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Introduction

It is known [START_REF] Thaller | The Dirac Equation[END_REF] that the free Dirac Hamiltonian H m acting in the Hilbert space H := L 2 (R 3 ; C 4 ) is unitarily equivalent to the operator h(P ) ⊕ -h(P ), where P := -i∇ and R 3 ∋ ξ → h(ξ) := (ξ 2 + m 2 ) 1/2 . For this reason, the set {±m} = h (∇h) -1 ({0}) of critical values of h plays an important role in spectral analysis and scattering theory for Dirac operators. For instance, one cannot prove at ±m the usual limiting absorption principle for operators H m + V , even with V a regular perturbation of H m , by using standard commutator methods. Both the statements and the proofs have to be modified (see e.g. [START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF][START_REF] Iftimovici | Limiting absorption principle at critical values for the Dirac operator[END_REF]).

In this paper, we provide a new account on the spectral analysis of Dirac operators at the critical values by discussing the behaviour at ±m of the spectral shift function associated to sign-definite perturbations of Dirac operators with non-constant magnetic fields. Our work is closely related to [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF] where G. D. Raikov treats a similar issue in the case of magnetic Pauli operators. It can also be considered as a complement of [START_REF] Richard | On the spectrum of magnetic Dirac operators with Coulomb-type perturbations[END_REF], where general properties of the spectrum of Dirac operators with variable magnetic fields of constant direction and matrix perturbations are determined. Other related results on the spectrum of 3-dimensional magnetic Dirac operators can be found in [START_REF] Berthier | On the point spectrum of Dirac operators[END_REF][START_REF] Sh | The periodic Dirac operator is absolutely continuous[END_REF][START_REF] Boutet De Monvel-Berthier | Limiting absorption principle for the Dirac operator[END_REF][START_REF] Bruneau | Asymptotics of the scattering phase for the Dirac operator: high energy, semiclassical and non-relativistic limits[END_REF][START_REF] Evans | Eigenvalue estimates in the semi-classical limit for Pauli and Dirac operators with a magnetic field[END_REF][START_REF] Georgescu | On the spectral theory of singular Dirac type Hamiltonians[END_REF][START_REF] Grigis | Finitude des lacunes dans le spectre de l'opérateur de Schrödinger et de celui de Dirac avec des potentiels électrique et magnétique périodiques[END_REF][START_REF] Hachem | Effet Zeeman pour un électron de Dirac[END_REF][START_REF] Helffer | Sur le spectre de l'équation de Dirac (dans R 2 ou R 3 ) avec champ magnétique[END_REF][START_REF] Ivrii | Microlocal analysis and precise spectral asymptotics[END_REF][START_REF] Melgaard | Eigenvalue asymptotics for weakly perturbed Dirac and Schrödinger operators with constant magnetic fields of full rank[END_REF][START_REF] Robert | Semiclassical asymptotics for the spectral shift function[END_REF][START_REF] Saito | Eigenfunctions at the threshold energies of magnetic Dirac operators[END_REF][START_REF] Thaller | Dirac particles in magnetic fields[END_REF].

Let us describe the content of this paper. We consider a relativistic spin-1 2 particle evolving in R 3 in presence of a variable magnetic field of constant direction. By virtue of the Maxwell equations, we may assume with no loss of generality that the magnetic field has the form B(x 1 , x 2 , x 3 ) = 0, 0, b(x 1 , x 2 ) .

The system is described in H by the Dirac operator

H 0 := α 1 Π 1 + α 2 Π 2 + α 3 P 3 + βm,
where β ≡ α 0 , α 1 , α 2 , α 3 are the usual Dirac-Pauli matrices, m > 0 is the mass of the particle and Π j := -i∂ j -a j are the generators of the magnetic translations with a vector potential a(x 1 , x 2 , x 3 ) = a 1 (x 1 , x 2 ), a 2 (x 1 , x 2 ), 0 that satisfies B = ∂ 1 a 2 -∂ 2 a 1 . Since a 3 = 0, we write P 3 = -i∂ 3 instead of Π 3 . We assume that the function b : R 2 → R is continuous (see Section 2 for details), so that H 0 , defined on C ∞ 0 (R 3 ; C 4 ), can be extended uniquely to a selfadjoint operator in H with domain D(H 0 ) .

Then we consider a bounded positive multiplication operator V ∈ C R 3 ; B h (C 4 ) , where B h (C 4 ) is the set of 4 × 4 hermitian matrices, and define the perturbed Hamiltonian H ± := H 0 ± V . Since V is bounded and symmetric, the operator H ± is selfadjoint in H and has domain D(H) = D(H 0 ). We also assume that |V (x)| decays more rapidly than |x| -3 as |x| → ∞ and that

(H ± -z) -3 -(H 0 -z) -3 ∈ S 1 (H) for each z ∈ R \ {σ(H 0 ) ∪ σ(H ± )}, (1.1) 
where S 1 (H) denotes the set of trace class operators in H. Under these assumptions, there exists a unique function ξ( • ; H ± , H 0 ) ∈ L 1 R; (1 + |λ|) -4 dλ such that the Lifshits-Krein trace formula

Tr f (H ± ) -f (H 0 ) = R dλ f ′ (λ) ξ(λ; H ± , H 0 ) (1.2)
holds for each f ∈ C ∞ 0 (R) (see [START_REF] Yafaev | Mathematical scattering theory[END_REF]Sec. 8.11]). The function ξ( • ; H ± , H 0 ) is called the spectral shift function for the pair (H ± , H 0 ). It vanishes identically on R \ {σ(H 0 ) ∪ σ(H ± )}, and can be related to the number of eigenvalues of H ± in (-m, m) (see Remark 4.5). Morever, for almost every λ ∈ σ ac (H 0 ) the spectral shift function is related to the scattering matrix S(λ; H ± , H 0 ) for the pair (H ± , H 0 ) by the Birman-Krein formula det S(λ; H ± , H 0 ) = e -2πiξ(λ;H± ,H0) .

After identification of ξ( • ; H ± , H 0 ) with some representative of its equivalence class, our results are the following. In Proposition 4.4, we show that there exists a constant ζ > 0 defined in terms of b (cf. Proposition 2.1) such that ξ( • ; H ± , H 0 ) is bounded on each compact subset of (-

m 2 + ζ, m 2 + ζ) \ {±m} and is continuous on (-m 2 + ζ, m 2 + ζ) \ {±m} ∪ σ p (H ± )
. In Theorem 6.5, we determine the asymptotic behaviour of ξ(λ; H ± , H 0 ) as λ → ±m, |λ| < m, and in Theorem 6.14, we determine the asymptotic behaviour of ξ(λ; H ± , H 0 ) as λ → ±m, |λ| > m. In both cases, one has ξ(λ; H ± , H 0 ) → ±∞ as λ → ∓m. The divergence of ξ(λ; H ± , H 0 ) near λ = ±m scales as the number of eigenvalues near 0 of certain Berezin-Toeplitz type operators. When V admits a power-like or exponential decay at infinity, or when it has a compact support, we give the first term of the asymptotic expansion of ξ(λ, ; H ± , H 0 ) near λ = ±m (see Proposition 6.10 and Corollary 6.17). In these cases, we show that the limits

lim εց0 ξ m + ε; H -, H 0 ξ m -ε; H -, H 0 and lim εց0 ξ -m -ε; H + , H 0 ξ -m + ε; H + , H 0
exist and are equal to positive constants depending on the decay rate of V at infinity (see Corollary 6.18 for a precise statement). This can be interpreted as a generalised version of Levinson's Theorem for the pair (H ± , H 0 ) (see [START_REF] Klaus | On the Levinson theorem for Dirac operators[END_REF][START_REF] Ma | The Levinson theorem[END_REF] for usual versions of Levinson's Theorem for Dirac operators). The relation between the behaviour of the spectral shift function near λ = +m and near λ = -m is explained in Remark 6.15 by using the charge conjugation symmetry. These results are similar to the results of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF] (where Pauli operators with non-constant magnetic fields are considered) and [START_REF] Fernández | On the singularities of the magnetic spectral shift function at the Landau levels[END_REF] (where Schrödinger operators with constant magnetic field are considered). Part of the interest of this work relies on the fact that we were able to exhibit a non-trivial class of matrix potentials V satisfying (1.1) even though H 0 is not a bounded perturbation of the free Dirac operator. We refer to Remark 3.3 and Section 7 for a discussion of this issue.

Let us fix the notations that are used in the paper. The norm and scalar product of H ≡ L 2 (R 3 ; C 4 ) are denoted by • and • , • . The symbol ⊗ stands for the closed tensor product of Hilbert spaces and S p (H), p ∈ [1, ∞], denotes the p-th Schatten-von Neumann class of operators in H (S ∞ (H) is the set of compact operators in H). We denote by • p the corresponding operator norm. The variable x ∈ R 3 is often written as x ≡ (x ⊥ , x 3 ), with x ⊥ ∈ R 2 and x 3 ∈ R. The symbol Q j , j = 1, 2, 3, denotes the multiplication operator by

x j in H, Q := (Q 1 , Q 2 , Q 3 ), and Q ⊥ := (Q 1 , Q 2 )
. Sometimes, when the context is unambiguous, we consider the operators Q j and P j as operators in L 2 (R) instead of H without changing the notations. Given a selfadjoint operator A in a Hilbert space G, the symbol E A ( • ) stands for the spectral measure of A.

Unperturbed operator

Throughout this paper we assume that the component b : R 2 → R of the magnetic field B ≡ (0, 0, b) belongs to the class of "admissible" magnetic fields defined in [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]Sec. 2.1]. Namely, we assume that b = b 0 + b, where b 0 > 0 is a constant while the function b : R 2 → R is such that the Poisson equation ∆ ϕ = b admits a solution ϕ : R 2 → R, continuous and bounded together with its derivatives of order up to two. We also define ϕ 0 (x

⊥ ) := 1 4 b 0 |x ⊥ | 2 for each x ⊥ ∈ R 2 and set ϕ := ϕ 0 + ϕ.
Then we obtain a vector potential a ≡ (a 1 , a 2 , a 3 ) ∈ C 1 (R 2 ; R 3 ) for the magnetic field B by putting

a 1 := ∂ 1 ϕ, a 2 := ∂ 2 ϕ and a 3 := 0.
(changing, if necessary, the gauge, we shall always assume that the vector potential a is of this form). We refer to [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF] for further properties and examples of admissible magnetic fields.

Since the vector potential a belongs to L ∞ loc (R 2 ; R 3 ), the magnetic Dirac operator

H 0 = α 1 Π 1 + α 2 Π 2 + α 3 P 3 + βm satisfies all the properties of [33, Sec. 2.1]. The operator H 0 is essentially selfadjoint on C ∞ 0 (R 3 ; C 4 ), with domain D(H 0 ) ⊂ H 1/2 loc (R 3 ; C 4 ), the spectrum of H 0 satisfies σ(H 0 ) = σ ac (H 0 ) = (-∞, -m] ∪ [m, ∞), (2.1) 
and we have the identity

H 2 0 =    H - ⊥ ⊗1+1⊗(P 2 3 +m 2 ) 0 0 0 0 H + ⊥ ⊗1+1⊗(P 2 3 +m 2 ) 0 0 0 0 H - ⊥ ⊗1+1⊗(P 2 3 +m 2 ) 0 0 0 0 H + ⊥ ⊗1+1⊗(P 2 3 +m 2 )    (2.2)
with respect to the tensorial decomposition

L 2 (R 2 ) ⊗ L 2 (R) of L 2 (R 3 ).
Here the operators H ± ⊥ are the components of the Pauli operator

H ⊥ := H - ⊥ ⊕ H + ⊥ in L 2 (R 2 ; C 2
) associated with the vector potential (a 1 , a 2 ). We recall from [27, Sec. 2.2] that dim ker(H - ⊥ ) = ∞, that dim ker(H + ⊥ ) = 0 and that we have the following result. and osc( ϕ) := sup

x ⊥ ∈R 2 ϕ(x ⊥ ) -inf x ⊥ ∈R 2 ϕ(x ⊥ ).
Finally, since (0, ζ) ⊂ R \ σ(H ⊥ ), we know from [START_REF] Richard | On the spectrum of magnetic Dirac operators with Coulomb-type perturbations[END_REF]Thm. 1.2.(d)] that the limits

lim εց0 Q 3 -ν3/2 (H 0 -λ ∓ iε) -1 Q 3 -ν3/2 , ν 3 > 1, (2.3) 
exist for each λ ∈ (-m 2 + ζ, m 2 + ζ) \ {±m} (note that we use the usual notation

• := 1 + | • | 2 ).

Perturbed operator

We consider now the perturbed operators H ± = H 0 ± V , where V ≡ {V jk } is the multiplication operator associated to the following matrix-valued function V .

Assumption 3.1. The function V ∈ C R 3 ; B h (C 4 ) satisfies for each x ≡ (x ⊥ , x 3 ) ∈ R 3 and each j, k ∈ {1, . . . , 4}

V (x) ≥ 0 and |V jk (x)| ≤ Const. x ⊥ -ν ⊥ x 3 -ν3
for some ν ⊥ > 2 and ν 3 > 1.

(3.1)

The potential V in Assumption 3.1 is short-range along x 3 . So we know from [33, Thm. 1.2] that Using the formula

(i) σ ess (H ± ) = σ ess (H 0 ) = (-∞, -m] ∪ [m, ∞). (ii) The point spectrum of H ± in -m 2 + ζ, m 2 + ζ \ {±m}
(A + λ) -γ = Γ(γ) -1 ∞ 0 dt t γ-1 e -t(A+λ) , A : D(A) → H, A ≥ 0, λ, γ > 0,
the diamagnetic inequality [1, Thm. 2.3], and the compactness criterion [9, Thm. 5.7.1], we find that

|V jk | 1/2 ℓ≤3 Π * ℓ Π ℓ + m 2 -1/4 ∈ S ∞ [L 2 (R 3 )].
Since b is bounded this implies that

|H 0 | -1/2 V |H 0 | -1/2 ≤ |H 0 | -1/2 j,k≤4 |V jk | |H 0 | -1/2 ∈ S ∞ (H). So |H 0 | -1/2 V |H 0 | -1/2 also belongs to S ∞ (H), since S ∞ (H) is an hereditary C * -subalgebra of B(H) [24, Cor. 3.2.3]. One has in particular V 1/2 (|H 0 | + 1) -1/2 ∈ S ∞ (H). (3.2) 
The standard criterion [START_REF] Reed | Methods of modern mathematical physics[END_REF]Thm. XI.20] shows that

|V jk | 1/2 -∆ + m 2 -γ ∈ S q [L 2 (R 3 )] if q ∈ [2, ∞) and γq > 3/2.
This together with arguments as above implies that

V 1/2 |H 0 | -γ ∈ S q (H) if q ≥ 2 is even and γq > 3. (3.3) 
So we have in particular that

V 1/2 E H0 (B) ∈ S 2 (H) for any bounded borel set B ⊂ R. (3.4)
In the sequel we shall need a more restrictive assumption on V . For this, we recall that there exists numbers z ∈ R \ {σ(H 0 ) ∪ σ(H ± )} since H 0 and H ± have a common spectral gap in (-m, m). We also set R 0 (z

) := (H 0 -z) -1 and R ± (z) := (H ± -z) -1 for z ∈ C \ σ(H 0 ) and z ∈ C \ σ(H ± ), respectively. Assumption 3.2. The function V ∈ C R 3 ; B h (C 4 ) satisfies for each x ∈ R 3 and each j, k ∈ {1, . . . , 4} V (x) ≥ 0 and |V jk (x)| ≤ Const. x -ν for some constant ν > 3. (3.5) Furthermore, V is chosen such that R 3 ± (z) -R 3 0 (z) ∈ S 1 (H) for each z ∈ R \ {σ(H 0 ) ∪ σ(H ± )}. (3.6) 
Note that (3.5) implies (3.1) if one takes ν 3 ∈ (1, ν -2) and ν ⊥ := ν -ν 3 . Note also that the choice of function λ → (λ -z) -3 in the trace class condition (3.6) has been made for convenience. Many other choices would also guarantee the existence of the spectral shift function for the pair (H ± , H 0 ) (see e.g. [START_REF] Yafaev | Mathematical scattering theory[END_REF]Sec. 8.11]). Remark 3.3. Since the operator H 0 is not a bounded perturbation of the free Dirac operator, we cannot apply the results of [START_REF] Yafaev | A trace formula for the Dirac operator[END_REF]Sec. 4] to prove the inclusion (3.6) under the condition (3.5). In general, one has to impose additional assumptions on V to get the result. For instance, if V verifies (3.5), and

(i) [V, α 1 ] = [V, α 2 ] = 0, (ii) for each x ∈ R 3 and each j, k, ℓ ∈ {1, . . . , 4}, one has |(∂ ℓ V jk )(x)| ≤ Const. x -ς for some ς > 3, (iii) for each j, k, ℓ ∈ {1, . . . , 4}, one has (∂ ℓ ∂ 3 V jk ) ∈ L ∞ (R 3 ), then (3.6) is satisfied. Furthermore, if V is scalar,

then the same is true without assuming (iii) (and (i) is trivially satisfied). The proof of these statements can be found in the appendix. Here, we only note that a matrix

V ∈ B h (C 4 ) satisfying (i) is necessarily of the form V = v1 0 v3 0 0 v2 0 v3 v3 0 v2 0 0 v3 0 v1 , with v 1 , v 2 ∈ R and v 3 ∈ C.

Spectral shift function

In this section we recall some results due to A. Pushnitski on the representation of the spectral shift function for a pair of not semibounded selfadjoint operators.

Given a a Lebesgue measurable set B ⊂ R, we set µ(B) := 1 π B dt 1+t 2 , and note that µ(R) = 1. Furthermore, if T = T * is a compact operator in a separable Hilbert space G, we set n ± (s; T ) := rank E ±T (s, ∞) for s > 0.

Then we have the following estimates.

Lemma 4.1 (Lemma 2.1 of [26]). Let T 1 = T * 1 ∈ S ∞ (H) and T 2 = T * 2 ∈ S 1 (H).
Then one as for each

s 1 , s 2 > 0 R dµ(t) n ± (s 1 + s 2 ; T 1 + tT 2 ) ≤ n ± (s 1 ; T 1 ) + 1 πs 2 T 2 1 .
For z ∈ C \ σ(H 0 ), we define the usual weighted resolvent

T (z) := V 1/2 (H 0 -z) -1 V 1/2
and the corresponding real and imaginary parts

A(z) := Re T (z) and B(z) := Im T (z).
Then the next lemma is direct consequence of the inclusions (3. 

+ i0) := lim εց0 B(λ + iε) ≥ 0 exist in S 4 (H).
Next theorem follows from the inclusions (3.2), (3.4), (3.6), from the equations (1.9), (8.1), (8.2) of [START_REF] Pushnitski | The spectral shift function and the invariance principle[END_REF], and from Theorem 8.1 of [START_REF] Pushnitski | The spectral shift function and the invariance principle[END_REF].

Theorem 4.3. Let V satisfy Assumption 3.2. Then, for almost every λ ∈ R, ξ(λ; H ± , H 0 ) exists and is given by

ξ(λ; H ± , H 0 ) = ± R dµ(t) n ∓ 1; A(λ + i0) + tB(λ + i0) . (4.1)
We know from (2.3) that A(λ + i0) and B(λ

+ i0) exist in B(H) for each λ ∈ (-m 2 + ζ, m 2 + ζ) \ {±m}.
In Propositions 5.2-5.3 and Corollary 5.5 below we show that in fact A(λ+i0) ∈ S 4 (H) and B(λ+i0

) ∈ S 1 (H) for each λ ∈ (-m 2 + ζ, m 2 + ζ) \ {±m}.
Hence, by Lemma 4.1, the r.h.s. of (4.1) will turn out to be well-defined for every λ ∈ (-

m 2 + ζ, m 2 + ζ) \ {±m}.
In the next proposition we state some regularity properties of the function

(-m 2 + ζ, m 2 + ζ) \ {±m} ∋ λ → ξ(λ; H ± , H 0 ) := ± R dµ(t) n ∓ 1; A(λ + i0) + tB(λ + i0) .
The proof (which relies on Propositions 5.2-5.3, Lemma 5.4, Corollary 5.5 and the stability result [START_REF] Gesztesy | The Ξ operator and its relation to Krein's spectral shift function[END_REF]Thm. 3.12]) is similar to the one of [START_REF] Bruneau | Spectral shift function in strong magnetic fields[END_REF]Sec. 4

.2.1]. Proposition 4.4. Let V satisfy Assumption 3.1. Then ξ( • ; H ± , H 0 ) is bounded on each compact subset of (-m 2 + ζ, m 2 + ζ) \ {±m} and is continuous on (-m 2 + ζ, m 2 + ζ) \ {±m} ∪ σ p (H ± ) .
In the sequel, we identify the functions ξ( • ; H ± , H 0 ) and ξ( • ; H ± , H 0 ) since they are equal for almost every λ ∈ R due to Theorem 4.3 (see [START_REF] Safronov | Spectral shift function in the large coupling constant limit[END_REF] for a study where the r.h.s. of (4.1) is directly treated as a definition of ξ(λ; H ± , H 0 )). Remark 4.5. In the interval (-m, m), H 0 has no spectrum and the spectrum of H ± is purely discrete. Thus the spectral shift function ξ( • ; H ± , H 0 ) can be related to the number of eigenvalues of H ± as follows: for [START_REF] Pushnitski | The spectral shift function and the invariance principle[END_REF]Thm. 9.1])

λ 1 , λ 2 ∈ (-m, m) \ σ(H ± ) with λ 1 < λ 2 , we have (see
ξ(λ 1 ; H ± , H 0 ) -ξ(λ 2 ; H ± , H 0 ) = rank E H± [λ 1 , λ 2 ) .

Decomposition of the weighted resolvent

In this section we decompose the weighted resolvent

T (z) = V 1/2 (H 0 -z)V 1/2 , z ∈ C \ σ(H 0 ), into a sum T (z) = T div (z) + T bound (z)
, where T div (z) (respectively T bound (z)) corresponds to the diverging (respectively non-diverging) part of T (z) as z → ±m. Then we estimate the behaviour, in suitable Schatten norms, of each term as z → ±m. We refer to [START_REF] Fernández | On the singularities of the magnetic spectral shift function at the Landau levels[END_REF]Sec. 4] and [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]Sec. 4.2] for similar approaches in the case of the Schrödinger and Pauli operators.

Let a and a * be the closures in L 2 (R 2 ) of the operators given by

aϕ := (Π 1 -iΠ 2 )ϕ and a * ϕ := (Π 1 + iΠ 2 )ϕ, for ϕ ∈ C ∞ 0 (R 2 )
. Then one has (see [START_REF] Thaller | The Dirac Equation[END_REF]Sec. 5.5.2] and [START_REF] Raikov | Eigenvalue asymptotics for the Dirac operator in strong constant magnetic fields[END_REF]Sec. 5])

H 0 = m 0 1⊗P3 a⊗1 0 m a * ⊗1 -1⊗P3 1⊗P3 a⊗1 -m 0 a * ⊗1 -1⊗P3 0 -m , (5.1) 
with ker(a * ) = ker(aa

* ) = ker(H - ⊥ ) ⊂ L 2 (R 2 ). (5.2)
Now, let P := P 0 0 0 0 0 0 0 0 0 P 0 0 0 0 0 be the orthogonal projection onto the union of the eigenspaces of H 0 corresponding to the values λ = ±m. Since P ≡ p ⊗ 1 is the orthogonal projection onto ker(H - ⊥ ) ⊗ L 2 (R), the equations (5.1) and (5.2) imply that H 0 and P commute:

H -1 0 P = PH -1 0 . (5.3)
In fact, by using (2.2) and (5.1), one gets for each z ∈ C \ σ(H 0 ) the equalities

(H 0 -z) -1 P = (H 0 + z) H 2 0 -z 2 -1 P = p ⊗ R(z 2 -m 2 ) (z+m) 0 0 0 0 0 0 0 0 0 (z-m) 0 0 0 0 0 + p ⊗ P 3 R(z 2 -m 2 ) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 , where R(z) := P 2 3 -z -1 , z ∈ C \ [0, ∞), is the resolvent of P 2 3 in L 2 (R). This allows us to decompose T (z) as T (z) = T div (z) + T bound (z), with T div (z) := V 1/2 p ⊗ R(z 2 -m 2 ) (z+m) 0 0 0 0 0 0 0 0 0 (z-m) 0 0 0 0 0 V 1/2 , T bound (z) := V 1/2 p ⊗ P 3 R(z 2 -m 2 ) 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 V 1/2 + V 1/2 (H 0 -z) -1 P ⊥ V 1/2 (P ⊥ := 1 -P).
One may note that this decomposition of T (z) differs slightly from the simpler decomposition

T (z) = V 1/2 (H 0 -z)PV 1/2 + V 1/2 (H 0 -z)P ⊥ V 1/2 ,
since the first term in T bound (z) is associated to the projection P and not the projection P ⊥ . This choice is motivated by the will of distinguishing clearly the contribution T div (z), that diverge as z → ±m, from the contribution T bound (z), that stays bounded as z → ±m.

For λ ∈ R \ {0}, we can define the boundary value R(λ) of the resolvent R(z) as the operator with convolution kernel r λ ( • ), where

r λ (x 3 ) :=    e - √ -λ|x 3 | 2 √ -λ if λ < 0, i e √ λ|x 3 | 2 √ λ if λ > 0,
for each x 3 ∈ R. So, we can extend the definition of T div ( • ) to the values λ ∈ R \ {±m}:

T div (λ) := V 1/2 p ⊗ R(λ 2 -m 2 ) (λ+m) 0 0 0 0 0 0 0 0 0 (λ-m) 0 0 0 0 0 V 1/2 .
In the following proposition, we show that the trace norm of T div (z) is continuous in C + := {z ∈ C | Im(z) ≥ 0} outside the points z = ±m, where it may diverge as |z ∓ m| -1/2 . The proof of the proposition relies on a technical result that we now recall. Lemma 5.1 (Lemma 2.4 of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]). Let U ∈ L q (R 2 ), q ∈ [1, ∞), and assume that b is an admissible magnetic field. Then pU p ∈ S q [L 2 (R 2 )], and

pU p q Sq[L 2 (R 2 )] ≤ b 0 2π e 2osc( e ϕ) U q L q (R 2 ) .
The symbol y + denotes the postive part of y ∈ R.

Proposition 5.2. Let V satisfy Assumption 3.1. Then the operator-valued function

C + \ {±m} ∋ z → T div (z) ∈ S 1 (H)
is well-defined and continuous. Moreover, we have for each λ ∈ R \ {±m} the bound

T div (λ) 1 ≤ Const. λ+m λ-m 1/2 + λ-m λ+m 1/2 1 + (λ 2 -m 2 ) 1/4 + .
Proof. We have for each z ∈ C \ σ(H 0 ) the identity

T div (z) = M G ⊗ J z 2 -m 2 (z+m) 0 0 0 0 0 0 0 0 0 (z-m) 0 0 0 0 0 M,
where

M := V 1/2 Q ⊥ ν ⊥ /2 Q 3 ν3/2 , (5.4) 
G := Q ⊥ -ν ⊥ /2 p Q ⊥ -ν ⊥ /2 , (5.5) 
J z := Q 3 -ν3/2 R(z) Q 3 -ν3/2 .
The operator M is bounded due to Assumption 3.1. So

T div (z) 1 ≤ Const. (|z + m| + |z -m|) G 1 J z 2 -m 2 1 .
But we know from Lemma 5.1 that G 1 ≤ Const., and from [6, Sec. 4.1] that the operator-valued function C + \ {0} ∋ z → J z is continuous in the trace norm and admits the bound

J λ 1 ≤ Const. 1 + λ 1/4 + |λ| -1/2 , λ ∈ R \ {0}.
It follows that

T div (z) 1 ≤ Const. λ+m λ-m 1/2 + λ-m λ+m 1/2 1 + (λ 2 -m 2 ) 1/4 +
for each λ ∈ R \ {±m}.

In the following proposition, we show that the function

z → T bound (z) ∈ S 4 (H) is continuous in C \ (-∞, -m 2 + ζ] ∪ [ m 2 + ζ, ∞) . The symbols H ± stand for the operators H ± := H ± ⊥ ⊗ 1 + 1 ⊗ P 2 3
acting in L 2 (R 3 ).

Proposition 5.3. Let V satisfy Assumption 3.1. Then the operator-valued function

C \ (-∞, -m 2 + ζ] ∪ [ m 2 + ζ, ∞) ∋ z → T bound (z) ∈ S 4 (H)
is well-defined and continuous. Moreover, we have for each λ ∈ (-

m 2 + ζ, m 2 + ζ) the bound T bound (λ) 4 ≤ Const. |λ| + λ 2 1 + (λ 2 -m 2 +1)+ ζ+m 2 -λ 2 + Const.
(5.6)

Proof. One has the identity

(H 0 -z) -1 = H -1 0 + z 1 + zH -1 0 H 2 0 -z 2 -1
for each z ∈ C \ σ(H 0 ). Thus the operator T bound (z) can be written as

T bound (z) = M G ⊗ S z 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 M + V 1/2 H -1 0 P ⊥ V 1/2 + zV 1/2 1 + zH -1 0 H 2 0 -z 2 -1 P ⊥ V 1/2 (5.7) ≡ T 1 (z) + T 2 + T 3 (z),
with M and G given by (5.4)-(5.5), and

S z := Q 3 -ν3/2 P 3 R(z 2 -m 2 ) Q 3 -ν3/2 .
The integral kernel of S z is

i 2 x 3 -ν3/2 (x3-x ′ 3 ) |x3-x ′ 3 | e i √ z 2 -m 2 |x3-x ′ 3 | x ′ 3 -ν3/2 , (5.8) 
with the branch of √ z 2 -m 2 chosen so that Im √ z 2 -m 2 > 0. So S z extends to an element of S 2 [L 2 (R)] for each z ∈ C, with S z 2 ≤ Const. Since M is bounded and G 1 ≤ Const., this implies that

T 1 (z) 2 ≤ Const. M 2 G 1 S z 2 ≤ Const.
(5.9)

for each z ∈ C. One also has T 2 4 ≤ Const.

(5.10) due to (3.3). So, it only remains to bound the term

T 3 (z). Let z ∈ C \ {(-∞, -m 2 + ζ] ∪ [ m 2 + ζ, ∞)} and P ⊥ := 1 -P . Then H -+ m 2 -z 2 -1 P ⊥ and H + + m 2 -z 2 -1 belong to B[L 2 (R 3 )],
and we have

H -+ m 2 -z 2 -1 P ⊥ = P ⊥ H -+ m 2 -z 2 -1 . Thus H 2 0 -z 2 -1 P ⊥ V 1/2 = H 2 0 -z 2 -1 P ⊥ 0 0 0 0 1 0 0 0 0 P ⊥ 0 0 0 0 1 V 1/2 =   P ⊥ (H -+m 2 -z 2 ) -1 0 0 0 0 (H + +m 2 -z 2 ) -1 0 0 0 0 P ⊥ (H -+m 2 -z 2 ) -1 0 0 0 0 (H + +m 2 -z 2 ) -1   V 1/2 ,
and

H 2 0 -z 2 -1 P ⊥ V 1/2 2 2 ≤ 2 M 2 P ⊥ H -+ m 2 -z 2 -1 M 2 2 2 + H + + m 2 -z 2 -1 M 2 2 2 ,
where

M 2 := Q ⊥ -ν ⊥ /2 Q 3 -ν3/2
. But, we know from the proof of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]Prop. 4.4] that

P ⊥ (H -+ m 2 -z 2 ) -1 M 2 2 ≤ Const. C(z) and (H + + m 2 -z 2 ) -1 M 2 2 ≤ Const. C(z),
where

C(z) := sup y∈[ζ,∞) y + 1 |y + m 2 -z 2 |
.

It follows that

T 3 (z) 2 ≤ Const. zV 1/2 1 + zH -1 0 M C(z) ≤ Const. |z| + |z| 2 C(z).
(5.11)

The claim follows then by putting together (5.9), (5.10), and (5.11).

In the next lemma we give some results on the imaginary part of the operator S z in L 2 (R) appearing in the proof of Proposition 5.3 Then one shows by using (5.8) that Im S λ is equal to the rank two operator

S z = Q 3 -ν3/2 P 3 R(z 2 -m 2 ) Q 3 -ν3/2 , z ∈ C \ σ(H 0 ), ν 3 > 1.
Im S λ = v λ , • u λ + u λ , • v λ , with u λ (x 3 ) := x 3 -ν3/2 sin x 3 √ λ 2 -m 2 and v λ (x 3 ) := -i 2 x 3 -ν3/2 cos x 3 √ λ 2 -m 2 .
Since v λ , u λ = 0, this implies that

| Im S λ | p = u λ p v λ , • v λ + v λ p u λ , • u λ . Thus Im S λ p p = Tr | Im S λ | p = u λ p v λ 2 + v λ p u λ 2 .
This, together with the equality lim λ→±m, |λ|>m u λ = 0, implies the claim.

In the next corollary we combine some of the results of Propositions 5.2, 5. 

Im T bound (λ) = M G ⊗ Im S λ 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 M,
with M and G defined by (5.4)-(5.5). Since M is bounded and G 1 ≤ Const., this implies (5.13).

Proof of the main results

We begin this section by showing that the value of ξ(λ; H, H ± ) as λ → ±m is bounded from below and from above by expressions involving only the term T div (λ) of the decomposition T (λ + i0) = T div (λ) + T bound (λ).

Then we consider separately the limits λ → ±m with |λ| < m and the limits λ → ±m with |λ| > m.

We start by recalling two standard properties of the counting functions n ± . Given two compact operators T 1 = T * 1 and T 2 = T * 2 in a separable Hilbert space G, we have the Weyl inequalities n ± (s 1 + s 2 ; T 1 + T 2 ) ≤ n ± (s 1 ; T 1 ) + n ± (s 2 ; T 2 ) for each s 1 , s 2 > 0. 

R dµ(t) n ± 1 + ε; Re T div (λ) + t Im T div (λ) + O(1) ≤ ∓ξ(λ; H ∓ , H 0 ) ≤ R dµ(t) n ± 1 -ε; Re T div (λ) + t Im T div (λ) + O(1)
hold as λ → ±m for each ε ∈ (0, 1).

Proof. Using (5.12), the Weyl inequalities (6.1), and Lemma 4.

1 we get R dµ(t) n ± 1 + ε; Re T div (λ) + t Im T div (λ) -n ∓ ε/2; Re T bound (λ) - 2 πε Im T bound (λ) 1 ≤ R dµ(t) n ± 1; A(λ + i0) + tB(λ + i0) ≤ R dµ(t) n ± 1 -ε; Re T div (λ) + t Im T div (λ) + n ± ε/2; Re T bound (λ) + 2 πε Im T bound (λ) 1 . (6.3)
Due to (6.2), we have n ± ε/2; Re T bound (λ) ≤ 16 ε -4 T bound (λ) 4 4 , which combined with (5.6) gives n ± ε/2; Re T bound (λ) = O(1) as λ → ±m.

Moreover, we know from (5.14) that

lim λ→±m Im T bound (λ) 1 = 0.
So the claim follows from the estimates (6.3) and Formula (4.1)

The case |λ| < m

In this section we prove asymptotic estimates for ξ(λ; H, H ± ) as λ → ±m with |λ| < m. We start with a corollary of Proposition 6.1, which follows from the fact that Im T div (λ) = 0 and Re T div (λ) = T div (λ) for λ ∈ (-m, m).

Corollary 6.2. Let V satisfy Assumption 3.2. Then the estimates

n ± 1 + ε; T div (λ) + O(1) ≤ ∓ξ(λ; H ∓ , H 0 ) ≤ n ± 1 -ε; T div (λ) + O(1)
hold as λ → ±m, |λ| < m, for each ε ∈ (0, 1).

Define the bounded operators K

± : H → L 2 (R 2 ; C 4 ) by (K + ϕ)(x ⊥ ) := R 3 dx ′ ⊥ dx ′ 3 p(x ⊥ , x ′ ⊥ ) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V 1/2 (x ′ ⊥ , x ′ 3 )ϕ(x ′ ⊥ , x ′ 3 ), (K -ϕ)(x ⊥ ) := R 3 dx ′ ⊥ dx ′ 3 p(x ⊥ , x ′ ⊥ ) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 V 1/2 (x ′ ⊥ , x ′ 3 )ϕ(x ′ ⊥ , x ′ 3 ),
where p( • , • ) is the integral kernel of the projection p. One shows easily that K * ± : L 2 (R 2 ; C 4 ) → H are given by

(K * + ψ)(x ⊥ , x 3 ) = V 1/2 (x ⊥ , x 3 )
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(pψ)(x ⊥ ), (K * -ψ)(x ⊥ , x 3 ) = V 1/2 (x ⊥ , x 3 ) 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 (pψ)(x ⊥ ),
and that

O + (λ) := 1 2 m+λ m-λ 1/2 K * + K + and O -(λ) := -1 2 m-λ m+λ 1/2 K * -K - belong to S 2 (H) for each λ ∈ (-m, m).
In the next proposition we show that the functions n ± • ; T div (λ) as λ → ±m, |λ| < m, can be bounded, up to O(1) terms, from below and from above by expressions involving O ± (λ). Proposition 6.3. Let V satisfy Assumption 3.2. Then the estimates

n + (1 + ε)s; O + (λ) + O(1) ≤ n + s; T div (λ) ≤ n + (1 -ε)s; O + (λ) + O(1), (6.4) 
O(1) ≤ n -s; T div (λ) ≤ O(1), (6.5)

hold as λ ր m, for each ε ∈ (0, 1) and s > 0, and the estimates

O(1) ≤ n + s; T div (λ) ≤ O(1), (6.6) n -(1 + ε)s; O -(λ) + O(1) ≤ n -s; T div (λ) ≤ n -(1 -ε)s; O -(λ) + O(1), (6.7)
hold as λ ց -m, for each ε ∈ (0, 1) and s > 0.

Proof. We only give the proof of (6.4)-(6.5), since the proof of (6.6)-(6.7) is similar. In point (i) below we show that the difference T div (λ) -O + (λ) can be approximated in norm, as λ ր m, by a compact operator independent of λ. Then we prove (6.4)-(6.5) in point (ii) by using this result. (i) Let λ ∈ (-m, m) and take ν ′ ∈ (3, ν). A direct calculation shows that

T div (λ) -O + (λ) = M G ν-ν ′ ⊗ J (λ) ν ′ (λ+m) 0 0 0 0 0 0 0 0 0 (λ-m) 0 0 0 0 0 M + O -(λ), (6.8) 
where J

(λ)

ν ′ : L 2 (R) → L 2 (R) is given by J (λ) ν ′ ψ (x 3 ) := -x 3 -ν ′ /2 R dx ′ 3 e -1 2 √ m 2 -λ 2 |x3-x ′ 3 | √ m 2 -λ 2 sinh √ m 2 -λ 2 |x 3 -x ′ 3 | 2 x ′ 3 -ν ′ /2 ψ(x ′ 3 ), and 
M := V 1/2 Q ⊥ (ν-ν ′ )/2 Q 3 ν ′ /2 , (6.9) G ν-ν ′ := Q ⊥ -(ν-ν ′ )/2 p Q ⊥ -(ν-ν ′ )/2 . (6.10)
The operator M is bounded due to Assumption 3.2, G ν-ν ′ is compact in L 2 (R 2 ; C 4 ) due to Lemma 5.1, and

O -(λ) satisfies lim λ→m, |λ|<m O -(λ) 2 = 0. (6.11) Define T ± := M G ν-ν ′ ⊗ J (m) ν ′ (m±m) 0 0 0 0 0 0 0 0 0 -(m∓m) 0 0 0 0 0 M , (6.12) 
with

J (m) ν ′ : L 2 (R) → L 2 (R) given by J (m) ν ′ ψ (x 3 ) := -1 2 x 3 -ν ′ /2 R dx ′ 3 |x 3 -x ′ 3 | x ′ 3 -ν ′ /2 ψ(x ′ 3 ). Since ν ′ > 3, J (m) ν ′ belongs to S 2 [L 2 (R)]
, and T ± is compact in H. Moreover, by using Lebesgue's dominated convergence theorem, one shows that

lim λ→±m, |λ|<m J (m) ν ′ -J (λ) ν ′ 2 2 = 0.
This, together with (6.8), (6.11) and (6.12), implies that

lim λրm T div (λ) -O + (λ) -T + = 0.
(6.13) (ii) Take λ ∈ (-m, m), ε ∈ (0, 1), and s > 0. Using the Weyl inequalities (6.1) we get

n ± (1 + ε)s; O + (λ) -n ∓ εs; T div (λ) -O + (λ) ≤ n ± s; T div (λ) ≤ n ± (1 -ε)s; O + (λ) + n ± εs; T div (λ) -O + (λ) .
Now we have n -t; O + (λ) = 0 for each t > 0 and λ ∈ (-m, m), since O + (λ) is a positive operator. So, to prove (6.4)-(6.5), it is sufficient to show that n ± εs; T div (λ) -O + (λ) = O(1) as λ ր m, for each ε ∈ (0, 1) and s > 0. Let t > 0 be fixed. Then we know from (6.13) that we can chose λ + ∈ (-m, m), close enough to m, so that T div (λ + ) -O + (λ + ) -T + < t/2. Thus, using again the Weyl inequalities, we get

n ± t; T div (λ + ) -O + (λ + ) ≤ n ± t/2; T div (λ + ) -O + (λ + ) -T + + n ± t/2; T + = n ± t/2; T + .
Since the r.h.s. is independent of λ + we have shown that n ± t; T div (λ) -O + (λ) = O(1) as λ ր m. This concludes the proof of (6.4)-(6.5).

We show now that the counting functions n ± • ; O ± (λ) in Proposition 6.3 can be rewritten in terms of Berezin-Toeplitz type operators. Define for each λ ∈ (-m, m)

ω + (λ) := 1 2 m+λ m-λ 1/2 pW + p and ω -(λ) := -1 2 m-λ m+λ 1/2 pW -p,
where the functions W ± : R 2 → R are given by

W + (x ⊥ ) := R dx 3 V 11 (x ⊥ , x 3 ) and W -(x ⊥ ) := R dx 3 V 33 (x ⊥ , x 3 ). (6.14)
Under the condition (3.5) one has

0 ≤ W ± (x ⊥ ) ≤ Const. x ⊥ -ν+1 for all x ⊥ ∈ R 2 ,
and 

ω ± (λ) ∈ S 1 [L 2 (R 2 )] if V
for any B ∈ B(H 1 , H 2 ) such that B * B ∈ S ∞ (H 1
). Moreover, one can easily check that

K + K * + = 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 pW + p and K -K * -= 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 pW -p. Thus n + s; O + (λ) = n + s; 1 2 m+λ m-λ
1/2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

pW + p = n + s; 1 2 m+λ m-λ 1/2 pW + p = n + s; ω + (λ) .
The proof of the second equality in (6.15) is similar.

The next theorem is direct consequence of Corollary 6.2 and Propositions 6.3-6.4.

Theorem 6.5. Let V satisfy Assumption 3.2. Then one has for each ε ∈ (0, 1)

O(1) ≤ ξ(λ; H + , H 0 ) ≤ O(1) (6.17) 
-n + 1 -ε; ω + (λ) + O(1) ≤ ξ(λ; H -, H 0 ) ≤ -n + 1 + ε; ω + (λ) + O(1) (6.18) 
as λ ր m, and

n -1 + ε; ω -(λ) + O(1) ≤ ξ(λ; H + , H 0 ) ≤ n -1 -ε; ω -(λ) + O(1) (6.19) O(1) ≤ ξ(λ; H -, H 0 ) ≤ O(1) (6.20) 
as λ ց -m.

Remark 6.6. The inequalities (6.17) together with Remark (4.5) imply that the eigenvalues of H 0 + V in (-m, m) near +m (if any) do not accumulate at +m. On the other hand the inequalities (6.18) tell us that the number of eigenvalues of H 0 -V in (-m, m) near λ = +m scales, up to O(1) terms, as

n + s; ω + (λ) ≡ rank E pW+p s m-λ m+λ 1/2 , ∞ with s ≈ 2.
Accordingly, the problem of counting the number of eigenvalues of H 0 -V in (-m, m) near +m reduces to the problem of counting the number of eigenvalues of the positive Berezin-Toeplitz type operator pW + p near 0. The inequalities (6.19)-(6.20) lead to similar conclusions on the number of eigenvalues of H 0 ±V in (-m, m) near -m. One can compare these results with the results of [START_REF] Cojuhari | On the finiteness of the discrete spectrum of the Dirac operator[END_REF] and [START_REF] Iftimovici | Limiting absorption principle at critical values for the Dirac operator[END_REF] on the finiteness in (-m, m) of the discrete spectrum of the Dirac operator perturbed by a matrix potential Q ≡ {Q jk (x)} 4 j,k=1 . In Corollary 2.2 of [START_REF] Cojuhari | On the finiteness of the discrete spectrum of the Dirac operator[END_REF], the author shows that the spectrum in (-m, m) of the Dirac operator perturbed by Q is finite if the 2 × 2 diagonal blocks of Q are of order O |x| -2-δ and the anti-diagonal blocks are of order O |x| -1-δ , for some δ > 0 as |x| → ∞. In Corollary 2.1 of [START_REF] Iftimovici | Limiting absorption principle at critical values for the Dirac operator[END_REF], the authors show that the Dirac operator perturbed by γQ, with |γ| small enough and

Q jk (x) ≤ x -2 , j, k ∈ {1, 2, 3, 4},
does not have any point spectrum. Therefore, in our case where Q = -α 1 a 1 -α 2 a 2 + V , we would not have had any accumulation of eigenvalues in (-m, m) if we would have imposed such decay assumptions on the magnetic part -α 1 a 1 -α 2 a 2 of the perturbation.

As seen in Theorem 6.5 the behaviour of the function ξ( • ; H ± , H 0 ) in (-m, m) depends on the distribution of eigenvalues of the trace class operator pW ∓ p. In our next proposition we shall exhibit different types of behaviours depending on the choice of the functions V 11 and V 33 appearing in W ± . For that purpose, we first have to recall some technical results taken from [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF], [START_REF] Raikov | Spectral asymptotics for the perturbed 2D Pauli operator with oscillating magnetic fields. I. Non-zero mean value of the magnetic field[END_REF] and [START_REF] Raikov | Quasi-classical versus non-classical spectral asymptotics for magnetic Schrödinger operators with decreasing electric potentials[END_REF].

In the first lemma, an integrated density of states (IDS) for the operator

H - ⊥ in L 2 (R 2
) is defined as follows (see e.g. [START_REF] Doi | The uniqueness of the integrated density of states for the Schrödinger operators with magnetic fields[END_REF][START_REF] Hupfer | Existence and uniqueness of the integrated density of states for Schrödinger operators with magnetic fields and unbounded random potentials[END_REF]): Let χ T,x ⊥ be the characteristic function of the square

x ⊥ + -T 2 , T 2 2 
, with x ⊥ ∈ R 2 and

T > 0. Then a non-increasing function ̺ : [0, ∞) → R is called IDS for the operator H - ⊥ if for each x ⊥ ∈ R 2 it satisfies ̺(λ) = lim T →∞ T -2 Tr χ T,x ⊥ (Q ⊥ )E H - ⊥ (-∞, λ) χ T,x ⊥ (Q ⊥ ) for each point λ ∈ R of continuity of ̺. Lemma 6.7 (Lemma 3.3 of [27]). Let U ∈ C 1 (R 2 ) satisfy 0 ≤ U (x ⊥ ) ≤ Const. x ⊥ -α and (∇U )(x ⊥ ) ≤ Const. x ⊥ -α-1
for all x ∈ R 2 and some α > 0. Assume moreover that

• U (x ⊥ ) = u x ⊥ |x ⊥ | 1 + o(1) as |x ⊥ | → ∞
, where u is a continuous function on S 1 which does not vanish identically,

• b is an admissible magnetic field,

• there exists an IDS ̺ b for the operator H - ⊥ .

Then we have

n + s; pU p = b 0 2π x ⊥ ∈ R 2 | U (x ⊥ ) > s 1 + o(1) = Ψ α (s; u, b 0 ) 1 + o(1) as s ց 0,
where | • | denotes the Lebesgue measure, and

Ψ α (s; u, b 0 ) := s -2/α b 0 4π S 1
dϑ u(ϑ) 2/α , s > 0. (6.21) Lemma 6.8 (Lemma 3.4 of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]).

Let 0 ≤ U ∈ L ∞ (R 2 ). Assume that ln U (x ⊥ ) = -η|x ⊥ | 2β 1 + o(1) as |x ⊥ | → ∞,
for some η, β > 0. Let b be an admissible magnetic field. Then we have

n + s; pU p = Φ β (s, η, b 0 ) 1 + o(1) as s ց 0,
where

Φ β (s, η, b 0 ) :=      b0 2η 1/β | ln(s)| 1/β if β ∈ (0, 1), 1 ln(1+2η/b0) | ln(s)| if β = 1, β β-1 ln | ln(s)| -1 | ln(s)| if β > 1,
s ∈ (0, e -1 ). (6.22) Lemma 6.9 (Lemma 3.5 of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]). Let 0 ≤ U ∈ L ∞ (R 2 ). Assume that the support of U is compact, and that there exists a constant C > 0 such that U ≥ C on an open non-empty subset of R Combining Theorem 6.5 with Lemmas 6.7-6.9 we obtain the behaviour of ξ(λ; H ± , H 0 ) as |λ| → m, |λ| < m, when the functions W ± admit a power-like or exponential decay at infinity, or when they have a compact support. (c) Assume that the hypotheses of Lemma 6.9 hold with U ± = W ± . Then we have

ξ(λ; H -, H 0 ) = -Φ ∞ 2 m-λ m+λ 1/2 1 + o(1) as λ ր m, and 
ξ(λ; H + , H 0 ) = Φ ∞ 2 m+λ m-λ 1/2 1 + o(1) as λ ց -m,
with Φ ∞ given by Equation (6.23).

The estimates of Proposition 6.10 are similar to the ones of [START_REF] Raikov | Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields[END_REF]Cor. 3.6], where the corresponding situation for magnetic Pauli operators is considered.

The case |λ| > m

In this section we prove asymptotic estimates for ξ(λ; H, H ± ) as λ → ±m, when |λ| > m. We start by showing an estimate for n ± s; Re T div (λ) . Proof. Take λ ∈ R with |λ| > m, and let ν ′ ∈ (3, ν). Then we have

Re T div (λ) = M G ν-ν ′ ⊗ R (λ) ν ′ (λ+m) 0 0 0 0 0 0 0 0 0 (λ-m) 0 0 0 0 0 M ,
with M and G ν-ν ′ as in (6.9)-(6.10), and

R (λ) ν ′ := Q 3 -ν ′ /2 Re R(λ 2 -m 2 ) Q 3 -ν ′ /2 .
By using Lebesgue's dominated convergence theorem, one shows that

lim λ→±m, |λ|>m
Re T div (λ) -T ± = 0, with T ± as in (6.12). So the claim can be proved as in point (ii) of the proof of Proposition 6.3.

The next result follows from applying Propositions 6.1 and 6.11, the Weyl inequalities (6.1) and the identities [START_REF] Fernández | On the singularities of the magnetic spectral shift function at the Landau levels[END_REF]Sec. 5

.4] R dµ(t) n ± s; tT = π -1 Tr arctan(s -1 T ), s > 0, (6.24) 
where T ∈ S 1 (H), T = T * ≥ 0. We also use the fact that sgn(λ) Im T div (λ) is a positive operator if |λ| > m. As in the case |λ| < m, we introduce auxiliary operators in order to express the lower and upper bounds for ∓ξ(λ; H ∓ , H 0 ) in terms of Berezin-Toeplitz type operators. For λ ∈ R with |λ| > m, we define the operators K 1,λ , K 2,λ : H → L 2 (R 2 ; C 4 ) by

(K 1,λ ϕ)(x ⊥ ) := R 3 dx ′ ⊥ dx ′ 3 p(x ⊥ , x ′ ⊥ ) cos x ′ 3 λ 2 -m 2   √ |λ+m| 0 0 0 0 0 0 0 0 0 √ |λ-m| 0 0 0 0 0   V 1/2 (x ′ ⊥ , x ′ 3 )ϕ(x ′ ⊥ , x ′ 3 ), (K 2,λ ϕ)(x ⊥ ) := R 3 dx ′ ⊥ dx ′ 3 p(x ⊥ , x ′ ⊥ ) sin x ′ 3 λ 2 -m 2   √ |λ+m| 0 0 0 0 0 0 0 0 0 √ |λ-m| 0 0 0 0 0   V 1/2 (x ′ ⊥ , x ′ 3 )ϕ(x ′ ⊥ , x ′ 3 ).
Direct calculations show that the adjoint operators K * 1,λ , K * 2,λ : L 2 (R 2 ; C 4 ) → H are given by

(K * 1,λ ψ)(x ⊥ , x 3 ) = cos x 3 λ 2 -m 2 V 1/2 (x ⊥ , x 3 )   √ |λ+m| 0 0 0 0 0 0 0 0 0 √ |λ-m| 0 0 0 0 0   (pψ)(x ⊥ ), (K * 2,λ ψ)(x ⊥ , x 3 ) = sin x 3 λ 2 -m 2 V 1/2 (x ⊥ , x 3 )   √ |λ+m| 0 0 0 0 0 0 0 0 0 √ |λ-m| 0 0 0 0 0   (pψ)(x ⊥ ),
and that

sgn(λ) Im T div (λ) = 1 2 √ λ 2 -m 2 K * 1,λ K 1,λ + K * 2,λ K 2,λ .
This last equation can be written more compactly as

sgn(λ) Im T div (λ) = 1 2 √ λ 2 -m 2 K * λ K λ (6.25)
if we use the operator

K λ : H → L 2 (R 2 ; C 8 ), K λ ϕ := K 1,λ ϕ K 2,λ ϕ , with adjoint K * λ : L 2 (R 2 ; C 8 ) → H, K * λ ψ 1 ψ 2 = K * 1,λ ψ 1 + K * 2,λ ψ 2 .
For the next proposition we also need to introduce for each λ ∈ R with |λ| > m the positive operator

Ω(λ) : L 2 (R 2 ; C 8 ) → L 2 (R 2 ; C 8 ) defined by Ω(λ) := 1 2 √ λ 2 -m 2 K λ K * λ .
A direct calculation shows that

K λ K * λ = p M 1,λ M 2,λ M 2,λ M 3,λ p,
where

M 1,λ (x ⊥ ) := R dx 3 cos 2 x 3 λ 2 -m 2 |λ+m|V11(x ⊥ ,x3) 0 √ λ 2 -m 2 V13(x ⊥ ,x3) 0 0 0 0 0 √ λ 2 -m 2 V31(x ⊥ ,x3) 0 |λ-m|V33(x ⊥ ,x3) 0 0 0 0 0 , M 2,λ (x ⊥ ) = R dx 3 sin x 3 λ 2 -m 2 cos x 3 λ 2 -m 2 |λ+m|V11(x ⊥ ,x3) 0 √ λ 2 -m 2 V13(x ⊥ ,x3) 0 0 0 0 0 √ λ 2 -m 2 V31(x ⊥ ,x3) 0 |λ-m|V33(x ⊥ ,x3) 0 0 0 0 0 , M 3,λ (x ⊥ ) = R dx 3 sin 2 x 3 λ 2 -m 2 |λ+m|V11(x ⊥ ,x3) 0 √ λ 2 -m 2 V13(x ⊥ ,x3) 0 0 0 0 0 √ λ 2 -m 2 V31(x ⊥ ,x3) 0 |λ-m|V33(x ⊥ ,x3) 0 0 0 0 0 . This implies that Ω(λ) 1 ≤ λ+m λ-m 1/2 pW + p 1 + λ-m λ+m 1/2 pW -p 1 ,
and thus

Ω(λ) ∈ S 1 [L 2 (R 2 ; C 8 )] if V satisfies Assumption 3.1.
Next Proposition is a direct consequence of Equations (6.16) and (6.25). Proposition 6.13. Let V satisfy Assumption 3.1. Then we have for each λ ∈ R with |λ| > m and each s > 0

n ± s; sgn(λ) Im T div (λ) = n ± s; Ω(λ) .
In particular, it follows by Equation (6.24) that Tr arctan s -1 sgn(λ) Im T div (λ) = Tr arctan s -1 Ω(λ) . (6.26)

The combination of Corollary 6.12 and Equation (6.26) gives the following. Theorem 6.14. Let V satisfy Assumption 3.2. Then one has for each ε ∈ (0, 1)

±π -1 Tr arctan (1 ± ε) -1 Ω(λ) + O(1) ≤ ξ(λ; H ± , H 0 ) ≤ ±π -1 Tr arctan (1 ∓ ε) -1 Ω(λ) + O(1)
as λ → ±m, |λ| > m.

Remark 6.15. The fact that the operators ω ± (λ) and Ω(λ) in Theorems 6.5 and 6.14 depend in a distinguished way on the components V 11 and V 33 of V is due to our initial assumption b 0 > 0. Indeed, this choice implies that ker(H - ⊥ ) is non trivial, whereas ker(H + ⊥ ) = {0}. This lead us to introduce in Section 5 the projection P ≡ diag(P, 0, P, 0), which put into light the priviledged role of the components V 11 and V 33 of V .

The variation of ξ(λ; H ± , H 0 ) under the change λ → -λ can be explained using the antinunitary transformation of charge conjugation [START_REF] Thaller | The Dirac Equation[END_REF]Sec. 1.4.6] C

: H → H, ϕ → U C ϕ,
where U C := iβα 2 . Indeed, if we write H( a, ±V ) and H 0 ( a) for H ± and H 0 , then a direct calculation using the Lifshits-Krein trace formula (1.2) shows that a) . This obviously explains why the overall sign of the spectral shift function is reversed under the change λ → -λ. But it also explains why the roles of V 11 and V 33 are interchanged in the estimates. Indeed, the natural projection corresponding to the vector potential a is P = diag(P, 0, P, 0) since we have b 0 > 0 for a, whereas P ′ := diag(0, P, 0, P ) is the natural choice for the vector potential -a since we have b 0 < 0 for -a. Now, one has

CH( a, ±V )C -1 = -H(-a, ∓U C V U * C ), which entails ξ λ; H( a, ±V ), H 0 ( a) = -ξ -λ; H(-a, ∓U C V U * C ), H 0 (-
∓U C V U * C = ∓   V44 -V43 -V42 V41 -V34 V33 V32 -V31 -V24 V23 V22 -V21 V14 -V13 -V12 V11   .
So, the projection P which selects the components ±(V 11 , V 33 ) of the potential ±V is replaced, after the change λ → -λ, by the projection P ′ which selects the components ∓(V 33 , V 11 ) of the transformed potential ∓U C V U * C . For the next proposition we define for each λ ∈ R with |λ| > m the positive operator Ω (1) (λ) in L 2 (R 2 ; C 8 ) given by Ω (1) (6.29) Combining Equations (6.27)-(6.29), Theorem 6.14 and Lemmas 6.7-6.9, we get the following. (c) Suppose that V also satisfies (3.1) with ν ⊥ > 2 and ν 3 > 2, and assume that the hypotheses of Lemma 6.9 hold with U ± = W ± . Then we have Putting together the results of Proposition 6.10 and Corollary 6.17, we obtain the following. without assuming anything on the derivatives of V of order 2.

ξ(λ; H -, H 0 ) = - 1 2 Φ ∞ 2 m-λ

Proposition 2 . 1 .

 21 Let b be an admissible magnetic field with b 0 > 0. Then 0 = inf σ(H ⊥ ) is an isolated eigenvalue of infinite multiplicity. More precisely, we have dim ker(H ⊥ ) = ∞ and (0, ζ) ⊂ R \ σ(H ⊥ ), where ζ := 2b 0 e -2osc( e ϕ)

Lemma 4 . 2 .

 42 2)-(3.4) and [25, Prop. 4.4.(i)]. Let V satisfy Assumption 3.1. Then, for almost every λ ∈ R, the limits A(λ+i0) := lim εց0 A(λ+ iε) and B(λ

Lemma 5 . 4 .

 54 (a) One has Im S λ = 0 for each λ ∈ (-m, m). (b) Let p ≥ 1 be an integer. Then one has for each λ ∈ R with |λ| > m Im S λ p ≤ C p , where C p is a constant independent of λ. Furthermore lim λ→±m, |λ|>m Im S λ p = 0. Proof. (a) This is a direct consequence of the spectral theorem. (b) Let λ ∈ R, |λ| > m.

3 and Lemma 5. 4 . 5 . 5 .

 455 Corollary Let V satisfy Assumption 3.1. Then the identityT (λ + i0) = T div (λ) + T bound (λ)(5.12)holds for each λ ∈ (-m 2 + ζ, m 2 + ζ) \ {±m},and the estimate Im T bound (λ) p ≤ Const. Im S λ p (5.13) holds for each integer p ≥ 1 an each λ ∈ (-m 2 + ζ, m 2 + ζ). In particular, we have lim λ→±m Im T bound (λ) p = 0, (5.14) due to Lemma 5.4. Proof. The first identity follows from Propositions 5.2 and 5.3. Let λ ∈ (-m 2 + ζ, m 2 + ζ). Using (5.7) and the commutation rule (5.3) one obtains that

(6. 1 ). 2 ) 6 . 1 .

 1261 Moreover, if T = T * belongs to S p (G) for some p ∈ [1, ∞), then n ± (s; T ) ≤ s -p T p p for each s > 0. (6Proposition Let V satisfy Assumption 3.2. Then the estimates

2 .

 2 Let b be an admissible magnetic field. Then we have n + s; pU p = Φ ∞ (s) 1 + o(1) as s ց 0, where Φ ∞ (s) := ln | ln(s)| -1 | ln(s)|, s ∈ (0, e -1 ). (6.23)

Proposition 6 . 10 .

 610 Let V satisfy Assumption 3.2.(a) Assume that the hypotheses of Lemma 6.7 hold with U ± = W ± and α = ν -1. Then we haveξ(λ; H -, H 0 ) = -Ψ ν-1 2 m-λ m+λ 1/2 ; u + , b 0 1 + o(1) as λ ր m, and ξ(λ; H + , H 0 ) = Ψ ν-1 2 m+λ m-λ 1/2 ; u -, b 0 1 + o(1) as λ ց -m,with Ψ ν-1 given by Equation (6.21). (b) Assume that the hypotheses of Lemma 6.8 hold with U ± = W ± . Then we have ξ(λ; H -, H 0 ) = -Φ β+ 2 m-λ m+λ 1/2 ; η + , b 0 1 + o(1) as λ ր m, and ξ(λ; H + , H 0 ) = Φ β-2 m+λ m-λ 1/2 ; η -, b 0 1 + o(1) as λ ց -m, with β ± ∈ (0, ∞) and Φ β± given by Equation (6.22).

Proposition 6 . 11 .

 611 Let V satisfy Assumption 3.2. Then the estimates n ± s; Re T div (λ) = O(1) as λ → ±m, |λ| > m, hold for each s > 0.

Corollary 6 . 12 . 1

 6121 Let V satisfy Assumption 3.2. Then the estimatesπ -Tr arctan (1 + ε) -1 sgn(λ) Im T div (λ) + O(1) ≤ ∓ξ(λ; H ∓ , H 0 ) ≤ π -1 Tr arctan (1 -ε) -1 sgn(λ) Im T div (λ) + O(1)hold as λ → ±m, |λ| > m, for each ε ∈ (0, 1).

.Proposition 6 . 16 . 1 2 0 dt 1 + 0 dt 1 +

 61610101 (a) Let V satisfy Assumption 3.2 with ν ∈[START_REF] Sh | The periodic Dirac operator is absolutely continuous[END_REF][START_REF] Boussaid | Limiting absorption principle for some long range perturbations of Dirac systems at threshold energies[END_REF]. Then one has for each s > 0 and each δ ∈ 4-ν 2 ,Tr arctan s -1 Ω(λ)arctan s -1 Ω (1) (λ) = O |λ ∓ m| -δ as λ → ±m, |λ| > m.(b) Let V satisfy Assumption 3.1 with ν ⊥ > 2 and ν 3 > 2. Then one has for each s > 0Tr arctan s -1 Ω(λ)arctan s -1 Ω (1) (λ) = O(1) as λ → ±m, |λ| > m. (6.27) Proof. Points (a) and (b) are proved by using the Lifshits-Krein trace formula (1.2) with f (λ) = arctan(λ), λ ∈ R. We do not give the details, since the argument is analogous to the one of [12, Cor. 2.2].Note that if V satisfy Assumption 3.2 with ν ∈ (3, 4], we can choose δ ∈ 4-ν 2 , 1 ν-1 , and so Proposition 6.16.(a) entailsTr arctan s -1 Ω(λ)arctan s -1 Ω (1) (λ) = o |λ ∓ m| -1 ν-1 as λ → ±m, |λ| > m. (6.28) Moreover, if V satisfy Assumption 3.2 with ν > 4, then it satisfies Assumption 3.1 with ν ⊥ > 2 and ν 3 > 2, and, hence (6.27) is valid. Finally, we have for s > 0 and |λ| > m Tr arctan s -1 Ω (1) (λ) = ∞ t 2 n + 2st λ-m λ+m 1/2 ; pW + p + ∞ t 2 n + 2st λ+m λ-m 1/2 ; pW -p .

Corollary 6 . 17 . 2 Φ

 6172 Let V satisfy Assumption 3.2.(a) Assume that the hypotheses of Lemma 6.7 hold with U ± = W ± and α = ν -1. Then we haveξ(λ; H -, H 0 ) = -1 2 cos π/(ν -1) Ψ ν-1 2 λ-m λ+m 1/2 ; u + , b 0 1 + o(1) as λ ց m,andξ(λ; H + , H 0 ) = 1 2 cos π/(ν -1) Ψ ν-1 2 λ+m λ-m 1/2 ; u -, b 0 1 + o(1) as λ ր -m,with Ψ ν-1 given by Equation (6.21).(b) Suppose that V also satisfies (3.1) with ν ⊥ > 2 and ν 3 > 2, and assume that the hypotheses of Lemma 6.8 hold with U ± = W ± . Then we haveξ(λ; H -, H 0 ) = -1 β+ 2 λ-m λ+m 1/2 ; η + , b 0 1 + o(1) as λ ց m,andξ(λ; H -, H 0 ) = 1 2 Φ β-2 m+λ m-λ 1/2 ; η -, b 0 1 + o(1) as λ ր -m,with β ± ∈ (0, ∞) and Φ β± given by Equation (6.22).

m+λ 1/ 2 1 + o( 1 )1 + o( 1 )

 211 as λ ց m, and ξ(λ; H + , H 0 as λ ր -m, with Φ ∞ given by Equation (6.23).

Corollary 6 . 18 .ξRemark 7 . 3 . 3 ±

 618733 Under the assumptions of Corollary 6.17.(a), we havelim εց0 ξ m(1 -ε) -1 ; H -, H 0 ξ m(1 -ε); H -, H 0 = 1 2 cos π/(ν -1) = lim εց0 ξ -m(1 -ε) -1 ; H + , H 0 ξ -m(1 -ε); H + , H 0 ,and under the assumptions of Corollary 6.17.(b)-(c), we havelim εց0 ξ m(1 -ε) -1 ; H -, H 0 ξ m(1 -ε); H --m(1 -ε) -1 ; H + , H 0 ξ -m(1 -ε); H + , H 0 .When the potential V is scalar, the equations (7.1)-(7.2) reduce to the single equality[H 0 , H] = -iα • (∇V )in B D(H 0 ), D(H 0 ) * . So the calculations in points (i) and (iii) of the proof of Proposition 7.2 simplify accordingly, and we obtain the inclusion R (z) -R 3 0 (z) ∈ S 1 (H)

  is composed of eigenvalues of finite multiplicity and with no accumulation point.(iii) H ± has no singular continuous spectrum in -m 2 + ζ, m 2 + ζ . In particular, H 0 and H ± have a common spectral gap in (-m, m).

  satisfies Assumption 3.1 (see Lemma 5.1). Moreover, one has the following.

	Proposition 6.4. Let V satisfy Assumption 3.1. Then we have for each λ ∈ (-m, m) and s > 0
	n

± s; O ± (λ) = n ± s; ω ± (λ) . (6.15) Proof. Given s > 0 and two separable Hilbert spaces H 1 , H 2 , one has n ± s; B * B = n ± s; BB * (6.16)
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Appendix

We give in this appendix the proof of the inclusion (3.6) for the class of potentials V given in Remark 3.3. We start with a technical lemma. We use the notations α := (α 1 , α 2 , α 3 ) T and

Lemma 7.1. Let V be as in Remark 3. [START_REF] Sh | The periodic Dirac operator is absolutely continuous[END_REF]. Then (a) One has in B D(H 0 ), D(H 0 ) * the equalities

Proof. (a) We know from Lemma 2.2(b) of [START_REF] Richard | On perturbations of Dirac operators with variable magnetic field of constant direction[END_REF] that D(H 0 ) ⊂ D(P 3 ). So each member of Equations (7.1)

= 0, and denote by

Since D(H 0 ) ⊂ D(P 3 ), we also have lim n ϕ n -ϕ D(P3) = 0, and thus

This proves (7.1). Using (7.4), one also gets the equality (7.

2). (b)

In what follows, we omit the indices "±" to simplify the notations and we write B 1 , B 2 , . . . for elements of B(H). Since D(H) = D(H 0 ), we have

2), the equality D(H) = D(H 0 ), and the inclusion D(H 0 ) ⊂ D(P 3 ). This, together with the preceding equation, implies the first identity in (7.3). The second identity follows from the first one by adjunction.

Proposition 7.2. Take z ∈ R \ {σ(H 0 ) ∪ σ(H ± )} and let V be as in Remark 3.3. Then we have

Proof. In what follows, we omit the indices "±" to simplify the notations and we write B 1 , B 2 , . . . for elements of B(H). Differentiating twice the resolvent identity

we find that

So it is sufficient to show that each term on the r.h.s. belongs to S 1 (H). This is done in points (i), (ii) and (iii) below.

(i) For the term R(z)V R 3 0 (z), one has

is the product of two Hilbert-Schmidt operators, and thus belongs to S 1 (H). For the second term of (7.5), we have by (7.1)

Due to the hypotheses on V and (∂ j V ), one can use (3.3) to write the first and third term as a product of two Hilbert-Schmidt operators. So it only remains to show that H -2 0 [α 3 , V ]P 3 H -3 0 belongs to S 1 (H). For this, we use the inclusion D(H 0 ) ⊂ D(P 3 ) and the commutation of P 3 and H -1

This, together with (3.3), implies that

as the product of two Hilbert-Schmidt operators by using (

:

One shows that R 2 (z)V R(z)R 0 (z) ∈ S 1 (H) as in point (ii). For the second term, we have by (7.2) and (7.3)

Due to the hypotheses on V and (∂ j V ), one can use (7.3) and (3.3) to write the first, third, and fourth term as a product of two Hilbert-Schmidt operators. So it only remains to show that H -2 0 R(z)P 3 [α 3 , V ]H -2 0 belongs to S 1 (H). Using [32, Lemma 2.2(b)] and (7.3), one gets

The first term on the r.h.s. belongs to S 1 (H), and for the second term we have by (7.2) and (7.3)

Due to the hypotheses on V , (∂ j V ), and (∂ j3 V ), one can use (3.3) to show that the first, the second, the fourth, the fifth, and the sixth term are trace class. For the third term we have to use (3.3) and the fact that R(z)P 3 extends to a bounded operator.