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Abstract—By 2050, about a third of the French population
will be over 65. To face this modification of the population,
the current studies of our laboratory focus on the monitoring
of elderly people at home. This aims at detect, as early
as possible, a loss of autonomy by objectivizing criterions
such as the international ADL or the French AGGIR scales
implementing automatic classification of the different Activities
of Daily Living. A Health Smart Home is used to achieve this
goal. This flat includes different sensors. The data from the
various sensors were used to classify each temporal frame into
one of the activities of daily living that has been previously
learnt (seven activities: hygiene, toilets, eating, resting, sleeping,
communication and dressing/undressing). This is done using
Support Vector Machines. We performed an experimentation
with 13 young and healthy subjects to learn the model of
activities and then we tested the classification algorithm (cross-
validation) on real data.

Index Terms—Support vector machines, Activities of Daily
Living, Health Smart Homes, Sensor Fusion.

I. INTRODUCTION

HE average age of the population in the developed
T countries is increasingly growing due to improvements
in medicine. For the year 2050, the United Nations predict
22% of people over 65 in the world. The countries have to
be prepared to face this demographic modification so that
elderly can live in the best possible conditions.

That is the reason why researchers work on telemedicine
and telemonitoring solutions to allow elderly people to stay
at home as long as possible. Lots of projects include smart
homes to achieve this goal [1]. Several solutions are stud-
ied by laboratories and companies to monitor the health
of people at home. These solutions include different level
of complexity and technological challenges. Some projects
decided to monitor only few parameters to characterize the
health of the person. For instance, in France, Edelia monitors
the water consumption and its possible drift to detect behavior
modification and in Japan, Zojirushi Corporation is interested
by the use of the electric water boiler. For these two projects,
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families can have access to the uses and behaviours of the
person and will also be noticed of an important modification.

To complete this analysis and obtain a more detailed
description of the autonomy of the person, we can fuse a large
number of sensors distributed inside the flat to determine the
activities of daily living that are performed by the elderly
people. That has been begun in some projects throughout the
world. The CARE project [2] uses HMM (Hidden Markov
Models) with lots of sensors (localization, temperature...) in
a Health Smart Home and learns to recognize correctly, after
a training phase, the two activities “going to the toilets” and
“exit from the flat”. In another project [3], objects and foods
are tagged to create a model that distinguishes the activities
of preparing a drink (cold or hot) from the hygiene. Electrical
signatures analysis is another path that is tested in [4], [5] to
detect the different activities of daily living. In this article, we
focused on the use of Support Vector Machine to learn seven
different activities and classify them using sensors inside
the flat that will be described in the next sections. We also
performed an experimentation to learn the activities and test
the classification algorithm with cross-validation.

II. HEALTH SMART HOME FOR ACTIVITIES OF DAILY
LIVING RECOGNITION

A. The Grenoble Health Smart Home

In the year 1999, the researchers of the TIMC-IMAG labo-
ratory of Grenoble installed, inside the faculty of medicine of
Grenoble, a real F2 flat, with all the rooms and the comfort
required. This is composed of a bedroom, a living-room, a
hall, a kitchen (with cupboards, fridge...), a bathroom with
a shower and a cabinet.

This flat, in order to be used to monitor people at home,
has since been equipped with several sensors:

« Presence infra-red sensors, for the location of the person
inside the flat. These sensors are wirelessly linked to a
computer that save, into a database, all the detection
that occurs (time and detector). For this detector, each
time a movement is detected in its space, a detection
is sent. We can, as a consequence, have more than one
following detection on a given sensor.

o Door contacts for the detection of the use of some of
the commodities (cupboard, fridge and convenient).

o Microphones, to process sounds inside the flat. For
sounds of daily living, the software was trained in order
to recognize eight different classes (door clapping, door
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locking, step sound, dishes sound, phone ringing, fall
of an object, glass breaking and screaming). For the
speech processing, an autonomous speech recognizer
was designed to recognize the five most probable uttered
sentences for each given sound. The materials, software
and a primary validation of this modality, performed in
the Health Smart Home and compared to the results in
laboratory, are presented in [6]. This publication shows
that the signal to noise ratio of the Health Smart Home
have to be improved to ensure a detection as suitable as
the one in laboratory.

e An embedded (on the person) kinematic sensor,
equipped with a tri-axis accelerometer and a tri-axis
magnetometer. It allows the detection and classification
of each postural transition and so the knowledge of the
posture (sit, stand, lie) at each time. Moreover, it detects
the walking periods. The algorithms outputs the time
of the different changes of postures and the periods of
walking. It is described in more details in [6].

o Large angle webcams that are placed only to timestamp
the different activities of daily living, and further to
annotate data.

The distribution of the sensors is shown on the Figure 1.
The technical room also represented on this figure contains
the 4 different computers that receive and store the whole set
of information from the health smart home. The microphones
need a national instrument acquisition board and the other
connections use serial or usb port.

B. Activities of Daily Living

Geriatrics use Katz ADL (Activity of Daily Living) [7]
scale or AGGIR in France (Autonomy Gerontology Iso-
Resources Group) to evaluate the autonomy of the person,
by asking questions to the elderly people. Based on these
scales, we defined seven activities of daily living that were
interesting to monitor:

Organization and sensor distribution in the Health Smart Home of the TIMC-IMAG at the faculty of Medicine of Grenoble

o Sleeping - A bed is available in the bedroom for the
subject to sleep as long as he wants.

o Preparing and having a breakfast - The fully equipped
kitchen also contains the material and foods necessary
to take a breakfast. The diversity allows the occupier
to take whatever he wants and to prepare it in his way.
Then, he can clean up the kitchen and the dishes.

o Dressing and undressing - A set of wears are available
to dress and undress.

« Resting - This activity is the largest one. The inhabitant
can do whatever he wants and like to do during his free
time at home. He can read a book or a magazine, listen
to the radio or watch the TV...

o Hygiene activities - During this activity the inhabitant
is inside the bathroom and performs the normal hygiene
activities. As it is difficult to ask the subjects to take
a shower for a first experiment, we only asked them to
wash their hands and teeth. For privacy respect, neither
the bathroom nor the toilets are recorded on video. We
asked the subject to close completely or partially the
door whether he was respectively in the toilets or in the
bathroom in order to differentiate both activities.

« Elimination (going to the toilets) - For this activity, the
subject is in the toilets.

o Communication - This last activity consists in answering
a phone call and have conversations. In our protocol, the
subject is called five times on the phone and have to utter
different real-, previously created, phone conversations
which were randomly selected.

ITI. ALGORITHMS
A. Support Vector Machines

Numerous methods are available to classify samples from
training data. In our case, the weak number of available sam-
ples makes the learning process difficult for a large number
of them (Bayesian, Neural Network...). For this reason, we



decided to test the SVM (Support Vector Machines) method
that seems to fit more to our problem and that can be
used for training with small sets of data. Considering two
classes of points, labelled —1 and 1 ; and a set of N vectors
x; € X C R%i € [1;N] (d is the dimension of our input
space) with their associated class y; € {—1;1}. Supervised
learning is the problem of inferring a function f such as:

f: X CcRY = {-1;1}

from a set of observations and that will correctly classify the
maximum number of vectors z; and more important, that will
correctly describe the phenomenon responsible of the sepa-
ration between the two classes so that a new and unknown
point will be classified into the correct class (capacity of
generalization of the classifier).

Vapnik designed an algorithm, based on both ideas of
linear separation and maximization of the margin between
the separation and the nearest points of the training database
[8]. This margin will give the maximum of “safety” for the
generalization of the algorithm and its application to new
points. SVM are widely used and showed a good capacity
of generalization in various applications. Their construction
is performed determining an hyperplane whose equation is
(w,x) + wp = 0 (where w and wy are the parameters
of the equation of the hyperplane to determine). From this
hyperplane, we construct the function f given by:

(W, Xi) +wo>0=f=1

<W7Xi>+’w()<0:>f:_1 (1)

f is the output of the algorithm for a new point x;. The
hyperplane is constructed by solving the following equation
that maximizes the margin:

; . d _
arg max lglr}v{ﬂx—xl\\ cx € RY (w,x) + wy =0}

by solving the linear problem (using the lagrangian):
1
Min §||w||2 st. f((w,x3) +wo) >1,i=1.N (2)

The previous equation stands for the linearly separable
case but a large part of the problems are not included. In
all this formulation, every equations in which the points
of the training dataset appear rely only on inner product.
Based on [9], some functions K acts as an inner products
(K (x1,%x3) = (xi,%3)). Such function will map the input
space into a high-dimensional space (even infinite), named
feature space in which the separation could be linear. The
problem of determining the best kernel for a given application
is an open address. The resolution is obtainned by replacing
the dot products (-, -) in the lagrangian by the kernel K (-, -).
The construction of such a function follow the Mercer
conditions. We used two generic kernels for comparison in
our application:

« Polynomial kernel: K (xi,x;) = (x;7
2
« Gaussian kernel (RBF): K (x;,x;) = exp (—w)

Now, to realize Multiclass classification, three methods
exist (M-SVM, one-versus-one and one-versus-all). We se-
lected the one-versus-one method because it minimizes the
indetermination zone (compared to the one-versus-all) and it
does not necessitate larger training datasets to solve more
complex problems. This scheme consists in constructing
w classifiers, using all the pairwise combinations of
the N classes. In this case, we will construct binary classifiers
to differentiate the classes C; and C;, 0 < ¢ < N and
0 < j < i. To determine the class of a new point (the
isolated point on the figure for instance), a majority voting
is taken. Mathematically speaking, the decision is given by:
C= km1a>§VCard({yi’j} N{k}) where y; ; is the decision
given, for this new point, by the SVM trained to distinguish
the classes ¢ and j. In case of equality, the class chosen is
the one with the maximal margin from the final subset.

B. Features Extraction

The table I sums up the set of features selected for each
sensor. These features have been selected by performing pre-
experimentation on two subjects and finding the smallest set
of variables that describe the activities.

TABLE I
SUM-UP OF THE DIFFERENT MODALITIES WITH SELECTED FEATURES
AND THE ACTIVITY FOR WHICH IT IS INFORMATIVE

Examples of

Modality Features selected Information
Percentage of time  Sleeping (lying posture),
. spent in the different resting and cooking
Actimeter

posture (stand, sit, lie)  (walking and sitting

and walking

down)

Microphones

Number of events
per class and
number of events
per microphones

Communication (phone

ringing and speech),
cooking (dishes
sounds)...

PIR

Percentage of time in
each rooms and num-
ber of events for each
detectors

Cooking (in the
kitchen), hygiene (in the
bathroom), elimination
(in the cabinet)...

Door contacts

Percentage of time
in  “open” position
and predominant state
(open/close) in the
considered time slot

Cooking (use of the cup-
board and fridge), dress-
ing/undressing (use of
the convenient)

Environmental

Differential measure
for the last 15 minutes
for temperature and
hygrometry

Hygiene (use of the
shower)

IV. EXPERIMENTATIONS IN REAL ENVIRONMENT

A. Protocol

The experimental protocol was designed to construct a
training and validation database to test the previous algo-
rithm. For these measurements, 13 subjects (6 women and 7



men), young and healthy (mean age 30.4 years +5.9, 24-43
min-max), were enrolled. They firstly visited the whole flat
to be familiar with its organization and not to have to search
every things they need. Then, the only requirement was that
they have to perform at least one time each activity described
in the previous section. They have no notice on the order,
the time to spent for each activity etc. Once they consider
that they have finished they have to leave the flat and the
experimentation ends. While the experimentation runs, they
have no contact with the supervisors. The mean duration of
the experimentation was 55 minutes (23 minutes min and 1
hour 35 minutes max). Every things needed was available
(the food, the TV, few books, etc.) to complete the activities.

B. Data organization and validation method

The computers are synchronized using NTP (Network
Time Protocol) to have the same date and time. Then, they are
manually labelled using the video records. From these videos,
we constructed, for each experimentation, an XML file that
describe the date and time of beginning and end of each
activity. We work with fixed size time frames. These windows
are of length 3 minutes (that corresponds to the mean time
to correctly execute the shortest activity. Table II gives the
organization of the training dataset from this experimental
protocol. The validation method that has been chosen is the
leave-one-out (due to the weak number of samples). Data are
normalized (centered and reduced) at each execution of the
algorithm. The coefficients of normalization are determined
using the training database (without the tested sample) and
the last sample is normalized using the same coefficients.

TABLE 11
REPARTITION OF THE DIFFERENT CLASSES IN THE LEARNING DATASET
AND RESULTS FOR THE POLYNOMIAL KERNEL (DEGREE=2) AND
GAUSSIAN KERNEL (OPTIMAL VALUE OF o)

Classification results

Class Training size ~ Polynomial  Gaussian
Sleeping 49 77.55% 93.87%
Resting 75 76.71% 78.08%
Dressing 16 56.25% 75.00%
Eating 45 84.44% 97.78%
Elimination 16 68.75% 93.75%
Hygiene 14 50.00% 64.28%
Communication 17 89.47% 89.47%
Total 252 75.86% 86.21%

V. RESULTS, DISCUSSION AND CONCLUSION

Table II gives the results for both polynomial and Gaussian
kernel. For these two kernels, the hyper-parameter has been
optimized to minimize the global error rate. The first remark
is that Gaussian Kernel (with adapted parameter) is more
accurate than Polynomial one for our set of data. For this
kernel, resting, dressing and hygiene are less successfully
recognized. For the resting activity this is due to the large

panel of activities that could be done by the subject. On the
contrary to other ones, this activity is less restricted. For the
two others, this can be explained by the weak number of
samples in the training database giving a bad description of
it. But in general, without considering the context, the global
recognition rate is good and the results are promising.
These results are preliminary and we have to perform fur-
ther experimentations to construct a more important database
and allow to design a test database instead of using cross-
validation. It will allow us to test with other cross-validation
processes and determined more accurately the influence of
the kernel, of the hyper parameters and finally to have a better
evaluation of the generalization of this algorithm. It will be
also interesting to verify the importance of each sensor and
the comportment of different learning-based algorithms. This
work has already started and showed us that for the moment
the posture is badly recognized comparing to the results when
the sensor has been tested alone. The future of our work
will also be to annotate all the changes of posture and the
walking periods in the video and compare the results with
these more accurate data for this modality. A more important
database could also help us to construct another class, that
takes into account transition between two activities (here as
it is labelled, this is not a problem, but for a long term
analysis without labelling we will meet transitions) and also
to introduce knowledge into the process (time and location
are information that can reduce the set of probable activities).
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