that num is an increasing enumeration of the vertices if for all
vertices v, v′ ∈ V (G), if num(v) ≤ num(v′), then λ(v) ≤L λ(v′). Given an increasing enumeration num, we
define the adjacency matrix Mnum as follows: for all vertices v, v′, Mnum[num(v), num(v′)] = ℓ, if there is
an arc from v to v′ labelled by ℓ, and Mnum[num(v), num(v′)] = ⊥ otherwise. To this matrix, we associate
the word w(Mnum) obtained by the concatenation of the n rows of Mnum.

To each vertex v ∈ V (G) (resp. arc a ∈ A(G)), we choose num such that (num(v), w(Mnum)) (resp.
(num(s(a)), num(t(a)), w(Mnum))) is minimum for the lexicographic order and associate this value, denoted
by π(v) (resp. π(a)), to v (resp. a). Note that there exists an automorphism σ of G such that σ(x) = x′ if
and only if π(x) = π(x′). Consequently, this induces a total ordering of the equivalence classes of vertices
and arcs: we will write [x′] ≺ [x] if π(x) is greater than π(x′) in the lexicographic order.

Remark 2. In the following, we will show that all the agents agree on a total order of the classes and all the
agents use the same order. Actually, as it was already explained in [BFFS03], even if the agents cannot agree
on an a priori order over the set of colors, they can agree on an order on the different classes, provided that
all the agents have the same representation of the graph (up to isomorphism).
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In fact, we suppose that each agent has its own totally ordered set isomorphic to (N,≤) and each agent
can use its own way to compute its order: the algorithm does not make any assumption on the way the order
is implemented by each agent.

4.2 An Election Algorithm

In this section, we describe our effective election algorithm. In a first phase all the agents reconstruct
the digraph (Dir(G), χp) and check that the election problem can be solved on (G, E , p). Then, using its
knowledge of the graph, each agent constructs the equivalence classes induced by Γ ((Dir(G), χp)). During
successive rounds, using the order between the different classes defined above, some agents become passive
and get the label non-elected, whereas the active agents mark some vertices and some arcs of the digraph to
obtain a new labelling µ of the digraph on which all the active agents agree. At the end of the computation,
the automorphism group of (Dir(G), µ) consists only of the identity and each vertex has a unique label.
At this point, there is exactly one active agent that is elected. A high level description of the algorithm is
presented in Algorithm 1.

Algorithm 1: The Election Algorithm

Every agent builds a map of the graph;
Synchronization;
if there exists a non-trivial well-balanced automorphism of G′ = (Dir(G), χp) then

Every agent knows that it is impossible to solve the election problem;
else

Every agent marks as many vertices as possible to construct its initial territory;
Synchronization;
/* Initially, all the agents are active and µ = χp */
repeat

repeat

The active agents compute the equivalence classes of all the vertices and arcs of G′ = (Dir(G), µ);
if two vertices v, v′ (resp. arcs a, a′) have the same label µ(v) = µ(v′) (resp. µ(a) = µ(a′)) and are
not in the same equivalence class then

Refine the labelling µ of G′ ;
else if two equivalent active agents do not own the same number of vertices in a given class then

Refine the labelling µ of G′ ;
else if there exists two equivalent arcs a, a′ such that an agent r owns s(a) and t(a) whereas two
distinct agents r, r′ own respectively s(a′) and t(a′) then

Refine the labelling µ of G′ ;

until the labelling µ of G′ = (Dir(G), µ) cannot be refined ;
if all the active agents are not in the same class then

Select active agents;
The passive agents take the label non-elected ;
The active agents mark the homebases of the passive agents;
Synchronization;

else if G′ is not a covering of BΓ (G′)(G
′) then

The active agents mark a class of vertices;
Synchronization;

else if G′ is not a covering of G′/Γ (G′) then
The active agents mark a class of arcs;
Synchronization;

else
/* In this case, there is exactly one active agent */
The active agent takes the label elected ;

until An agent is elected ;

9



A Synchronization Procedure. In the algorithm we describe below, we distinguish different rounds. An
important point is that an active agent does not enter in a new round if another active agent has not finished
the previous one. To be able to avoid this kind of situation, we synchronize the active agents.

Each agent can consistently distinguish its homebase; therefore, we can construct an algorithm such that
no agent needs to write anything on its homebase. Moreover, we suppose that each agent has already built
its own map of the graph and does not need to write anything on any whiteboard in order to perform a
traversal of the graph.

In the following, the active agents will do some traversals of the network and they will store the colors
of the marks that appear on each vertex to construct what we will call a colored map of the network. The
marks that appear in a colored map of an active agent will correspond to marks that have been put by other
active agents during the round (but it will not necessary contain all the marks the active agents should put
during this round).

In any round of the algorithm described below, the following properties will always be satisfied.

(P1) Each active agent can know from a colored map if any other active agent has marked all the vertices
it should have marked during the round.

(P2) In each round of the algorithm, each agent will mark at least one vertex (which is not its homebase).

In the synchronization procedure described below, some active agents will have to wait on some particular
vertices for other agents to put (resp. remove) some marks. Each time an agent arrives on a place where it
has to wait for a mark to be put (resp. removed), it can immediately continue to execute the procedure if
this mark is present (resp. not present).

To synchronize the agents, we proceed as follows. Each round is divided in nine steps and during each
round, each active agent r executes the following steps. During the first step, the active agents mark some
vertices in order to communicate according to the rules of the algorithm we described below; the eight
remaining steps are used to synchronize the active agents.

(Step 1) The agent r marks some vertices (but not its homebase) according to the computation rules of the
round. In this step, the property (P2) is always satisfied.

(Step 2) The agent r does a traversal of the network and stores all the colors of the marks that appear on
each vertex to construct a colored map of the network.

(Step 3) If there exists another active agent r′ that has not finished (Step 1) (the agent r can detect it from
the colored map it has of the network, since properties (P1) and (P2) are always satisfied), then
the agent r goes to the homebase of r′ and waits until the agent r′ puts a mark on its homebase.
Then the agent r does a traversal of the network and stores all the colors of the marks that appear
on each vertex in order to update its colored map of the network.

(Step 4) The agent r puts a mark on its homebase.
(Step 5) The agent r does a traversal of the network and each time it arrives on the homebase of another

active agent r′, it waits until the agent r′ marks its homebase.
(Step 6) The agent r does a traversal of the network and it removes the marks it puts during (Step 1), but

not the mark on its homebase.
(Step 7) The agent r does a traversal of the network. Each time it arrives on a vertex that has been marked

by another active agent r′ during this round (but that is not the homebase of r′), it waits until the
agent r′ removes its mark.

(Step 8) The agent r removes the mark it puts on its homebase.
(Step 9) The agent r does a traversal of the network. Each time it arrives on the homebase of an active

agent r′, it waits until the agent r′ removes its mark on its homebase.

We can note that the synchronization procedure enables also to erase all the marks that have been put on
the vertices during the round, i.e., when one agent has finished Step (9) of a round, then all the marks that
have been left by the active agents during this round have been erased. The following proposition ensures
that the procedure is indeed a synchronization procedure.
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Proposition 4. Each time an agent starts executing Step (1) of the i + 1th round, then each active agent
knows what vertices have been marked by the other active agents during Step (1) of the ith round and all the
marks that have been put during the ith round have been removed. Moreover, the synchronization procedure
avoids any deadlock.

Proof. First, we show that if an agent is executing some particular step of a round, then one can know what
are the possible steps the other agents can perform at this moment.

If an agent is currently performing Steps (1), (2) or (3) (resp. Steps (4) or (5), Steps (6) or (7), Steps (8)
or (9)) of a round i, then it means that it has finished Step (9) of the i− 1th round (resp. Step (3) of the ith
round, Step (5) of the ith round, Step (7) of the ith round). Consequently, all the other agents have finished
Step (8) of the i − 1th round (resp. Step (1) of the ith round, Step (4) of the ith round, Step (6) of the ith
round).

If an agent has neither finished Step (9) of the i − 1th round nor Step (1) of the ith round (resp. Steps
(2), (3) nor (4) of the ith round, Steps (5) nor (6) of the ith round, Steps (7) nor (8) of the ith round), then
it means that no agent can have finished Step (3) of the ith round (resp. Step (5) of the ith round, Step (7)
of the ith round, Step (9) of the ith round).

All these properties are summarized in the following table.

If an agent r is performing then any active agent r′ and no active agent r′

Step has finished Step has finished Step
(1) in the ith round, (8) of the i − 1th round, (3) of the ith round.
(2) in the ith round, (8) of the i − 1th round, (5) of the ith round.
(3) in the ith round, (8) of the i − 1th round, (5) of the ith round.
(4) in the ith round, (1) of the ith round, (5) of the ith round.
(5) in the ith round, (1) of the ith round, (7) of the ith round.
(6) in the ith round, (4) of the ith round, (7) of the ith round.
(7) in the ith round, (4) of the ith round, (9) of the ith round.
(8) in the ith round, (6) of the ith round, (9) of the ith round.
(9) in the ith round, (6) of the ith round, (3) of the i + 1th round.

Suppose that there exists a deadlock in the application of the synchronization procedure, i.e., there exists
a moment in the execution where all the agents are blocked at some step of the procedure. In each round,
the only steps where an agent can be blocked are Steps (3), (5), (7) and (9).

Suppose that an active agent r is blocked at Step (3) of a round i. Then, we know that all the other
active agents have finished Step (8) of the i − 1th round and consequently, none of them can be blocked at
Step (9) of the i − 1th round and all of them have finished Step (1) of the ith round. Suppose that during
the ith round, there exists ki distinct active agents and let call r1 the first agent that have finished Step (1)
of the ith round, r2 the second one, r3 the third one, etc...

We consider the agent rj and we suppose that for any j < l ≤ ki, the agent rl has performed Step (4) of
the ith round (this hypothesis is trivially true for the agent rki

). Suppose that the agent rj is waiting at the
homebase of another agent rl during Step (3) of the ith round. If l < j, then the agent rl has finished Step
1 of the ith round before rj . Consequently, from the colored map rj constructs during Step (2) of the ith
round, rj knows that rl has finished Step (1) of the ith round and then rj cannot wait at the homebase of
the agent rl. Suppose now that l > j. We already know that the agent rl has performed Step (4) of the ith
round and then rl has marked its homebase. Consequently, the mark rj was waiting for has been put and
then rj cannot be waiting on the homebase of rl. Then rj cannot be blocked at Step (3) of the ith round
and it has also finished Step (4) of the ith round, since it cannot be blocked at this step.

By induction, it is then easy to prove that no active agent can be waiting for another agent while it is
performing Step 3 of a round i.

Suppose now that an active agent r is blocked at Step (5) of a round i. Then all the active agents have
finished Step (1) of the ith round and we already know that none of them can be blocked at Step (3) of the
ith round. Consequently, each active agent has performed Step (4) of the ith round and then no agent can
be waiting for another agent while it is performing Step (5) of the ith round.
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Suppose now that an active agent r is blocked at Step (7) (resp. Step (9)) of a round i. Then all the
active agents have finished Step (4) (resp. Step (6)) of the ith round and consequently, no active agent can
be blocked at step (5) (resp. (7)) of the ith round. Consequently, each active agent has finished Step (6)
(resp. Step (8)) of the ith round and then no agent can be waiting for another agent while it is performing
Step (7) (resp. Step (9)) of the ith round.

Consequently, there is no deadlock in the application of the synchronization procedure. Moreover, each
time an agent starts the computation of a round i+1, i.e., each time it performs Step (1) of a round i+1, all
the active agents have finished Step (8) of the ith round and consequently all the marks that have been put
during the ith round have been removed. Furthermore, since all the active agents have have finished Step (3)
of the ith round, they get all the information they should gather during the execution of the ith round. ⊓⊔

Initialization. During the first phase of the algorithm, each agent reconstructs the graph with the position
and the colors of the different homebases. Using the whiteboards, each agent performs a depth first traversal
of the graph.

Since each agent can distinguish all the homebases, we suppose that during this traversal, the agents do
not write anything on the whiteboard of any of the homebases. Once an agent has reconstructed the whole
graph, it performs a traversal of the network using the information it has stored to erase what it has written
on the whiteboards. At this point, each agent puts a mark on the homebase of another agent (note that a
homebase may be marked by two or more agents).

During this first phase, no agent has written anything on its homebase. Furthermore, an agent has finished
performing this phase if and only if it has marked the homebase of another agent and this can be checked
from a colored map of the network. Moreover, at the end of this phase, each agent has reconstructed a map
of the network and it knows the position of all the homebases. We can therefore use the synchronization
procedure defined above at this point.

If the digraph (Dir(G), χp) admits a well-balanced automorphism σ different from Id, then each agent
detects it and declares that the election problem is unsolvable in this environment. We will now suppose
that (Dir(G), χp) does not admit such an automorphism.

Once the graph is known by all the agents, each agent tries to mark as many vertices of the networks as
possible. It does a traversal of the network and each time it arrives on a vertex that is not a homebase, it
performs one of the two following actions. Either the whiteboard is blank and it puts a mark with its color
on the whiteboard, or there is already a mark on the whiteboard and it stores the color of the mark. Once
an agent has finished this traversal, it puts a mark on the homebase of another agent. Again we use the
synchronization procedure at this point. Then each agent is aware of the different vertices marked by the
other agents during this round.

At the end of this phase, each agent reconstructs a graph where all the vertices are colored (they belong
to the agent that has this color) and it knows the position and the color of the homebases of all the other
agents. The territory of an agent is the set of all places this agent owns.

How can the agents increase their territory? During the different phases of the algorithm, some agents
become passive whereas the others continue to execute the protocol in order to elect one of them. In our
algorithm, in order to break the symmetry between the agents, all the vertices must belong to one active
agent, and all the active agents must agree on which agent a vertex belongs to. During the initialization,
each vertex is marked by one agent and we say that it belongs to this agent. Once an agent becomes passive,
the vertices that belonged to this agent must be given to another agent.

Once a selection between agents is done, the agents that become passive take the label non-elected and
remain passive until the end of the algorithm, whereas the others try to mark the homebases of these agents
that have just become passive. Each active agent knows what are the colors of the other active agents. From
its representation of the graph, each active agent can reach the homebases of the passive agents.

The first agent that reaches such a homebase during this round puts a mark with its color on the vertex.
The other agents (there is already a mark on the homebase when they reach it) store the color of the agent
that owns this vertex (i.e., the color of the mark). Again, at the end of its traversal of the graph, each
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agent puts a mark on the homebase of another active agent. Therefore, each active agent can detect from a
colored map if another active agent has finished this phase. Then the active agents apply the synchronization
procedure.

If an agent has marked the homebase of a passive agent, then all the vertices that were belonging to this
passive agent belong now to this active agent. In this way, all the active agents agree on the color of the
agent that owns any vertex of the graph.

How to refine the labelling µ? During the execution of the algorithm, the agents mark vertices and arcs
to break the symmetry that may exist in the network. In this way, at each round, numbers will be associated
to some vertices and arcs and we will obtain a labelling of the graph µ. Initially, all the homebases have the
label 1 whereas all the other vertices have the label 0 and all the arcs are labelled 0.

At the beginning of each round, from its representation (Dir(G), µ) of the graph, each agent computes
the value π(v) (resp. π(a)) for each vertex v ∈ V (Dir(G)) (resp. for each arc a ∈ A(Dir(G))). We say that
two agents are equivalent if their homebases are in the same equivalence class, and we use the order ≺ on
the homebases of the agents to order the classes of agents.

Since all the agents agree on the order to compare the equivalence classes, we can use the following
procedure. If there exist two vertices v, v′ such that µ(v) = µ(v′) and π(v) 6= π(v′), then let m be the lowest
number such that there exist v, v′ with µ(v) = µ(v′) = m and [v] ≺ [v′]. Suppose that there exist exactly j
classes {[vi]|i ∈ [1, j]} such that µ(vi) = m and [v1] ≺ [v2] ≺ · · · ≺ [vj ]. For each vertex v ∈ [vi] with i < j,
we define µ′(v) = q + i, where q is the greatest label that appears on a vertex in (G, µ). The labels of the
other vertices are not changed.

We apply the same method to arcs using the order we have on the classes of arcs, i.e., the lexicographic
order over the π(a). Thanks to this procedure, two arcs that are not in the same class are given distinct
labels.

We repeat this procedure, until all the vertices (resp. all the arcs) that have the same label are in the
same equivalence class.

If some active agents do not own the same number of vertices in a given class. We consider now a config-
uration such that two vertices (resp. arcs) in different classes have different numbers. Consider a class of
agents [r] and a class of vertices [v]. We define NotBalanced([r], [v]) to be false if all the agents of [r] own
the same number of vertices in [v], and true otherwise. If there exist [r], [v] such that NotBalanced([r], [v])
is true, then we apply the following technique to split some class of vertices.

Consider the minimum class [r] of agents, according to ≺, such that there exists a class [v] of vertices
satisfying NotBalanced([r], [v]). Consider the minimum class of vertices [v] such that NotBalanced([r], [v])
is true. In this case, we give different numbers to the homebases of the agents that do not own the same
number of vertices in [v]. We subdivide the class [r] into a partition R1, . . . , Rj such that the agents in Ri

own strictly more vertices in [v] than the agents in Ri′ when i < i′. Using the same technique as before, we
give different numbers to the homebases of the agents that are not in the same Ri and then obtain a new
representation of the digraph (Dir(G), µ′).

Then, the agents try to refine again this new labelling.

How to split the arc classes thanks to the colors of their ends? We will say that an arc a belongs to an agent
r, if r owns s(a) and t(a). Otherwise, the arc is such that s(a) belongs to an agent r1 and t(a) to a distinct
agent r2. We will say that this arc is shared by r1 and r2. If there exists a class of arcs [a] such that some
arcs of [a] belong to some agents, whereas the other arcs are shared by distinct agents, then we apply the
following technique.

Consider a class of arcs a such that for each class [a′] ≺ [a], either [a′] contains only arcs that belong to
some agents or [a′] contains only arcs shared by different agents. We suppose also that [a] contains arcs that
belong to some agents and arcs that are shared. All the arcs in [a] that are shared by distinct agents are
relabelled q + 1, where q is the greatest label that appears on an arc in (Dir(G), µ).

Then, the agents try to refine again this new labelling.
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Remark 3. Note that to refine the labelling µ of the graph (Dir(G), µ), the agents do not have to move in
the network. All these computations can be performed only with the information available to each agent.
Since all the agents have the same colored map of the network (up to isomorphism) and execute the same
algorithm, we know that all the agents will compute exactly the same refined labelling.

If some active agents are in different classes. We suppose now that the labelling µ of (Dir(G), µ)
cannot be refined any more, i.e., two vertices (or arcs) have the same number if and only if they are in the
same equivalence class, all the active agents own the same number of vertices in each class and two arcs in
a same class are either both owned by some agents, or both shared by distinct agents.

At this point, if the active agents are not in the same equivalence class, we are able to select some agents.
Consider all the equivalence classes of active agents that contain a minimal number of agents. Among these
classes, we select the class [r] such that π(v) is minimal, where v is the homebase of r. The agents that do
not belong to this class take the label non-elected and become passive. The agents of the class [r] remain
active and try to increase their territory as explained above. Then they try to refine again the labelling µ.

(G, E , p)

1

2

0 0

2

1

2

0 0

2

(G, µ)

1 2 0

BΓ (G′)(G
′)

Fig. 4. A colored map of a distributed mobile environment (G, E , p) with two agents, the corresponding graph (G, µ)
and the digraph BΓ (G′)(G

′) where G′ = (Dir(G), µ). In the representation of (G, E , p) the homebases are represented
by double-circled vertices and each vertex belongs to the agent whose homebase has the same color. For sake of clarity,
the labels of the arcs in (G, µ) and BΓ (G′)(G

′) do not appear.

If G′ = (Dir(G), µ) is not a covering of BΓ (G′)(G
′). There exist some configurations where it is

impossible to select some agents just by using the representation the agents have of the graph, because there
is too much symmetry in the graph.

Example 2. Consider the distributed mobile environment corresponding to the graph represented on Figure 4.
We suppose that the agents agree on the colored map of the network and on the graph (Dir(G), µ). We
can observe that the labelling µ cannot be refined and that (Dir(G), µ) does not admit any well-balanced
automorphism.

We now explain how active agents can break these symmetries by marking some vertices or arcs. We
suppose that the labelling µ cannot be refined any more and that all the active agents belong to the same
equivalence class.

All the active agents agree on the graph G′ = (Dir(G), µ). All these agents consider the automorphism
group Γ (G′) and construct the graphs BΓ (G′)(G

′) and G′/Γ (G′). We already know that G′ is fibred over
BΓ (G′)(G

′). If G′ is not a covering of BΓ (G′)(G
′), it implies that there exist two classes of vertices [v] and

[v′] such that |[v]| 6= |[v′]|. Let [r] be the class of the homebases of the active agents.
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Consider a class [v] such that for each class [v′] ≺ [v], |[v′]| = |[r]| and |[v]| 6= |[r]|. We already know that
each active agent owns the same number of vertices in [v] and therefore |[r]| divides |[v]|. Each active agent
then marks a vertex it owns that is in [v]. An agent has finished this round if and only if it has marked
exactly one vertex in [v]: it can be detected from a colored map of the graph. Then, the agents synchronize.

At the end of this round, all the agents give the number q +1 to the vertices that have just been marked,
where q is the greatest label that appears on a vertex in (Dir(G), µ).

Using this new labelling µ′, the active agents try to refine the labelling µ′, as explained above.

If G′ = (Dir(G), µ) is not a covering of G′/Γ (G′). We suppose now that the labelling µ cannot be
refined any more and that all the active agents belong to the same equivalence class. We suppose also that
G′ is a covering of BΓ (G′)(G

′) but not of G′/Γ (G′). It means that all the equivalence classes of vertices
have the same size s, but there exists an equivalence class of arcs [a] such that |[a]| > s. Instead of marking
vertices, we mark arcs in this round.

Each class [a] of arcs of G′ corresponds to exactly one arc in G′/Γ (G′). Consider the class of arcs [a]
such that for each class [a′] ≺ [a], |[a′]| = s but |[a]| > s. We already know that each active agent owns
exactly one vertex in [s(a)] and one vertex in [t(a)]. Since |[a]| > s and since two arcs in the same class are
either both owned by an agent or both shared by distinct agents, we know that each arc in [a] is shared.

To select arcs from [a], each agent r just chooses one arc ar in [a] such that s(ar) belongs to r and then
puts a mark with its color on t(ar). An agent has finished this round if and only if it has marked exactly
one vertex: it can be detected from a colored map of the graph. Then, the agents synchronize. Once an
agent knows what vertices have been marked by the other agents, it knows what are the arcs that have been
marked.

At the end of this round, all the agents give the number q + 1 to the arcs that have just been marked,
where q is the greatest label that appears on an arc in (Dir(G), µ).

Using this new labelling µ′, the active agents try to refine again the labelling µ′, as explained above.

If G′ is a covering of G′/Γ (G′). At this point, G′ = (Dir(G), µ) is a covering of G′/Γ (G′). From
Proposition 2, it implies that Γ (G′) contains only well-balanced automorphisms, and since we already know
that there is no well-balanced isomorphism of (Dir(G), χp) different from Id, we have Γ (G′) = {Id}.
Consequently, there is exactly one active agent, since the set of active agents is an equivalence class of the
relation induced by Γ (G′) and this agent takes the label elected.

4.3 The Characterization

In Section 3, we have shown that if the graph (Dir(G), χp) admits a well-balanced automorphism, then it is
impossible to solve the election problem on (G, E , p). The algorithm described in Section 4.2 is an algorithm
that answers that it is impossible to solve the problem if the graph (Dir(G), χp) admits a well-balanced
automorphism, and otherwise it successfully elects an agent: it is an effective algorithm. We have therefore
proved the following theorems.

Theorem 1. There exists an election algorithm for a distributed mobile environment (G, E , p) if and only if
(Dir(G), χp) does not admit a non-trivial well-balanced automorphism.

Proof. The necessary condition comes from Proposition 3.
For the sufficient condition, we just have to prove that Algorithm 1 elects a leader whenever the nec-

essary condition is satisfied. Consider a distributed colored mobile environment (G, δ, E , p, color) such that
(Dir(G), χp) does not admit a non-trivial well-balanced automorphism. Consider an execution of Algorithm 1
on (G, δ, E , p, color). From Proposition 4, we know that no deadlock can occur within a round.

Initially, all the agents agree on the labelling µ = χp of G′. After the initialization, each vertex belongs
to exactly one agent and each agent knows the owner of each vertex of the graph.

From Remark 3, we know that each time the active agents refine the labelling µ of G′, they agree on the
new labelling µ′ of G′ provided that they agreed on the labelling µ. Since the territory of any agent has not
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changed, the active agents also know the territory of any other active agent and each vertex still belongs to
exactly one active agent.

Furthermore, each time the active agents mark some vertices and arcs, they also agree on the new labelling
µ′ of G′ whenever they agreed on the labelling µ of G′. Since the territory of any agent has not changed,
the active agents also know the territory of any other active agent and each vertex still belongs to exactly
one active agent.

Finally, when a selection is made between active agents, the labelling µ is not modified and consequently,
we know that the active agents always agree on the labelling µ of G′. It is easy to see that after such a phase,
once the active agents have marked the homebases of agents that have just been defeated, then each vertex
belongs to exactly one active agent and each active agent knows the territory of any other active agent.

Consequently, by induction, we know that after each round, all the active agents agree on the labelling
µ of G′, each vertex belongs to exactly one active agent and each active agent knows the territory of any
other active agent.

Note that each time the labelling µ of G′ is refined, then the number of labels given to vertices and arcs
by active agents increases. Since the graph G is finite, we know that the labelling refinment procedure will
always terminate. Moreover, each time a selection is made between active agents, the number of active agents
decrease. Furthermore, each time active agents mark vertices or arcs, the number of labels given to vertices
and arcs by active agents increases. Consequently, there won’t be any infinite execution of the algorithm.

Consider now the final configuration of the environment reached after the execution. Suppose that some
agent is in the state elected. It means that G′ is a covering of G′/Γ (G′) and since (Dir(G), χp) does not
admit any non-trivial well balanced automorphism, then from Proposition 2, Γ (G′) = {Id}. Consequently,
there is exactly one active agent that took the label elected, i.e., the execution has successfully elected an
agent.

Suppose now that in the final configuration, no agent has took the label elected. Since (Dir(G), χp) does
not admit any non-trivial well balanced automorphism, we know that all the active agents are executing
the loop repeat . . .until An agent is elected. Since the execution has terminated, then the labelling µ of G
cannot be refined any more and we know that all the agents are in the same equivalence class. In this case,
we know that G′ is a covering of BΓ (G′)(G

′), since otherwise the active agents can select vertices. We also
know that G′ is a covering of G′/Γ (G′), since otherwise the active agents can select arcs. Consequently,
there is exactly one active agent and this active agent took the label elected, which leads to a contradiction.

Consequently, any execution of Algorithm 1 on (G, δ, E , p, color) succesfully elects an agent. Then Algo-
rithm 1 is an election algorithm for (G, δ, E , p, color).

The proof of the following theorem follows from Theorem 1 and the fact that the agents can easily
reconstruct a map of the graph, as explained in the description of the algorithm.

Theorem 2. Algorithm 1 is an effective election algorithm.

4.4 Complexity of the algorithm

The main goal of this work was to design an effective election algorithm in our model, but it can also be
interesting to have a look on the complexity of the algorithm. The traditional coast measures for mobile
agents are the number of agents moves (edge traversals) and the amount of time.

To determine the amount of time, we make the following assumptions : the time needed by an agent to
perform computations is equal to zero time unit, whereas the time needed by an agent to traverse an edge
is equal to one time unit. The time complexity of the algorithm is the time consumed by an execution of
the algorithm under these assumptions. In other words, we do not take into account the computation time
of each agent, and we suppose that all the agents traverse all the edges at the same speed. Note that the
correctness of our algorithm does not rely on these assumptions.

The following proposition gives a bound on the worst case complexity of our algorithm.

Proposition 5. Consider a distributed mobile environment (G, E , p) where |V (G)| = n, |E(G)| = m and
|E| = k. If the election problem cannot be solved in this environment, the agents detect it in O(mk) moves
in time O(m). Otherwise, the protocol successfully elects a leader with O(mn log k) moves in time O(mn).
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Proof. To perform the first traversal of the graph, each agent will traverse each edge exactly twice: it can
do it in O(m). After this traversal, each agent has a map of the graph, and it can check if the problem can
be solved. If it is not possible to solve the problem, the agents just need to do this traversal of the graph to
give a correct output: it can be done in O(mk) moves in time O(m).

In the following, each time an agent has to check the state of the different vertices, it can use the map of
the graph it has reconstructed: it can do it in O(n) moves. The initialization phase of the algorithm can be
performed in O(mk) moves in time O(m).

We will consider different phases in the execution of the algorithm. Each time we select a class of agents,
we go from phase i to phase i + 1. Let ki denotes the number of active agents at phase i: we know that
ki+1 ≤ ki/2, and therefore, there is at most log k phases during each execution of the algorithm.

To perform the synchronization between agents, each active agent has to do a few traversals of the graphs
that can be performed in O(n), and therefore, each time the synchronization procedure is applied during
the phase i, it can be done in O(nki) moves with time O(n). The time needed by the agents to mark the
homebases of the agents that become passive at the end of the phase i − 1 and to synchronize can be done
in O(nki) moves with time O(n) . The total time complexity for the territory acquisition is O(n log k).

During the whole execution, the agents will perform at most n times the procedure to mark vertices and
m times the procedure to mark arcs. Each time the active agents mark some vertices or some arcs, each
agent do its traversal and apply the synchronization procedure in O(n) time (note that even when the agents
mark arcs, they do a traversal to visit all the vertices and not all the arcs). The time complexity is therefore
O(nn) + O(mn) + O(n log k) = O(mn).

During each phase, some vertices and arcs can be marked. Consider a class [x] of vertices or arcs of size s
at the beginning of the phase i. If during the round, there exists a class of vertices or arcs of size lower than
ki, some agents will be selected and therefore we go to phase i + 1. Consequently, during the phase i, each
active agent mark at most s/ki vertices or arcs in [x], They can do it in O(s/ki ∗ n ∗ ki) = O(sn) moves.
Since the sum of the sizes of all classes of vertices and edges is O(m), the agents need O(mn) moves in each
phase to mark vertices and arcs and to synchronize.

Consequently, the total number of moves in one phase is O(nki) + O(nn) + O(mn) = O(mn). Therefore,
the total number of moves to execute the algorithm is O(mn log k). ⊓⊔

5 Final Remarks

In this paper, we have characterized the distributed mobile environments where the election problem can be
solved. The algorithm we present to solve the problem is an effective algorithm: we give a positive answer to
the question stated in [BFFS03]. Since election and rendezvous are two equivalent problems, we also have
characterized the mobile distributed environments where the rendezvous problem can be solved in our model.

One can observe that the algorithm and the results presented in this paper can be adapted to other kinds
of distributed mobile agent systems. Indeed, the algorithm rely on the two following assumptions :

– each agent can reconstruct a map of the graph with the position of the homebases and can know the
exact position of its homebase,

– it is possible to identify the author of a message written on the whiteboard of some vertex.

Consequently, if we consider an anonymous mobile agent system where each agent knows initially the network
(a map of the graph with the port-numbering function) and its position in the network, then we can solve
election and rendezvous if and only if the digraph (Dir(G), χp) does not admit any non-trivial well-balanced
automorphism. In order to identify the author r of a message written at a vertex v, it is sufficient that the
message contains the port-numbers that appear on a path between the vertex v and the homebase p(r) of
r. Therefore, if we consider anonymous systems with sense of direction, as considered by Barrière et al. in
[BFFS06], we have the same results as in our model, since sense of direction enables each agent to build a
map of the network.

In our model, the labels are mutually incomparable. In the quantitative world, we usually suppose that
there is always an order between two elements. Between these two extremal cases (a total order or no order
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at all), one can wonder whether the existence of a partial order between labels really modifies the conditions
presented here.

We can also consider a network where the labels cannot be compared, but where we do not assume that
each label is unique: is there a characterization of the graphs where the election problem can be solved if
there are different agents with the same label? Note that if all the agents have the same label, we are in the
anonymous setting, and in this case, we already know that there is no effective algorithm for the class of all
graphs. We can still wonder whether there is a characterization of classes of graphs that admit an universal
election algorithm or an effective election algorithm.
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