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A duality for finite lattices

Luigi Santocanale

Abstract

A presentation is a triple (X, <, M) with (X, <) a finite poset and
M : X — P(P(X)) — these data being subject to additional constraints.
Given a presentation we can define closed subsets of X, whence a finite
lattice. Given a finite lattice L, we can define its presentation: X is the
set of join-irreducible elements of L, < is the restriction of the order to
join-irreducible elements, and M (z) is the set of minimal join-covers of x.

Morphisms of presentations can be defined as some zig-zag relations.
Our main result is: the category of presentations is dually equivalent to
the category of finite lattice. The two construction described above are
the object part of contravariant functors giving rise to the duality.

We think of presentations as semantic domains for lattice terms and
formulas of substructural logics. Relying on previous work by Nation
and Semenova, we show that some equational properties of finite lattices
correspond to first order properties of presentations. Namely, for each
finite tree T', we construct an equation er that holds in a finite lattice
if and only its presentation does not have some a shape from T. We
illustrate further use of these semantics within the theory of fixed points
over finite lattices: we generalize, in a non-trivial way, the well known fact
that least fixed points on distributive lattice terms can be eliminated.

1 Introduction

We develop in this paper a duality theory for finite lattices conceived around
the notion of the OD-graph of a finite lattice [22].

Many representation theorems are available for finite lattices [8] and, more
generally, for lattices [30]. For finite lattices, the most known of these theorem
represents a lattice as a concept lattice, built up from a table of objects and
concepts that give rise to a Galois connection [11]. The scientific community has
devoted much work to lifting this representation theorem to some full duality
of categories [18, 17, 12].

We develop here a duality theory that we conceive from a relational structure
—the OD-graph — that we can associate to a finite lattice, and on a standard rep-
resentation theorem for finite lattices associated to such structure [22, Lemma
1.2]. The relational structure and the representation theorem are well known
tools in lattice theory [10, 15, 28]; these are also well known among lattice
theorists whose research is motivated from the theory of databases [4].



In our view, the duality theory that we develop possesses many points of
interest. For example, it smoothly generalizes Stone-Priestly duality for finite
distributive lattices. Also, we provide many examples of equational properties
of lattices that can be translated into first order properties of their O D-graphs.
While it is not the goal of this paper to develop a Sahlqvist-style correspondence
theory, the examples that we exhibit are meant to suggest that the correspon-
dence theory might be developed in more effective way for this duality than for
other dualities.

The duality theory so developed shares many similarities with current re-
search on duality for lattices based on the notion of closure space [23]. Also, the
semantics it gives rise is in the same spirit of the covering semantics of linear
logic proposed in [13]. Let us recall that the latter semantics was conceived from
the topos theoretic sheaf semantics of intuitionistic higher order logic [7, 20].
These similarities are not, in our opinion, a fruit of hazard: they arise from the
recognition — by many researchers from different perspectives and backgrounds —
of the central role of some mathematical tools, such as the role of join-generation
in lattices as well as the usefulness of a working duality theory as known from
algebraic modal logic.

We begin our paper by recalling what it means for a lattice to have the min-
imal join-cover refinement property. Indeed, it is this property — that trivially
holds in every finite lattice — that is at the heart of the duality. We have taken
the path of developing the duality only for the finite case thus to focus on the
combinatorial aspects of the duality. We decided to delay to further researches
the problem of generalizing the duality to larger classes of lattices.

We introduce then the notion of join-presentation. By carefully defining the
notion of arrow between join-presentations — that we call oriented bisimulation —
we construct a full and faithful contravariant functor into the category of lattices.
In a second step, we observe that the OD-graph of a lattice, a combinatorial
structure introduced in [22] that encodes the essence of the minimal join-cover
refinement property, gives rise to an adjoint functor in the opposite direction,
from the category of lattices to the category of join-presentations and oriented
bisimulations.

The notion of oriented bisimulation is quite involved, and time will decide
about its usefulness. Yet, in case an oriented bisimulation corresponds under the
duality to a lattice epimorphism, such a bisimulation can be easily described:
each monic oriented bisimulation is witnessed by an embedding which is a zig-
zag morphism of all the relational structures that are part of a join-presentation.
We illustrate the use of this restricted duality by computing the OD-graph of
the Associahedra from the OD-graph of Pemutohedra.

Finally, we investigate what it means for a presentation to be, abstractly,
an OD-graph of some lattice. We exhibit five axioms that enforce a presen-
tation to be isomorphic to the OD-graph of some lattice. We develop further
considerations in order to construct OD-graphs of atomistic lattice.

A second part of the paper is devoted to illustrate possible applications
and developments of this duality. We exhibit an infinite sequence D,, of lattice



varieties such that, on finite lattices and for any lattice polynomial ¢, the ap-
proximants ¢¢(L) converge to a fixed point after n steps, but that might take
at least ”T’2 steps to converge.

Finally, we address the fact that many equational properties of a lattices
can be translated into first order property of their O D-graphs. Our observation
calls for a problem: what are the lattice equations that corresponds to first-
order definable properties — or, more generally, reasonable properties — of an
OD-graph? We invite the researchers to tackle answer this question, which has
a strong analogy with what is called in modal logic correspondence theory.

Acknowledgment. The author acknowledges fruitful discussions with Frdric
Olive, Yde Venema, Fred Wehrung.
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2 Notation, definitions, elementary facts

If RC X xY is a relation, then we shall use the notation xR for the image of
zunder R, zR={y €Y |zRy }.

For elementary notions about ordered sets and lattices, we invite the reader
to consult the standard literature [14, 8]. Similarly, we address the reader to
[21] for elementary facts on category theory. All the lattices we shall encounter
shall be finite, unless explicitly stated.

If Pis a poset and p € P, then |p shall denote the principal ideal of p, that
is, the set {p’ € P | p' < p}. Similarly, if C C P, then | C denotes the lower
set generated by C, |C={pe P|3ceCst.p<c}.

If P,Q are posets and f : P — (@ is an order preserving map, then we

say that f is a left adjoint (or that it is residuated) if there exists a function
g : @ — P such that f(p) < ¢ if and only if p < ¢(q), for each p € P and q € Q.

Notice that ¢ is uniquely determined by f, and f is uniquely determined by g,
so that we say that g is right adjoint to f, and that f is left adjoint to g; we
write then f - g. In lattice theory, a lattice morphism that has a left adjoint is
called a lower bounded morphism, and a morphism of lattices that has a right
adjoint is called an upper bounded morphism.!

Let us recall the following fact: if L, M are complete lattice — in particular
if they are finite — an order preserving map f : L — M is a left adjoint if and

only if it preserves arbitrary joins. Similarly, f is a right adjoint if and only f
preserves arbitrary meets. Thus, if L, M are finite, f is lattice morphism if and
only if it is both a left adjoint and a right adjoint.

If L is a lattice, then J(L) shall denote the collection of join-irreducible
elements of L. If x € L and Y C L is such that z < \/ Y, then we say that
Y is a join-cover of z. We say that Y is a non-trivial join-cover of z if it is a
join-cover of x and, moreover, x £ y for each y € Y.

2.1 The minimal join-cover refinement property (MJCRP)

As the minimal join-cover refinement property has been the starting point for
our investigation of duality for lattices, we previously recall what it means for
a (possibly infinite) lattice to enjoy this property.

If S is a set, then 75(S) denotes the set of finite subsets of S. If P is a poset,
then P(P) is a preordered set, where the preorder is given by the refinement
relation:

XY iff Vee XayeVst.z<y.

For the moment, let us take the following as definition of the minimal join-
cover refinement property:

IThe two notions, that of lower bounded lattice morphism and that of a lattice morphism
that has a left adjoint coincide if if the domain lattice has both a least and a greatest elements.



Definition 2.1. A lattice L has the minimal join-cover refinement property if
there exists a function M : L — B(R(L)) such that, for all z € L,

r<\/Y iff 3C € M(2)st.C <Y . (1)

Our first remark is that the function M — whenever it exists — is not uniquely
determined. Yet, if a function M satisfying (1) exists, then there is another
function satisfying (1) and such that:

M(z) is an antichain w.r.t. <, (2)

C'is an antichain w.r.t. <, (3)

for each z € L and C € M(z). As a matter of fact, if M(z) is not an antichain
then we can replace it with the set of its minimal elements. If some C € M(x)
is not an antichain, then we can replace it with the set of its maximal elements.

Lemma 2.2. There exists at most one function M satisfying (1), (2), and (3).
For such a function, the following holds:

1. ifce C € M(x), then c € J(L),
2. if j € J(L), then {j} € M(j),

3. if = is a join-reducible element, then we can write it as x = j1 V ...V jn,
n > 1, where j; € J(L) for i = 1,...,n. Moreover, if D € M(z) then
D s the set maximal elements of a set of the form |J,_, , Ci, where

C; € M(j;) fori=1,...,n.

Proof. We only prove the three properties.

Let ce C e M(z). f c=yVzandce C, then D =C\{y,z} is such that
D < C. Moreover D is a cover of x, whence there exists E € M(z) such that
E < D. As M(z) is an antichain, then E = C, and C is the set of maximal
elements of D. In particular ¢ € D and since C' is an antichain, either ¢ = y or
c=z.

Observe that j < \/{j} so that we can find C € M(j) such that C' < {j }.
Clearly, j = \/ C, whence j € C. Since C is an antichain, if k¥ € C' with k # j,
then j < \/ C. Whence we have C' = {j }.

Finally, let us write x = y V z with  # y and = # z. Then there exists
C € M(z) such that C < {y,z} and x = \/C. Every element of C is an
element of J(L), by I and C is not a singleton, since then C = {z} and z <y
orz < z. If D € M(x), then ¢ < \/ D, for each ¢ € C, so that there exists
E. € M(c) such that E. < D. It follows that .. E. < D, and since J ¢ E.
is a cover of z, then D < J.c E. < D, by minimality. It follows that D is
the set of maximal elements of |J, .~ E.. O

The Lemma emphasizes that the fact that L is join-generated by its join-
irreducible elements, and that M is determined by its restriction to join-irreducible
elements. In the following we shall assume that M satisfies (1), (2), and (3).



Next, we want to compare our Definition 2.1 of the minimal join-cover re-
finement property to its usual definition, see for example [10, page 30]. For
j € J(L), let us define

nt

M (G) = MH\{{i}}-

Lemma 2.3. The collection M (7) is the set of minimal non-trivial join-covers
of j € J(L), that is:

1. every C e M’ (j) is a non-trivial join-cover of j,
2. every non trivial join-cover of j refines to a join-cover in M (),
3. if C e M (j) and Y is a join-cover of j withY < C, then C C Y.

Proof. If C € M (j) then C is a join-cover of j: we deduce j < \/C from
C e M (j) C M(j) and C < C. Moreover C is non-trivial: if j < ¢ for some
¢ € C,then {j} < C, thus C = {j} as M(j) is an antichain. This however
contradicts C € M’ ().

Let Y be a non-trivial join-cover of j. From j < \/Y we deduce C < Y for
some C' € M(j). If C = {j} then Y is trivial; whence C' € M (j).

Also, if C'€ M(j), Y is a join-cover of j, and Y < C, then there exists a
cover C' € M(j) such that C' < Y. Thus C' < C, and considering that M (j)
is an antichain, we have C' = C. As C < Y <« C and C is an antichain, we
deduce C C Y. O

To end this section, let us mention why we explicitly added {j} to M (j)
to obtain M (j), and consider minimal join-covers of j instead of minimal non-
trivial join-covers of j. Such a step is like adding a unit to binary associative
operation, which eventually makes most of the proofs much smoother.

2.2 MJICRP : a conceptual understanding

Equation (1) — that on purpose we have emphasized by making it into the
definition of the minimal join-cover refinement property — clearly exhibits the
property as some kind of adjointness relation. We give next a detailed account
of this fact, for which we make use of ideas from [9, 29] that we already exploited
in [27].

Definition 2.4. Let P, () preordered sets and let f : P — @ be an order-
preserving map. We say that f is a left Os-adjoint if there exists G : Q = B(P)
such that, for any p € P and ¢ € @, f(p) < ¢ if and only if p < ¢ for some
c € G(g).

Let Pos denote the category of posets (preordered sets) and order-preserving
maps. Let also O : Pos — Pos be the covariant functor that assigns to a poset



the collection of finitely generated lower sets of P, ordered by inclusion. If
f: P — Q is an arrow of Pos, then G;(f) is defined by the following formula:

U tep=trc U o= U L.
i=1,...,n i=1,...,n i=1,...,n
The following Lemma explains the naming.
Lemma 2.5. An order preserving map f : P — Q is a left Os-adjoint if and
only if Os(f) : O(P) = O(Q) is a left adjoint.

Proof. Let us suppose that O;(f) is such a left adjoint, with right adjoint H.
Let G(q) be the finite set of maximal elements of H(|q). Then we have

fp) <q it G(f)(Ip) <la
iff |p<H(lg)
iff peH(lg)
iff p <e, for some ¢ € G(q) .

Viceversa, let us assume that such a G exists, and define

U J/qz = U J/G(Qz) :

i=1,....n i=1,...,n
Since
(U = U a0
i=1,...,n i=1,...,n
and

O(f)(Ip) =1 ),

it is enough to verify that f(p) € U,—, , t@ ifandonlyifpe U, ., 4
G(q;), i.e. there exists i € {1,...,n} and ¢ € G(g;) such that p < ¢. This
immediately follows from the definition of a left O;-adjoint. O

From now on we shall use O;-adjoint as a synonym of left O;-adjoint. We
examine next the dual property of the one that defines (-adjoint, that is:

there exists a function G : () — P such that
g < f(p) if and only if ¢ < p for some ¢ € G(q) .

The property states that O;(f°?) : O;(P°?) — O;(Q°P) is a left adjoint, and
therefore that F(f) : (P) — F/(Q) is a right adjoint, where % is the functor

assigning to a poset the poset of its finitely generated upper sets, ordered by
reverse inclusion.



Definition 2.6. We say that f is a dual Gj-adjoint if O(f°F) : Oj(P?) —
O;(Q°P) is a left adjoint.

Remark 2.7. It is not correct to call a dual O-adjoint “right O-adjoint”. As
a matter of fact, Oi(f) : O(P) = O(Q) is a right adjoint if and only if the

following property holds: there exists a function G : Q@ — P(P) such that
q < f(p) if and only if ¢ < p for each c € G(q).

Recall that the join function — which takes as argument a finite set — is an
order preserving function of the following type:

\/:AL) - L,

where we recall that 7(L) is ordered by the refinement relation. The discussion
just presented then shows the following result:

Proposition 2.8. A lattice has the minimal join-cover refinement property if
and only if \/ is a dual Gs-adjoint.

3 From presentations to lattices

We start here our investigation of the duality. As we have emphasized in the
previous section, the minimal join-cover refinement property exhibits a lattice
as join-generated from its join-irreducible elements. This lead us to focus on
how finite lattices — that always are join-generated from their join-irreducible
elements — compare to their join-semilattices reducts, and to the algebraic pre-
sentations of their reducts.

In principle, the goal of this section is to define a category of join-presentation
and define a full and faithful contravariant functor to the category of lattices. In
practice, we work with a different approach: we define a category of presentation
by extending a map on objects and enforcing it a full and faithful contravariant
functor, by looking for a clever definition of arrows between presentations.

Definition 3.1. A join-presentation is a triple of the form (X, <, M) where
(X, <) is a finite poset and M : X — P(P(X)).

In the following we shall use the word presentation as a synonym of join-
presentation.

Recall that a downset of (X, <) is a subset S C X such that y < z € S
implies y € S.

Definition 3.2. Let (X, <, M) be a presentation. A downset S of (X, <) is
said to be closed if C € M(z) and C' C S imply z € S. We let £(X,<, M) be
the poset whose elements are closed downsets of (X, <) and whose ordering is
subset inclusion.



As usual £(X,<, M) is a lattice, as an arbitrary intersection of closed
downsets is a closed downset.

Let us denote by O(X, <) the set of downsets of a finite poset (X, <). Let
us recall that O(X, <) is the free join-semilattice over the poset (X, <). This
means, firstly, that O(X, <) is a join-semilattice, with union as the join oper-
ation and inclusion as the order. Secondly, the map that associates to z € X
its principal ideal |z € O(X, <) is an order embedding |: (X, <) - O(X, <)
with the following universal property: if f : (X, <) — L is an order preserving

map and L is a join-semilattice, then there exists a unique join-preserving map
f:0(X,<) = L such that f(}z) = f(x), for each z € X.

The next Lemma gives an algebraic characterization of the join-semilattice
L(X, <, M).

Lemma 3.3. The closure operation (-) : O(X,<) — £(X,<, M) is a join-

semilattice epimorhism from O(X, <) to £(X, <, M) whose kernel is the least
congruence (of join-semilattices) enforcing the relations

lz < \/ le, forC e M(z).

ceC

By saying that a congruence relation enforces a relation |z <\/ .~ lc we
simply mean that it contains the pair ({zU | C, | C). Such a characterization
can be found for example in [19]. We add a proof here, as it will turn out to
be useful later.

Proof. That the closure operation (-) is a join-semilattice epimorhism follows
from the fact that the joins are computed in £(X, <, M) as closure of unions,
so that

L=Un=VI.
eJ jeJ
It is easily seen that z € | C when C' € M(x), so that

TecTC=\ Te.

8

Let us suppose, next, that f : O(X,<) — L is a join-homomorphism
such that f(| z) < V co f(1 ¢) whenever C' € M (x); we shall show that
f(S) = f(S).? This in turn shall imply that f : £(X,<, M) — L is a join-
homomorphism:

Vo =rUn=rJn) =\ r).

JjeJ JjeJ jeJ jeJ

_2Using the standard representation of quotients by equivalence classes, the fact that f(S) =
f(S) amounts to saying that f is well defined on equivalence classes.



Clearly we have f(S) < f(S), as S C S. In the other direction, let us define

FY)=]l{z|3C € M(2)st.C CY }, GY)=SUF(Y),
so that
S=Ja .
n>0

In order to prove that f(S) < f(S) it shall be enough to show that f(Y) < f(95)
implies f(G(Y)) < f(S). We have

fFEON=fC | o=\ fll2)

CCY,CeM(z) CCY,CeM(z)
< \/  fLO) < fFY) < F(S),
CCY,CeM(z)
whence
fGY)) = fF(SUF(Y)) = f(S)V FIF(Y)) < f(S). O

3.1 Simulations between presentations

We restrict next our attention to direct presentations, where we use the naming
of [4]. A presentation (X, <, M) is direct if

S={y|3C e M(y) st. CCS}, (4)

for each S € O(X, <). It is certainly possible to develop a more general theory,
considering presentations that do not have this property. The result, however,
might be a less elegant theory.

Lemma 3.4. A presentation is direct if and only if the following conditions
hold:

1. y <z and C € M(x) implies D < C for some D € M (y),
2. there exists C € M (z) with C < {z },

8. if C € M(z) and D. € M(c), for c € C, then E < J.cc D¢, for some
E € M(z).

Proof. Let T'(S) be the expression on the right of (4), so that a presentation
(X, <, M) is direct if and only if T is a closure operator of the lattice O(X, <).

Let us see first that T' sends downsets to downsets iff condition (1) holds.
Let us suppose that T'(S) is a downset whenever S is a downset; let moreover
C e M(xz)and y < z. Then z € T(} C) thus y € T(} C), as T(}] C) is
a downset. By definition of T, there exists D € M(y) with D C| C, that
is, D <« C. Conversely, let assume that (1) holds, let S be a downset. Let

10



y < x € T(S): there exists C € M(z) with C C S. By (1), there exists
D € M(y) with D < C, thus D C S. It follows that y € T'(S).

Let us see next that S C T'(S), for each downset S, iff condition (2) holds.
If Jz CT(|z), then z € T(|z), thus therte exists C € M (z) with C C |z,
ie. C < {z}. Conversely, if x € S and C € M(z) is such that C' < {x }, then
C C S, therefore x € T(S).

Finally, let us show that T(T'(S)) C T'(S), for each downset S, iff condition
(3) holds. Let us assume that T'(T'(S)) C T'(S), for each downset S. let C €
M(x) and, for each ¢ € C, let D. € M(c). Thus we have z € TT (U,
D,) C T(UCEC 1 D) and there exists E € M(x) with E C U, | D, ie.
E < U.cc De- Conversely, let us assume that condition (3) holds, and let
x € TT(S). There exists C € M(x) with C C T(S). The last condition is
equivalent to saying that, for each ¢ € C, there exists D. € M(c) such that

D.CS. Let E € M(x) with E < |J,cc De: then E C S, hence x € T(S). O

Let us recall that a bimodule from (X, <) to (Y, <) is a relation R C X x Y
which is a downset of X°? x Y, i.e. such that p’ > pRq > ¢' implies p'Rq’.
Observe that these bimodules are in a bijective correspondence with order pre-
serving maps from (X, <) to O(Y, <):

y € fr(z) iff zRy.
Thus, by the freeness property of O(X, <), we immediately have

Lemma 3.5. There is a bijection between bimodules from (X, <) to (Y, <) and
join-homomorphisms from O(X, <) to O(Y, <).

The inverse bijections are as follows: given R, F is defined by

Fr(I) = UiR,

iel
and, given F, R is defined as

xRpy iff ye F(lx).

Definition 3.6. A bimodule R from (X, <) to (Y, <, M)3 is said to be closed
if tR={y| xRy} is a closed set, for each z € X.

Let us remark that the above condition that defines closed bimodules is the
same as saying that the sets

Fr({z) = fr(z)
are closed. Again, by freeness of O(X, <), we obtain

Lemma 3.7. There is a bijection bewteen closed bimodules from (X, <) to (Y, <
, MY and join-homomorphisms from O(X, <) to £(Y, <, M).

3We need M as part of (Y, <, M) in order to give a meaning to closedness.

11



In this case the inverse bijections are as follows: given R, Fr is defined by

FR(I): UI'R,

zel
where Ry, given F', is defined as before: zRpy iff y € F(|z).

Definition 3.8. A closed bimodule R from (X, <) to (Y, <, M) is said to be a
simulation if

xRy and C € M(x) implies D C U cR, for some D € M(y), (5)
ceC

foreachz € X,C € M(z),and y €Y.

Lemma 3.9. For a closed bimudule R from (X, <) to (Y, <, M), the following
conditions are equivalent:

1. R is a simulation,

2. Fr(lz) = Fr(lz) and Fgr : O(X,<) = £(Y,<, M) restricts to a join-
homomorphism £(X,<,M) — £(Y,<, M),
8. F(S) = F(S), for each S € O(X,<).
Proof. (2) implies (1): let us assume that the restriction of Fg to £(X, <, M)

is a join-homomorphism and verify that (5) holds. If C' € M(z), then z € |C
and

y € Fr(lx) C Fr({C)
=Fr(\/ To) =\ Fr(lo)
ceC

ceC

=\ Fr(lo) = | Fa(lo).

ceC ceC

As (Y, <, M) is direct, we deduce that there exists D € M(y) with D C

Uece FalLe).

(1) if and only if (3): we have already seen in Lemma 3.3, that Fr(S) =
Fg(9), if and only if Fgr(}z) C Fr(}C) whenever C € M (z). The last condi-
tion is equivalent to xRy and C' € M (x) implies y € Fr({C) = U, Fr(lc),
that is, there exists D € M (y) such that D C |J . cR, since (Y, <, M) is direct.

(3) implies (2): if Fr(S) = Fr(S) for all S € O(X, <) and I; are closed,
then

Fr(\/ 1) = Fe(J 1) = Fa(\J 1) = | Faly). 0

jeg jeJ jeJ jeJ

12



Our next goal is to define a category whose objects are presentations and
whose arrows are simulations. We first define it simply as a graph, that we shall
be able to compare to the category of join-semilattices.

Definition 3.10. We let Gim be the graph whose objects are direct presenta-
tions and whose arrows are simulations.

We let £ be the graph morphism that associates to a presentation (X, <, M)
the lattice £(X, <, M) and, to a simulation R from (X, <, M) to (Y, <, M), the
join-homomorphism Fp : £(X, <, M) = £(Y, <, M).

Lemma 3.11. £ is a full and faithful graph-morphism from &im to the reduct
of the poset-enriched category of finite join-semilattices and join-preserving ho-
momorphisms.

As a matter of fact, the above Lemma, is a restatement of Lemma 3.9. Next,
let us denote by Latt, the poset-enriched category of finite join-semilattices and
join-preserving homomorphisms.

Theorem 3.12. Let us define the following additional structure on Gim:
ridy iff y€ lzx, xS-Tz iff 3C € M(z) s.t. C C UyT,

xSy
S<T iff SCT.

Then &im is a poset-enriched category and £ : Gim — Latty is a full and
faithful poset-enriched functor.

Proof. Tt is enough to verify that the above structure correspond, along the
bijection, to the poset-enriched strucure of Latt,,. Observe that the identity of

(X, <, M) corresponds to the join homomorphism (-) : O(X, <) — £(X, <, M),
thus:

ZRid(X,g,M>y lff y S W
Next, if S and T are composable simulations, then

-TRFTOFSZ iff ze FT(FS(E))
ifft z € Fr(Fs(lx))

iff ze|JyT

iff 3C € M(z) s.t. C C | JoT.

Finally:

Fs < Fp iff Fs(U) C Fr(U), forallU € O(X, <),
iff Fs(lz)C Fr(lx), forallze X
iff 2Ty implies xSy, for all z € Xandy € Y. O

13



3.2 Left adjoints in Gim as oriented bisimulations

We identify lattice homomorphisms with those join-semilattice homomorphisms
that preserve meets. As all the lattice under consideration are finite, hence
complete, the property of an order preserving map to preserve meets is equiva-
lent to that of being a right adjoint. Moreover, in any poset-enirched category
right adjoints bijectively correspond to their left adjoints. The following folklore
statement collects together the previous observations:

Lemma 3.13. The category Latt’®, dual of the category of finite lattices and
lattice homomorphisms, is isomorphic to the category of left adjoints in Latt,, .

Recall that a pair L 4 R of adjoint 1-cells* in a poset-enriched category is
defined by the unit and counit relations. Thus, the relations

idix<m CL-R, (6)
R-LCidy<m, (7)

define left adjoints in &im. Considering the poset isomorphism
Glm(<X7 Sa M>7 (Ya Sa M)) = Satt\/(’Q(Xa Sa M)7 £(Y7 Sa M))
we immediately obtain the following statement:

Proposition 3.14. The objectwise correspondence £ gives rise a contravariant
full and faithful functor from the poset-enriched category of left adjoints in Gim
to the category Latt of finite lattices.

Our next goal, is to give an explicit characterization of left adjoints in Gim.

Lemma 3.15. Let L be a simulation from (X, <, M) to (Y,<,M). If L has a
right adjoint L* within &im, then L* is defined as follows:

yL*z iff xLy' impliesD < {y} for some D € M(y'). (8)

Proof. Clearly, L is left adjoint to L* if and only if Fp, is left adjoint to Fp-,
whence

yL*z iff =€ Fr.(ly) = Fr-(ly) we assume L* is a simulation,
iff JzC Fr-(ly)
iff Fr(lz)C ly by the adjointness relation,
iff for all y', zLy'implies D < {y}, for some D € M(y'). O

In the following L* shall denote the relation defined by (8). We shall not
assume that L* is itself a simulation, we shall only assume that L is a simulation.

Lemma 3.16. L* is a closed bimodule.

4That is, L is left adjoint to R, and R is right adjoint to L.
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Proof. We leave the reader to verify that L* is a downset of Y°P x X. We only
verify that yL* is closed, for an arbitrary y € Y.

Thus we suppose that, for some z € X and C € M(z), yL*c for each c € C.
The relations yL*c amounts to Fr(lc) C ly. Next, we have z € |C, whence

Fi(lx) C F(1C) = Fr(\/ Te)= | Fu(le) € Ty,

ceC ceC

where we have used the fact that Fy, preserves joins and that Fy,(lz) = Fr(lz),
for each © € X. The relation so derived states that yL*x. O

Lemma 3.17. If L* is defined as in (8), then the counit relation (7) holds
whereas the unit relation (6) holds if and only if

3C € M(z) s.t. C C | JyL*. (9)
xzLy

Proof. Let us show that yL* - Ly' implies ' € |y. There exists D € M(y')
such that, for each d € D, there exists x4 such that yL*z; and z4Ld. By (8), if
zqLy' then D' <« y for some D' € M(y'). We have therefore D), < y, for some
Dy € M(d) and for each d € D. Let E € M(y') be such that £ < {J,cp Da,
then E < {y} so that y' € |y.

Condition (9) immediately follows from (6), considering that = € |z and
consequently zL - L*z. Thus, let us assume (9) and prove (6). Let z' € |z
so that, for some C' € M(z'), C' < {z}. Let C be as in (9), then, for each
¢’ € C' there exists Do € M(c') with Dy < C. Next, let E € M(z') be such
that E < J.ccr Der, then E < C and therefore E C J,, yL*, witnessing
that L - L*z'. O

3.3 A full and faithful functor

Next, we collect our previous observations into the main result of this Section.

Definition 3.18. A presentation morphism, or oriented bisimulation, from
(X, <, M) to (Y, <, M) is a simulation L from (X,<, M) to (Y,<,M) such
that

1. L* is a simulation,

2. condition (9) holds: for each z € X there exists C € M (x) such that,
for each ¢ € C, there exists y. with zLy. and such that cLy’ implies
D < {y.}, for some D € M(y').

Proposition 3.19. The identity simulation is an oriented bisimulation, and
oriented bisimulations compose.

Proof. The statement is an immediate consequence of the fact that the identity
is a left adjoint, and that left adjoints compose. O
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For an oriented bisimulation from (X, <, M) to (Y, <, M), define the map
Lr: LY, <, M) — £(X,<, M) as

Lr(S)={z e X |Iye€Sst.yL*z}.

Notice that £g = Fg~, thus in particular £r preserves joins, as R* is a simula-
tion. It also preserves meets as Fr- is a right adjoint.

Theorem 3.20. Let BG&im the category whose objects are presentations and
whose arrows are oriented bisimulations. Then £ is a contravariant full and
faithful functor from the category BG&im to the category Latt of finite lattices.

Proof. £ is faithful, as the covariant functor £ : &im — Latty is already faithful.
It is full, as if f: £(V, <, M) — £(X, <, M) is a lattice morphism, then it is a

right adjoint in Latty and has a left adjoint [ within Latt,. By the uniqueness
of the adjoint, we necessarily have f = £p;. O

To end the discussion, let us introduce the following definition that shall
occur often on the rest of the paper.

Definition 3.21. A presentation (X, <, M) is subcanonical if each downset |z
is closed.

4 From lattices to presentations

4.1 The OD-graph as an adjoint functor

We come back to finite lattices. We remark that the following definition —
here formulated for finite lattices only — extend to lattices having the minimal
join-cover refinement property.

Definition 4.1. The OD-graph of a finite lattice L, noted here G(L), is the
structure (J(L), <, M) where

e J(L) is the set of join-irreducible elements of L,
e < is the restriction of the order of L to J(L),
e for each j € J(L), M(j) is the set of minimal join-covers of ;.

Lemma 4.2. The OD-graph of a lattice L is a direct subcanonical presentation.

5Let us recall that the name O D-graphs was introduced in [22] where the structure (J(L), <
,/\/ft> was considered instead. Let us also recall the definition of the dependency relation

between join-irreducible elements: jDk if k € C for some C € M’ (7). Thus it is easily
recognized the meaning of OD, which stands for Order and Dependency of join-irreducible
elements.
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Proof. Let us verify that G(L) is direct, that is, it satisfies conditions (1)-(3)
from Lemma 3.4. If j < k and D € M(k), then j < k <\/ D, whence C < D
for some C' € M(j). Also, we have {j} € M(j) and, of course, {j} < {j} .
Next, let C' € M(j) and, for each ¢ € C, let D, € M(c). Then j <\ U,.cc De,
thus £ < |J,c D. for some E € M(c).

Finally, let us verify that G(L) is subcanonical: if D € M(k) and D < {j },
then \/ D <jand k <V D <j. O

The following Proposition, which is possibly part of the folklore of lattice
theory, appears in [22, §2].
Proposition 4.3. Let g : L — £(G(L)), where for | € L we have

() =Jlie L) 1j<i}.
Then ny, is an isomorphism of lattices.

Proof. Let us verify first that nr, (1) is closed. If C' € M(j) and C C n.(I), then
VC <1, whence j <\ C <I.
Next g is certainly order preserving. In order to argue that it is an isomor-

phism of lattices, it is enough to argue that it has on order preserving inverse.
We let

n () =\/T,
so that 7, ! certainly is order preserving. We have
m(\/ 1) ={je@D)|i<\/ 1}
={jeJ(L)|3IC e M(j) st. Cx I} =1,
as I is closed, and G(L) is direct. On the other direction,
Vo) =\/{iel@)|i<i}=1,
as usual. O

We next prove the following statement:
Proposition 4.4. For each lattice morphism [ : L — £(X, <, M) there exists
a unique direct bisimulation R : (X, <, M) — G(L) such that f = £ ong.

Let us recall that the property stated in the Proposition, that we illustrate
as usual with a diagram

nL

L L£0J(L), <, M) (J(L), <, M)
! Ei!Ré
T 8R :
s
L(X, <, M) (X, <, M)
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suffices to make G into a functor and to witness then the adjunction G 4 £ :
PBGSim°? — Latt, i.e. the existence of a natural bijection

Latt(L, £(X, <, M) ~ B&m™(G(L), (X, <, M)).

Proof. The statement immediately follows from the fact that the functor £ is
full and faithful and ny, invertible. Faithfulness implies uniqueness, and fullness
implies existence: the oriented bisimulation R we are looking for is the unique
one such that £5 = fon, ' O

Namely, we have
2Rj iff j < ((T7) (10)

where £ - f.

For f: Ly — Ly, G(f) — the morphism part of the (contravariant) functor G
— is then defined as the unique R such that

NLg

LO - (J(L0)7 Sa M) (J(L0)7 S7M>
: A
¥ ;:R IR

An explicit computation again gives
kG(f)g it j < k),
with £ f.

4.2 The duality theorem

Let us recall the following fact. Let FF 4 G : D — C be a pair of adjoint

functors, and consider the full subcategories of D, resp. of D, determined by
the objects whose unit, resp. the counit, are invertible arrows. Then F, G induce
an equivalence between these full subcategories.

Therefore, for the adjunction G 4 £ : BS&Sim®? — Latt, we want to determine

these full subcategories. This problem turns out to have an simple solution.
We have already observed that, for each lattice L, the unit of the adjunction
nr : L — £(J(L), <, M) is invertible. However, the counit of the adjunction

E(X,S,M) : <X7 S7M> — g(’g(Xﬂ SaM))
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is invertible as well. To see this, recall that

has n¢(x,<,m) as inverse map and that £ is full and faithful functor. As a matter

of fact, it is a standard Lemma of elementary category theory, cf. [21, §IV.3],

that a right adjoint is full and faithful if and only if the counit is invertible.
Thus, we obtain the following Theorem:

Theorem 4.5. The functors G, £ are inverse parts of an equivalence of cate-
gories.

5 Monic oriented bisimulations

In this Section we focus on a restricted duality, namely the one we obtain when
considering epic arrows in the category Latt and, respectively, monic arrows in
BSim. The reason for focusing pausing on this duality possibly is historical:
the first results on the OD-graph of a lattice concern the representation of
congruences of a finite lattice, see [22, Lemma 1.2] and [10, §?]. Also, it was
already observed in [18, §3] that a nice duality for lattices arise if we consider
only epimorphisms.

Our interest in developing a full duality theory for finite lattices stems from
the problem of computing, given the OD-graph of a lattice, the OD-graph of
some quotient. This problem has a very simple solution, a fact that we shall
illustrate by computing of the OD-graph of the Associahedra from the OD-
graph of the Permutohedra.

5.1 Reworking oriented bisimulations

The conditions — see Definition 3.18 — that characterize left adjoints in Gim
and that define oriented bisimulation might appear, at a first sight, obscure and
difficult to work with. Yet, these conditions might look — depending on the taste
of the reader — more elegant if we replace ideals with their maximal antichains.
Also, the same conditions considerably simplify if we assume that each z € X
gives rise to a closed downset |z, that is if a presentation is subcanonical. For
example, for a subcanonical presentation (Y, <, M) formula (8) simplifies to

yL*z iff zLy'impliesy’ <y. (11)

Definition 5.1. Let P,@Q be two posets. Call a function f: P — P(Q) a layer
from P to Q if, for each p,p’ € P,

1. f(p) is an antichain,

2. p < p' implies f(p) < f(p').
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It is easily seen that the transformations

pR’q iff q€lf(q), g€ fR(p) iff ¢ € maxpR,

are inverse bijections between bimodules and layers from P to Q. Observe in
particular that, under the assumption of subcanonicity,

eLy iff {y} < f"(x), yL'z iff fY(z) < {y},
where L* is defined as in (11).

Definition 5.2. Let (X, <, M) and (Y, <, M) be two subcanonical presenta-
tions. Say that a layer function from (X, <) to (Y, <) is p-morphic if it satisfies
the following conditions :

1. C € M(y) and C < f(x) implies {y } < f(x),

2. for all z € X there exists C € M (z) and a collection {y. | ¢ € C'} such
that f(c) < {y.} and {y. } < f(),

3. {y} < f(z) and C' € M(z) implies D < |J ¢ f(c) for some D € M (y),

4. if f(z) < {y} and D € M(y), then for some C € M(x) and for each
¢ € C there exists d € D such that f(c) < {d}.

We just rephrased the conditions for a bimodule to be an oriented bisimula-
tion, using the correspondence that transforms a bimodule to a layer function.
Thus the following proposition should not come as a surprise:

Proposition 5.3. Let (X, <, M) and (Y, <, M) be two subcanonical direct pre-
sentations. Oriented bisimulations and p-morphic layer functions from (X, <
, MY to (Y, <, M) are in a bijective correspondence.

We start next making some observations towards a simplification of these
conditions. Condition 3 is actually equivalent to the simpler

3" y € f(z) and C' € M(z) implies D < |, f(c) for some D € M(y).

As a matter of fact, if ' <y € f(z) and D € M(y) is such that D < C, then
there exists D' € M(y') such that D' < D, whence D' < (. ¢ f(c).

Next, let us suppose that f(z) = { f(z) } is a singleton. Then condition 3 is
equivalent to

3”. C € M(z) implies D' < f(C) for some D' € M(f(x)).
and condition 4 is equivalent to

4”. D € M(f(z)) implies f(C") < D for some C’ € M(x).
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We suppose next that f(z) = { f(x)} is a singleton and f is an embedding.
Conditions 3" and 4" imply f(C') < f(C), whence ¢’ < C and C = C'
if M(x) is an antichain. If D' is an antichain, then f(C) < D' < f(C)
implies C' = f(D’). Under similar conditions we have D' < D, D' = D, and
D < f(C") < D, whence f(C") = D. We have therefore that 3" and 4" are

equivalent to
3-4. D € M(f(x)) if and only if D = f(C) for some C € M(z).

We stress at this point the similarity — but also the difference — with the
notion of bisimulation arising from monotone logic and coalgebra theory [16].
Yet, in order to have a sort of bisimulation as understood there, we need {y } <
< f(z) in place of f(z) < {y} in condition 4.

5.2 The restricted duality

Recall that a map f in a category is epic if go f = ho f implies ¢ = h. Surjective
homomorphisms of algebras are epic, there exists epic maps of algebra that are
not surjective. The two notions, epimorphism and epic map, coincide on the
category of finite lattices.

Lemma 5.4. If f : L — M is an epic map in the category Latt of finite lattices,

then f is a surjective homomorphism, whence a regular epic.

Proof. If £ 4 f then, by the usual properties of adjunctions, fofo f = f. As
f is epic, then f o/l = idjs;. That is, f is split epic as an order preserving map
and in particular it is a surjective function. As usual, this implies that it is the
coequalizer of its kernel pair. O

The following lemma and considerations are analogous of [12, Proposition
3.4] for the theory of generalized Kripke frames.

Lemma 5.5. Let g : L1 — Lo be a lattice morphism and let £ 4 g. Then g is

epic if and only if £ is an embedding and, in this case, { restricts to an embedding
from J(Lo) — J(Ly).

Proof. If g is epic in the category Latt and has a left adjoint ¢, then the relation
golog =g, that holds for adjoint pairs, we deduce that g o ¢ = idr,, so that ¢
is split monic, whence an embedding. A similar argument shows that if £ is an
embedding, then £ o g =idy,.

Suppose next that £(j) = x V y, then j = g(¢(5)) = g(z) V g(y) and — say
—j = g(z). Hence £(j) = ¢(g9(z)) < x. The relation £(j) = = V y implies on
the other hand that z < £(j), whence ¢(j) = z. A similar argument shows that
() # Ly as j # L. 0

Definition 5.6. A bimodule R from (X, <) to (Y, <) is said to be representable
if there exists a function f : (X, <) — (Y, <) such that

Ry iff y < f(x).
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Observe that from the definition it follows that such an f is order preserving;:
if < ', then from zRf(x) we deduce z' Rf(x), whence f(z) < f(z').

Let us say that (X, <, M) is reduced if it is subcanonical and each |z =]z
is join-irreducible in £(X, <, M).

Lemma 5.7. Let (X, <, M), (Y, <, M) be reduced presentations. If R : (X, <
, MYy — (Y, <, M) is a monic arrow in Sim, then R is representable by an

embedding f.

Proof. Since the functor £ : B&im°? — Lattis full and faithful R is monic if and

only if £ is an epimorphism. As Fr - £, then the previous Lemma ensures
that Fg is an embedding and sends join-irreducible elements to join-irreducible
elements. Recall that join-irreducible elements in £(X, <, M) are exaclty those
of the form |z for some z € X.

Thus, for x € X then we can find f(z) € Y such that Fr(lz) =] f(z).
Observe that f is an embedding, as Fr is an embedding. We obtain

xRy iff ye Fr(lx) iff yelf(z) iff y< f(z). O

Definition 5.8. Let (X, <, M) and (Y, <, M) be completely reduced. Say that
an embedding f : (X, <, M) — (Y, <, M) is p-morphic if D € M(f(z)) if and

only if there exists C' € M (z) such that f(C) = D.

Clearly, p-morphic embeddings compose and the identity is such an embed-
ding, thus they form a category.

Theorem 5.9. The category of completely reduced presentations and p-morphic
embeddings and of lattices and epimorphism are dual to each other.

5.3 From Permutohedra to Associahedra

In the following we shall denote by P,, the lattice of permutations on n elements.
This lattice is known as the Permutohedron on n letters. We shall denote by
Tn be n-th Tamari lattice, or Associahedron on n + 1 letters. Elements of this
lattice are finite binary trees with n internal nodes and n + 1 leaves. We refer
the reader to [3] for an introduction to these lattices.

According to [5, Theroem 9.6], given a permutation o € P,,, we can construct
a binary tree 7, (o) € T, according to the following rules. If n = 0, then o is
the identity permutation, and my(c) is the unique binary tree with one leave.
Let us suppose n > 0, consider the letter o,,, and let

L={i|lo;<on}, R={jlon<o;}.
Let now
o1 {1 on =1} L 1o ),
op olr op
or{l,....n—0,} — R——{o,+1,....n} —{1,...,n—0,},
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where op are the unique order preserving bijections. We obtain 7, (o) by grafting
together (in the order) the two trees 7y, —1(0;) and m,—,, (o) into one root.
It was observed in [5] that 7, is order preserving; the following fact was made
explicit in [24].

Proposition 5.10. The order preserving maps m, : Pn — T, are lattice epi-

morphisms.

A permutation o is 312-free if there is no ¢« < j < k such that o; < o1, < 0;.
Let ¢,, denote the left adjoit to my, £, 1 m,. It is known that, given a binary tree
t € Tn, £n(t) is to be the unique 312-free permutation ¢ such that 7, (o) = t¢.

Let us come to the the OD-graph of the lattice P,,. We recall that a per-
mutation ¢ is join-irreducible in P, if and only if it has only one descent, i.e.
we can write 0 = 01 ...0;0;41...0,, Where 0,41 < 0; and all the other con-
tiguous letters are in the right order. In [26] we observed that join-irreducible
permutations are in bijection with quadruples (a,b, D,, Dp) such that

eabe{l,...,n}and a <b,
e {D,, Dy} is a binary partition of the open interval (a,b).
Such a quadruple corresponds to the join-irreducible permutation

1,...a—1DbaDyb+1...n

where D_; is the ordered list of elements in D;. Using such a representation we
were able to characterize the dependency relation D between join-irreducible
elements:

(aabaDaan)D(CadaDcaDd) iff
[e,d] € [a,b], D. = DgN(c,d), and Dy = Dy N (c,d).

It is not difficult to generalize the results of [26] to obtain the following Propo-
sition.

Proposition 5.11. The OD-graph of the lattice P,, is isomorphic to the pre-
sentation (X,,,<, M) where

e an element of X is a quadruple (a,b, Dy, Dy) as before,
e (a,b,D,,Dy) < (¢,d, D, Dy) if and only if
I(a,b,D,,Dy) C I(c,d,D.,Dy),
where I(a,b,Dq,Dy) = {(z,y) |z >y, 2 € D,U{b},ye DyU{a}}.
e C € M(a,b,D,,Dy) iff C is of the form
{ (@i, 2it1, Do N (2, 241), Dy N (x5, 2541)) |1 =0,...,k =1}

witha =20 < x; <...x_1 <x =D.
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Lemma 5.12. An element (a,b, Do, Dy) of X, codes a 312-free permutation if
and only if Dy = 0.

In order to compute the OD-graph of the Tamari lattice 7,, we start by
recalling what are its join-irreducible elements. Then we shall argue how they
are sent by £, to such a quadruple. Join-irreducible elements in 7, are of the
form [p, q] with 1 < p < ¢ < n, where [p, q] is the tree

qg+1

As it is easily seen that
mn(p: ¢, (p,q),0) = [p,q] ,

we have

tn([p, q]) = (p,q, (p,q),0).

Combining this observation, Proposition 5.11, and Theorem 5.9, we deduce:

Theorem 5.13. The OD-graph of the Tamari lattice T, is isomorphic to the
presentation (Y, <, M), where

o n:{[paq]|13p<qgn}’
e [p,q] < [P',q'] if and only if [p,q] C [p', '] (as intervals),
e C € M([p,q]) if and only if C is of the form {[x;, x;11]|i=0,...,k—1}

where p =29 < 1 < ... <21 <X} = (.
6 Some representation theorems

The duality Theorem 4.5 is somewhat unsatisfying: given a direct presentation
(X, <, M) the conunit of the adjunction

E: (X, <, M) > G(S(X, <, M))
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is an invertible map in the category B&im. Yet, the counit is far from being
an isomorphism of structures, thus it is far from telling us what it means for a
relational structure to be an OD-graph in any standard way. In this section we
tackle this question and introduce some constructions of O D-graphs of atomistic
lattices. These constructions shall open the way to the results of the next
section.

6.1 The general representation theorem

We have already seen that G(L) is a directed subcanonical presentation. Let us
list some of the properties of a presentation (X, < M) that in particular hold in
a presentation of the form G(L). By construction, these are:

1. {z} € M(x), for each z € X,
2. C is an antichain (w.r.t. <), for each z € X and C' € M(x),
3. M(x) is an antichain, for each z € X.

Theorem 6.1. If (X, <, M) is a directed subcanonical presentation satisfying
conditions (1-8) above, then the principal ideal | is an isomorphism of relational
structures from (X, <, M) to G(L£(X,<,M)) that represents the counit of the
adjunction.

Proof. Let us remind first the formula for computing the closure of a downset
Y of X:

Y={zeX|3CeM(z)st. C<Y}, (12)

which holds as usual for directed presentations.

Since (X, <, M) is subcanonical, each | z is closed. Let us therefore verify
that the correspondence sending z € X to |z gives rise to an isomorphism of
structures.

We observe first that every join-irreducible element in £(X, <, M) is of the
form |z for some x € X. This follows from the fact that elements of this form
join-generate the lattice £(X, <, M): if I is a closed downset, then

I= \/ lx.
zel

Next, let us show that each |z is join-irreducible. Let us suppose, therefore,
that lz =V,_, , ly;. From

iz C \/ iinU{iyiU:la---a”}

i=1,...,n

we derive that C' < {y; |i=1,...,n} for some C' € M(z). From \/,_, |
y; Cla, we derive C < {y; | i =1,...,n} < {x}. Since bot {z} and C
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belong to M (z) which is an antichain, the relation C' <« {z } implies C' = {z }.
Whence, from
we derive that, for some 1 = 1,...,n, x <y; < x, that is x = y; for some i.

We have established up to know that the principal ideal map |is a bijection
from X to J(£(X, <, M)); clearly it is also an embedding. To establish that it is
an isomorphism of relational structures, we are left to prove that D € M(]x)
if and only if D = {lc | ¢ € C} for some C € M(z). We shall do that
by characterizing the minimal join-covers of | = as being those of the form
{le|ce C} for some C € M(z).

If C € M(z) then

lecIC=\/ lc,
ceC

so that { Lc|c€ C}is acover of |x. Next, let us suppose that { ly |y €Y'}
is a cover of |x:

lz C \/ ly, thatis ze€ Y.
yey

By (12) there exists C' € M (z) such that C' < Y. As |is an embedding, we
have

{leleeCr<{lylyeY}.

This shows that
{{lclceC}|CeM(z)}

are exactly the minimal join-covers of z in the lattice of closed downsets.

Finally, recall that the counit corresponds under the bijection of homsets to
the identity of £(X, <, M). Thus, formula (10) gives that, for a join-irreducible
element I of £(X, <, M),

As (X, <, M) is subcanonical and each | z is join-irreducible, we obtain that
the bimodule F is represented by |. O

6.2 Atomistic lattices and atomistic presentations

Let us recall that a lattice is said to be atomistic if every element is the join of
the atoms below it. Equivalently, L is atomistic if J(L) = At(L), where A¢(L)
is the set of atoms of L. We examine next how the representation Theorem 6.1
restricts to atomistic lattices. Morally, we generalize the characterization, up
to isomorphism, of a join-dependency relation [15, Theorem 3.1]. The proof of
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this result takes advantage of atomistic lattices and has been one of the staring
point for the present investigation.

In the following Ax shall denote the identity relation of (i.e. the discrete
order on) the set X.

Definition 6.2. An atomistic presentation is a pair (X, M) with (X, Ax, M)
a presentation. If L is an atomistic lattice then G(L) = (A#(L), A a¢(r), M), so
that we shall say that (At(L), M) is its atomistic presentation.

We begin pointing out some properties of the atomistic presentation of an
atomistic lattice.

Lemma 6.3. If L is an atomistic lattice, then its presentation (At(L), M)
satisfies the following conditions, for each a € At(L):

1. {a} € M(a),
2. M(a) is an antichain w.r.t. subset inclusion,
3. if C € M(a) and C # {a}, then C is not a singleton,

4. if C € M(a), c € C, and D € M(c), then there exists E € M(a) such
that E C (C\ {c})UD.

Proposition 6.4. If an atomistic presentation (A, M) satisfies conditions 1-4
of Lemma 6.3, then it is isomorphic to the presentation of an atomistic lattice.

The proof of this result is straightforward, given Theorem 6.1, and therefore
we omit it.

Ezample 6.5. We come next to an handy way to construct atomistic presen-
tations that shall be used later in Section 7. Let us say that an atomistic
presentation (A, M) is pointed if it comes with a specified element a € A; we
shall write then (A, M,a). Let (A;, M;,a;), i € I, be pointed atomistic pre-
sentations. Let also F C P(I) be an antichain such that #X > 2, for each
X e F. If X C 1, then we say that C' : X — |J,.x M(a.) is a choice for X if

C(z) € M(a,) for each z € X. We define a new pointed atomistic presentation

(A, M, a0) = EP (Ai, My, ai)

ao,]‘—
as follows:
A={ao}U 4 4
iel
Mi s Az
M(a) = (a) ‘ a €
{{ao} }U{U,ex C(z) | X € F,C a choice for X}, a=ap.

Observe that {a, | z € X} € M(ap), for each X € F: indeed, the function
sending = to { a, } always is a choice for X.
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Proposition 6.6. @ao’}-(Ai,Mi,ai) is an atomistic presentation which satisfies
conditions 1-4, whenever the presentations (A;, M;, a;), i € I, satisfy these con-
ditions.

Proof. Only condition 4 is not self-evident. Moreover, it will be enough to verify
it for C € M(ap) and C # {ao }.
Let X € Fand C': X = |J,c x M(a,) be a choice for X, so that | J, .y C(z) €

M (ap). Let d € C(x), for some z € X, and let D € M(d). Then, for some
E e M(az), ECC(z)\{d}UD. Define then C'(z) = E and C'(y) = C(y) if
y # z. Then C' is a choice for X and

U '@ cl c@)\{ahuD. O
rzeX zeX
Ezample 6.7. Let (T',<) be a finite tree such that each internal note has at
least two sons. A maximal antichain in T is a subset A C T such that for
each t € T\ A, either AU {¢} is not an antichain. We can define an atomistic
presentation (T, M), satisfying conditions -4, as follows:

M(t)={A Ctt| A is a maximal antichain of 1¢}.

Of course, (T, M) can be generated from a sequence of the operation @ starting
from the atomistic presentation ({*}, M) with M(x) = {{*}}.

7 Interpretations, games, fixed-points

In this Section we first show how the duality gives rise to a semantics of lattice
terms into presentations. The semantics that we develop turns out to be a
covering semantics in the sense of [13]. We also propose a game theoretic account
of this semantics. The actual goal of the Section is to exhibit the use of the
duality, of the semantics, and of all the tools developed so far. In particular, we
shall construct ad-hoc models to falsify some lattice equation. The problem that
we tackle stems from fixed-point theory [6, 2] on lattices [25]. It is well known
[1] that extremal fixed-point terms are redundant on distributive lattices: for
any lattice polynomial ¢, the equation ¢(L) = ¢(_L) holds on every distributive
lattice and shows that the term p,.¢, meant to denote the least fixed-point of
¢, can be replaces by the simpler term ¢(L). We propose a generalization of
this fact. We consider finite lattices in the varieties £,,, whose members have
the property that every sequence of the join-dependency relation has length at
most n. Here the equation ¢"*!(1) = ¢"*2(L) holds and exhibits ¢"*1 (L) as
the least fixed-point of ¢. The generalization is non-trivial, as we show that
n—2

222 is a lower bound for the integers i such that ¢*(L) is a fixed-point of ¢ on

L.

7.1 A covering semantics for lattice terms

We consider next interpretations of terms (and of equations) into lattices of
directed presentations of the form Y = (Y, <, M). Let X be a set of variables,
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denote by T (X) the algebra of lattice terms whose free variables are among
X, denote by F(X) the free lattice generated by the set X. Recall that there
are natural bijections between the following type of data: valuations v : X —
£(Y, <, M), algebra morphisms v’ : T(X) — £(Y, <, M) such that v'(z) = =z,
lattice homomorphisms @ : F(X) — £(Y, <, M) such that ¢(z) = v(x). In order
to simplify the notation, we use shall often use the same notation v for the three
different kind of data.

We introduce next a semantical relation reminiscent of Kripke semantics in
modal logics. This kind of semantics has already been considered for linear logic
[13] and topos theory [7].

Definition 7.1. For v : X = £V, <, M),y € Y and t € T(X), the relation
Y [Ev t is defined inductively on t as follows :

o yl=,zify € v(x),
o y =y Njerti if y =t for each i € 1,

® y =y Vicr pi if there exists C € M (y) such that, for all ¢ € C' there exists
i € I with ¢ |:v t;.

The following result is quite obvious:
Lemma 7.2. y =, t if and only if y € v(t).

The same relation is characterized by means of a game G(),v,t) between
two players, Eva and Adam. The set of positions of this game includes the
Cartesian product of Y with the set of subterms of ¢, but is not restricted to it.
The description of the game follows:

e In position (y,z) Eva wins if y € v(z) and otherwise Eva loses.
e In position (y, A,;c;t:) Adam chooses i € I and moves to (y, ;).

e In position (y, \/;c;ti) Eva chooses C' € M (y) and moves to (C, \/;c;t:i);
from here Adam chooses ¢ € C' and moves to (c,{t; | i € I}); from here
Eva chooses i € I and moves to (c, ;).

If a player cannot move then he loses. We have
Lemma 7.3. Eva has a winning strategy from (y,t) in the game G(),v,t) if
and only if y € v(t), if and only if y =y t.

7.2 Varieties of lattices with trivial least fixed-points

Let us recall the definition of the join-dependency relation D:
jDEkiffj #k and k € C, for some C € M(j).
We let £,, be the class of all finite lattices such that every sequence

JoDj1D ... Djy
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has length k& which is at most n. By [28, Section 3] (see also [22] as well as
the next Section) this is an equational class, in the following sense: there exist
equations D1, n > 0, such that a finite lattice L satisfies D,,;1 if and only if
L € L,,. Consider that Ly is the class of finite distributive lattices and that £,
is a class of finite lattices obeying a weak form of distributivity.

Next, let ¢ be a lattice term containing the variable z. Define terms ¢™ (L),
n > 0, as follows

¢°(L) =1, ¢" (L) = g (L)/2].
Proposition 7.4. The equation
F(L) = 6 (L)
holds on L,,.

Proof. Clearly, the inequation ¢ (1) < ¢™*2(_L) always holds, so that we only
need to verify that the inequation ¢"*2(L) < ¢"*1(L) holds as well. To this
goal, let L € L,, and consider a valuation v : X — £(J(L), <, M); we suppose

that jo =, ¢""2(L) and prove that jo = ¢"T1(L). Let ¥ = (J(L),<, M),
we consider a winning strategy for Eva in the game G(),v,¢"T2(L)) from
(jo, 9" T2 (L)) and transform it into a winning strategy for Evain G(),v, " T1(L1))
from (o, 5+ (L1).

Notice first that if i > 1, then the structure of the games G(),v, ¢+ (L))
and G(),v,¢'(L)) are, at the beginning, the same from the positions of the
form (j, #*t1(L1)) and (4, #*(L)). In particular, a winning strategy for Eva from
(7,071 (L)) in G(Y,v, ¢t (L)) can be simulated, at the beginning, within the
game G(),v,¢'(L)) from position (j,¢?(L)).

Therefore Eva plays as follows: she plays from (jo,¢" (L)) as if she was
playing in (jo, ™" 2(L)), according to the same winning strategy. If, at some
point,

e she hits a position (j;, " **!(L1)), where she is playing the winning strat-
egy from position (j;, #"~t2(L1)) in the game G(Y,v, ¢"*2(L)), and

e the position (j;, p"~*t1(L)) is also part of the winning strategy in the

then she jumps: she continue simulating the winning strategy from (j;, ¢~ +1(1))
in the game G(Y,v,¢"*2(1)).

Evidently, this strategy is losing for Eva if she cannot jump. That is, Adam
can force a play that visits positions (j;, #"~*t!(1)), i =0,...,n+1, such that
all the j; are distinct. As the j; # ji+1, this means that Eva, in the play that
has lead from (j;, " (L)) to (jir1,¢" +D+1(1)), has went through some
choice of the form k' € C € M (k) with k # k', i.e. kDk'. Thus, we can sketch
the play forced by Adam as follows:

(o, 6™ (1) 25 (31, 67(1) 2 ..

P (G $(1)) 5 (s, L)
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that is, we can witness the existence of a sequence the join-dependency relation
of length at least n 4+ 1. This contradicts the fact that L € £,. O

It follows that £, has a trivial least fixed-point theory. Namely, define u-
terms according to the following grammar:

t=xz| L|tVE|T|tAL]|pat,

interpret these terms on finite lattice as usual with ..t denoting the least fixed-
point of the order preserving function — of the variable z — denoted by ¢. Then,
L, makes correct the following translation:

[z] ==,

M=, [tAs] =Tt] Als],

[L]1=1, [tVs]=Tt]V[s],
a1 = [61" (L),

so that each fixed-point term is equivalent on £,, to a term with no fixed-points.
For each n > 0, let

o(n) =min{i > 0] L, |5 ¢ (L) = ¢'(1) },

where we write £, | ¢'T!(L) = ¢*(L) to mean that the equation ¢t (L) =
#*(L) holds on every lattice in £,. Proposition 7.4 shows that o(n) < n + 1.
The following Proposition exhibits a lower bound for o:

-2
n3 <o(n).

Proposition 7.5. Let
d(z)=aANDBV(cA(aV (DA (cV2))))).

For each n > 0 there exists an atomistic lattice L € L3py2, a valuation v, and
an atom a of L such that a < ¢" (L) but a £ ¢"(L).

Proof. Let us define a sequence Ay, ..., A3, of atomisitic presentations.
We let Ag = ({ vo,wo,v_1,w_1,v_9 }, M) where

M(Z) = {{Z}}a S {UJ(),’U},l,U72},
M(v_1) = {{v-1 },{w_1,v-2}},
M(vo) = {{vo },{wo,v—1},{wo,v_1,v-2}}.
To define the presentation 4,1, given A,, let A(w) denote the presentation
of the powerset of {w }: A(w) = ({w }, M), with M(w) = {{w}}. Let us sup-

pose A, = (V,, M) with V,, = {v_a,v_1,v0,...,05 } U{w_1,wo,wy,...,wy, }.
Let F = {wp41,vn } and define

An+1 - A(wn+1) @anrl,}" An .
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Clearly, £(A, M) € L3p1o.
Next, for each n > 0, let v : {a,b,c} — P(V3,) be the function defined as

follows:

v(a) ={v; |In=0 mod3}U{w;|i=-1 mod3}
v() ={v;|i=-2 mod3}U{w;|i=0 mod3}
v(ie)={wv;|i=-1 mod3}U{w;|i=-2 mod3}U{}.

Claim 7.6: For each z € {a,b,c}, v(z) is closed.

Let C C v(z) with C € M(y). If C is not a singleton then for some k =
—1,...,3n, {wg,vg—1 } € C Cu(z). It is easily seen that this is not the case, as
by construction, if wy, € v(z) then vi_1 & v(z). We deduce that C is a singleton,
whence it is the singleton {y }; form {y } C v(z) we deduce y € v(z).

Claim 7.7: For each n >0, v3, |y ¢"T1 (L) and v3, = ¢™(L).

The proof is by induction on n > 0. Of course, vy £ ¢°(L) = L. We leave
the reader to verify that vy = ¢(.L).

Next we suppose that v, E ¢"T1(L) and v3, £ ¢"(L). Again, we leave
the reader to verify that vs,i 3 E ¢""2(L). We verify next that vs,i3 £
¢"*1(L). Suppose on the contrary that vs,is3 = ¢"T1(L). Then there exists
C € M (vsn+3) such that, if y € C, then y Ebor y = c. As {wsnt3,V3n42 } 1S
the only cover if v, 3 which is colored just by b, ¢, we have C' = { wsp43, Usnt2 },
whence v3p12 Ey cA(aV (DA (eV@™(L)))). Up to symmetry, the same argument
shows that vg,r1 oy bA (¢ V @"(L)) and vs, [y ¢™(L). Thus we obtain a
contradiction, and deduce that vz, 3 & ¢"T1(L). O

8 Towards a correspondence theory

The goal of this section is twofold. On one side, we hint that many first order
properties of an O D-graph correspond to equational properties of their lattices.
We are far from understanding the general mechanism of this correspondence,
but we believe exploring this direction is a research objective worth to be pur-
sued. Our second goal is to generalize Nation’s and Semenova’s result stating
that finite lattices, whose sequences of the relation D have length at most n,
form a pseudovariety.

8.1 T-shapes
In the following T shall denote a fixed finite tree rooted at to.

Definition 8.1. A T'-shape in (J(L), <, M) is a function f : T — J(L) such
that f is locally injective and sends sons to a partial cover. That is, for each
teT,

L f:{t'|t<t'} = {f(t")|t=<t}isabijection,

32



2. there exists C; € M(f(t)), Ct # {j}, such that { f(¥') |t <t} C C}.

We shall say that there is a T-shape at j € J(L) if for some T-shape f we
have f(to) = j.
Remark 8.2. Notice that we can express existence of a T-shape within the first
order theory of the two-sorted structure (J(L), ;¢ 1,y M(j), €, <), where jaC
means that C' € M(j).

For each t € T, let x4, y; be distinct variables. We define

U, — Ty, if ¢ is a leaf,
b ¢ A (ye V Vyop Urr), if tis an internal node.

We shall use the notation Ur for U, where tq is the root of T'.
A T-shape gives rise to an interpretation (we call it vs) of the variables in
UT:

vr(ze) = f(1), vr(ye) =V (CANLFE) 1<),
Lemma 8.3. The intepretation vy satisfies the equation
x; = Uy,
forallteT.

Proof. That’s clear if ¢ is a leaf. Let us suppose that the equality holds for all
t' such that ¢ < ¢'. Let us prove it holds for ¢ as well.

U= fO A ) v\ FE) = FOA\Cr=F(t) =,

t<t!
since Cy € M(f(t)). O

Next, we define terms W; as follows:

Wt: \/(Q?t/\Utf)V \/(Q?t/\(ytVWtf\/ \/ Ut”))
t<t’ t<t’ t < if

t' £t
As before, Wr shall denote the term Wy, .
Lemma 8.4. If f is a T-shape, then f(t) £ Wi (vs), for each t € T.

Proof. The proof is by induction on the structure of the tree. This is clear if ¢

is a leaf, since f(t) is join-irreducible — hence distinct from L — and W; = L.
Suppose next that t is not a leaf. If f(¢t) < Wi(vy) then for some cover

C € M(f(t)) such that, if ¢ € C then ¢ < f(t) and ¢ < f(t') (since Uy = f(t'))
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or ¢ < V(Ct \ f(t')). However, the fact that C' < { f(¢) } implies C' = { f(¢) }.
We deduce therefore that for some ¢’ with ¢ < ¢/, either f(¢) < f(¢') or

F) < V(G FE) U{ Wy (vr) } -

The first case cannot be, as f(t') € Cy which is a nontrivial cover of f(t).
The second case cannot be, for the following reason. If this was the case,
then — by minimality of the cover C; — we would have

f(t") = Up(vp) = W (vy),

contradicting the induction hypothesis.
We derive therefore that f(t) £ Wi(vy). O

Proposition 8.5. j € J(L) satisfies the equation
Ur <Wr
if and only if there is no T-shape f with f(to) = j.

Proof. The previous Lemmas show that if j satisfies the equation Ur < Wr,
then there is no T-shape f at j. Otherwise, for vy we have j = vy(to) = Uy, (vy),
and .7 g Wto (Uf)

For the converse, we prove by induction on the structure of the tree that if
there is no t-shape at j, then U; < W, — for an arbitrary valuation v.

The statement trivially holds if ¢ is a leaf, since the condition there is no
t-shape at j is always false.

Let us suppose that ¢ has a nonempty set of sons and that, for these sons,
the statement holds. We suppose that there is no ¢-shape at j and that j < Uy,
we shall show that 7 < W;.

From j < U, we deduce that j < z; and that there exists C € M(j) such
that C < {y: }U{Up |t <t'}. fC ={j}, then j <y; or j < Uy for some ¢’
with ¢ < ¢/, and in both cases we derive j < W;:

J<m ANy < Wy, J<a AUy < Wy
Otherwise C' is a nontrivial cover and we can partition it as
C=Puwl{P |t=<t}

so that, if ¢ € P;, then ¢ < y;, and if ¢ € Py, then ¢ < Uy. Notice that some of
the elements of the partition, i.e. P; or some Py, might be the emptyset.

Next, if for each #' such that ¢ < ¢’ there is ¢y € Py with a #'-shape from
¢, then we can easily construct a t-shape from j — notice that we need here the
Py to be disjoint. As this is not the case, then there is at least one ¢’ such that
t < t' and, moreover, if ¢ € Py , then there is no t'-shape from c¢. Then ¢ € Py
implies ¢ < Uy and, by the inductive hypothesis, ¢ < Wy.
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Therefore, we have C < {y;, Wy yU{U; |t < t,t #t'}, thus

jSCUt/\(yt\/Wt/V \/ U{)SWt
t<t
t £t
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