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Robustness Analysis with Respect to Exogenous
Perturbations for Flatness-Based Exact Feedforward
Linearization

Veit Hagenmeyer, Emmanuel Delaleau

Abstract

A methodology to analyze robustness with respect to exageperturbations for exact feedforward lineariza-
tion based on differential flatness is presented. The aisalykes into consideration the tracking error equation and
makes thereafter use of a stability result by Kelemen calpl¢h results issued from interval analysis. This turns
exact feedforward linearization based on differentiahfias into a general control methodology for flat systems.

Index Terms

Nonlinear systems, tracking control, differential flatheexact feedforward linearization, stability analysis,
exogenous perturbations, robustness.

. INTRODUCTION

N order to emphasize that differential flatnesan also be considered from a trajectory point of view
(and not only from a feedback linearization one), the awghuave presented the concept exact
feedforward linearization based on differential flatnés43]. This concept allows to design the control
of nonlinear flat systems as a specific combination of a nonf@eaforward input and a simple feedback
stabilizing control. In [4], the authors presented furthere a method to analyze parametric robustness of
the proposed control scheme. Thus the results of [3], [4]tAnde presented here turn exact feedforward

linearization based on differential flatness into a geneoaltrol methodology for flat systems.

The purpose of the present contribution is to introduce astiess analysis methodology with respect to
exogenous perturbations and time-varying parametesplteisented by its application to exact feedforward
linearization in the case of the use of an extended PID-ldw@rol for the feedback part. A direct analysis
of the tracking error equation, to which the stability rédn) Kelemen [5] is applied, leads to the main
result of this contribution.

The contribution is organized as follows: Sec. Il geneeaithe notion of exact feedforward linearization
based on differential flatness to the case of exogenousrpations and time-varying parameters. Using
this result, Sec. lll establishes a specific control law giesnaking use of the nominal values of the
exogenous perturbations and time-varying parameterss firfathod leads to a specific tracking error
equation when exogenous perturbations are consideresidiscussed in Sec. IV. In Sec. V robustness
is proven for the presented control strategy.

II. EXACT FEEDFORWARDLINEARIZATION IN THE CONTEXT OF EXOGENOUSPERTURBATIONS

Differential flatness is a structural property of a classaflmear systems, for which, roughly speaking,
all system variables can be written in terms of a set of speeériables (the so-called flat outputs) and
their derivatives. In [3] it is demonstrated, that theseteys are linearizable by a nominal feedforward
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1See [1], [2] for an overview on differentially flat control stems.
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if the initial condition is known. Exact feedforward linézation is recalled in the context of exogenous
perturbations and time varying parameters after the foligvorief representation of differential flatness:

For the sake of simplicity, only SISO flat systems are considién the sequel without loss of generality
(cf. [3] for the MIMO case). Given the SISO nonlinear system

x(t) = feo(t),x(t),u(t)) (1)

with x(0) = x,. Thereby it holds that the timeec R, the statex(t) € R", and the inputu(¢) € R. The
exogenous perturbationfr time-varying system parameters)> zo(t) € R? are supposed to be modeled
either by known sufficiently smooth time functions in the ¢iwarying parameter case or close to physical
reality by consecutive Heaviside jumps with microstruetir the exogenous perturbation case. Heaviside
jumps with microstructure are a so-called clas$ieftiviside generalized functiof]. Roughly speaking,
Heaviside jumps with microstructure have an infinitely sthopump transition at the origin (and in an
e-neighborhood around it), therefore € C>. The exogenous perturbations or time-varying parameters
are supposed to be partitionable as:

=) = @Dt +@00), @) ela”, @], i=1,....q, j=0,....n—1  (2)
wherew, is the nominal value of the exogenous perturbafi@mrgime-varying parameters and their time
derivatives respectively. In (1) the vector fidid R? x R” x R — R" is considered to be smooth. The
system (1) is said to b@ifferentially) flag iff for all w(t) satisfying (2) there exists a flat output R,
such that

z = F(x) 3)
= ¢(IL 2, %,...,20"7Y) (4)
u = (I, z%,...,2™) (5)
with
m = [I, ... I0,]"
= [wl,z’vl,zbl,...,wgn_l),w%?'ﬂg,...,wq,...,wg"_l)]T

(CorrespondinglyIT, denotes the nominal value bf.) TherebyF', ¢ and are smooth functions at least
in open subsetsof R™, R+ or R™et)+1 respectively. For the sake of simplicity, it is furtherraor
assumed in the sequel that the flat output is independeRI of two ways: in (3), first the functior”’

is independent ofI, and second" is the same function for alll defined by (2.

The equatiorfs (4) and (5) yield —under the assumption of the knowledgdlef- that for every
given trajectory of the flat output— z(t), the evolution of all other variables of the systeém- x(t)
andt — wu(t) are given without integration of any differential equatidvioreover, for a sufficiently
smooth desired trajectory of the flat output> z*(¢), egn. (5) can be used to design the corresponding
feedforwardu*(¢) directly for the nominalll,. The trajectoryz* is called thenominal trajectory while
the trajectoryu* is called thenominal control The family of nominal feedforwards is given by

w(t) = (), 27 (1), 2*(8), . 2 (1) (6)

2If there is noa priori information given about the nominal time profile of the exogeas perturbation, let,;(t) = w5, i=1,...,q,
where thew, are the constant expected mean values of the respectivetpeions.

3This definition is an adaptation from [7], [8].

“The eventual singularities appearing iy ¢ and« are outside of this open subsets.

5This assumption is not very restrictive in the case of restesys. The flat output can often be chosen to be a physicalblarga position,
a current, a voltage, a temperature, etc.), which is indégmtnof any unknown parameter. The range of the uncertaintlyeoparameter set
defined by (2) does not change generically the dynamic sireicif the system. Moreover, the whole robustness analysisei sequel can
also be led without this assumption, but then (31) becomemuavillian system and the notationally nice structure db)(8& lost.

®The maximal number of derivatives efin (4) and (5) respectively are due to the results of [9], [E@le more details below in the proof
of Theorem 2.1).
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that is, for each admissible nominal trajectary there is a nominal feedforward".

Definition 2.1: The initial condition of the desired trajectory of the flattput ¢ — =2*(¢) is defined by
zi = [2°(0), 2(0),..., z*®™=D(0)]”. It is consistenwith the initial conditionx,, if x, = ¢(I1,(0), z)
(c.f. egn. (4)).

Exact feedforward linearization based on differential rilegsestablished in [3] can be generalized to
the case of exogenous perturbations as follows: to this iatefpret (1) and (3) as a control system with
input u, statex and outputz.

Theorem 2.1:If the desired trajectory of the flat output is consistentwitie initial conditionx,, and
IT = I1, holds for all times, the application of the nominal contr6) (o the control system (1) yields
an output that satisfies(t) = z*(t), Yt > 0, i.e. the output of the nonlinear system (1)—(3) correspond
to the output of a Brunovsky system driven b§™ and initialized atz}.

Proof: Considering the results of [9], [10], it is easy to show, thaery SISO flat system can be
represented as follows. Setting

z=2,%,..., z("_l)]T = (21,22, ., 2n)" (7)
the system (1) can be transformed via the well defined statesfiormation
z = F(IL,, x) (8)
(where F is equal to the solution of (4)) w.r., into the control normal form
Zi(t) = ziq(t), ie{l,...,n—1}
Z(t) = a(IL(t),2(t), u(t)) (9)

where « is also smooth with respect to its arguments. (Recall thaassime here thdll = I1,.) The
initial condition of (9) corresponds to the one of (1)&s= z(0) = F(I1(0),x,) from (8). Remark, that

a sort of matching condition [11] is always satisfied in thasse that the input, the perturbation and its
derivatives enter the system equation at the same spotyidgpthe feedforward (6) to the differentially
flat system given by (1) is equivalent to the applicatiorubdft) of (6) to (9), which results in

Zi(t) = za(t), ie{l,...,n—1}
a(t) = afTL(t), 2(t), o (IL,(t), 2°(t), £3(t))) (10)
Thus (10) and (1)—(3)—(6) have the same solutien z(t).
The proof proceeds by establishing that (10) admits the ssohgion as the Brunosky form:
4(t) = zip(l), ie{l,...,n—1}
Zn(t) = w(t) (11)
whenu(t) = 2™ (t) andz(0) = z.
By iterative integrations, one sees that the application(of = z*™ from the initial conditionz;
to (11) implies thatz(t) = z*(¢).

Write now the differential equation satisfied by= z — z*, wherez is any solution of (10) and* is
the solution of (11) wher(0) = z§ andv(t) = 2*(t). We obtain:

Gt) = enlt), ief{l,... n—1}

en(t) = afTL(t), 2 (t) + e(t), (TL,(t), 2 (1), 24(1))) — 3(t) (12)
In view of (9) it is evident, that (5) is the solution far of
0 = a(Il,, z,u) — 2, (13)

"The proof is written in the SISO case for notational conveoe A similar proof for the MIMO case can be led consideri} [
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with 2, = 2", Hence one gets

OZ(HO,Z,w<H,Z,2}n)) = Zn (14)
Consequentlye = 0 is an equilibrium point of (12) and thus the solution of (10iialized atz? is also
z". [ |

[1l. EXACT FEEDFORWARDLINEARIZATION AND CONTROL LAW DESIGN

In [3], exact feedforward linearization is used to desigmpac#fic PID-like stabilization of the desired
trajectory. The control law consists of two parts, a feedfod part (6), and a PID-like feedback part
that takes the tracking error into account. Since in [3] thetl law is implicitly designed for the case
of nominal parameters and nominal exogenous perturbattbesassumption throughout this section is
that the exogenous perturbations coincide with the nononals, that id1 = II,. The structure of the
combination of both parts can then be represented as in [3]:

Sincewv = 2 is the input of the Brunovsky form in Theorem 2.1, the newuinp is designed as

v =2+ A(e) (15)
where the tracking errog = [ey, e, . .., e,]” and the augmented tracking error
€ = [eg, e1,€9,...,¢,)7 are defined by (remember= F(I1,,x) of (8))
t
e, = z—z, 1€{l,...,n}; 60:/ er(T)dr (16)
0
The extended PID-likefeedback part is
" k+1 k+1
A®®) = Ao /O er(r)dr + 3 Nei(t) = 3 Ne(t) (17)
=1 =0

wherek is a fixed integer in{0,...,n — 1}. Thus, the whole control structure can be denoted by
k+1
u = ?/)(Hm Z*7 ’U) = @b (Hm Z*v z:; + Z )\iei> (18)
=0

This structure consists of a specific combination of a n@alinfeedforward part based on differential
flatness, and a simple linear feedback part of extended Ppe. tRemark that this control structure
represents a truly nonlinear control.

The advantage of the structure (18) becomes evident in vief#4). On the desired trajectotyone
getsa(Il,, z*, v (I1,, z*,v)) = v and therefore

8O‘(]-_-[ov Z*v ?/)(Hm Z*v 'U))
ov

This property shows its effect on the structure of the eruragion, which results from the application
of the control law (18) to (9):

—1 (19)

22- = Zi+1, 26{1,,71—1}

k+1
f = oMoz (T2 2+ 3 Aes) (20)
=0

8Extended” in the sense that multiple derivatives of theoeman be used, where the D-parts are in the higher ordersatrot > 1,
cf. (16) and (7). Thereby it is important to remark that theseivatives are not obtained by successive derivation giasgibly) noisy
signal, but they are calculated using the measured statibéanecessary part of it), eqn. (8) witlh = IT,, and eqgn. (16).

®Being on the desired trajectory means= z*, that is alsoz = z* and correspondinglk = x* (cf. (4)).
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Using (20) and (16), the corresponding tracking error systan be denoted as

éi = €41, ZE{O,,n—l}

k+1
én = oI, e+z" (I, z", —1—2)\62 — 2 (21)

n

(2

The linearized system around the desired trajectery: Q) is then given by

0 1 0 --- 07 [O]
o 0 1 --- 0 0
& = : IEPREEN B o {Vo vpoce Vn} €5 (22)
o 0 0 --- 1 0
o 7 o2 el L
where (remember the argumentsfl,, z, u) in (9))
Oa 0z; Oa
i = o= 23
i 021- 8ei 5=0 8zl —z* ( )
since 3 322 = 1 in view of (16), and furthermore (defining; =0, i € {k+2,...,n} if necessary)
Oa Ou Ov ov
= — = =\ 24
v Ou Ov Oei|o_q  Oeilo_q A (24)
since 52 Gife—o = %2le=o = 1 in view of (19) and (21).

When using full state information, that is = n — 1 in (17), the structure of (22) shows that all
coefficients of the characteristic polynomial of the linead system around the desired trajectory can be
modified, since it can be written as

Sn—i-l_,ynsn_”__,yo:
Oa Oa
n+l ¢ 2 )\n n _ )\n— n—l_._._)\ 25
§ (8211 z—7* * >S <82n—1 z—* - 1)8 0 ( )

Remark 3.1:When considering time-dependent controller coefficients \;(z*(¢), 2%(t)),i € {0,...,n},
it is evident that the poles of this system can be placed fav@ngcharacteristic polynomial. This could
be interpreted as a dynamical kind of pseudo-linearizgtl@ around the desired trajectory or a desired
flathess based gain scheduling.

In [3], several structural properties of the application(d8) to (1) are discussed in detail implicitly
for nominal constantparameterdI(¢) = II,. In this case, one of the main results of [3] consists in a
stability proof for (1) under (18). For nominéime-varyingparameterd1(t) = I1,(¢) the stability proof
of [3] can easily be extended by including the nomihkl(¢) into the input vector of the error equatiéh.
Thus in the following, it is assumed, that (18) guaranteabibity of (1) for I1(¢) = IT,(t).

1%n the same manner as it is also done for the main result ofctigribution, see Theorem 5.1 below.
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IV. THE ERROREQUATION OF EXACT FEEDFORWARD LINEARIZATION UNDER EXOGENOUS
PERTURBATIONS

In the casdl +# I1, as generally defined in (2), it still makes sense to apply twroller of (18) if the
difference between the nominal exogenous perturbatidnsnd the real ones is “not too big”. Thereby
a difficulty appears for the feedback part of (17), since tkacevalue ofz cannot be reconstructed by
the knowledge ofk (rememberz = F(I1, x) of (8)). Therefore, the following approximate stdtéas to
be considered

¢ = F(I1,, x) (26)
Thus the tracking error used for the feedback part (17) isddfias
t
éi:Ci_Z;‘kv ie{lu--'vn}a é0:‘/ él(T)dT (27)
0

Notice that forj = 0,1, ¢; = e, since the flat output is independent oto, see (3). Using (27), the
nonlinear control law (18) has to be rewritten as

k+1
w = (TL,, 2*,v) = o <HO, 2t 5+ i A@(t)) (28)
7=0

To study the robustness of the system (1) under the contq(28) in the vicinity of the desired trajectory,
the control law (28) is substituted into (9), which yields

Zi =  Zi+1, 1€ {1,,71-1}
k41
o= o(TLz, (I, 2", 5 + - Néi(t)))
=0
= oL, 2,¢(IL, 7", 2, + A(@))) (29)
wheree = [éy, é,, és, . . ., &,|T. To find the real tracking error equationén= z—z*, the following relation

betweené = [¢,, é,, . ..,¢,]T ande can be established considering (8) and (4)
e = F(Il,,x)—z"=F(Il,, ¢(Il,z)) — z"
= F(II, ¢(Il,e+2z")) — 2" (30)
Sinceé, = e, the feedback parh\(€) can thus be written ad(€). Then, using (29) the augmented
tracking error system i@ can be denoted as
é; = e, 1€{0,....,n—1} (32)
én = oIl e+z" ¥(IL, 2", 2, + A(®)) — 2}

An analysis of robust stability of (31) will be carried outtine following section.

V. ROBUSTNESSANALYSIS

In this section it is shown, through the study of the erroraggun (31), how stability of the control
strategy (28) applied to the system (1) can be analyzed.Heosdke of generality, full state information
is used in the PID-part, that is = n — 1 in (28) for the sequel. How this assumption can be relaxed
thereafter is described at the end of this section.

The augmented tracking error equation (31) can be writteictstrally as (defining” = [27, ..., 2%, 25])

éi = €i+1, ZE{O,,H—l}
&, = [(ILIL, @ z") (32)

1The difference betweem and¢ may not affect the whole state depending BAIT, x).
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and therefore as (defining = [z*7, z*, T2, T1]7)
€e=7Y(e2) (33)

whereZ plays the role of an input to the augmented tracking errotesysne. Since (33) is of nonlinear
nature, known theory of robustness of linear systems cam@atpplied. However, the robust stability of
the presented control law (28) can be analyzed by making uaaeasult which was primarily introduced
by Kelemen [5], reinterpreted by Khalil and Kokotovi¢ [1&8hd elaborated by Lawrence and Rugh [14].
The version by Lawrence and Rugh [14] (to which the readeefisrred for further details) is applied in
the sequel.

Theorem 5.1:If the initial error €(0), the velocity of the desired trajectory and the velocity loé t
exogenous paramete are not too large, then the augmented tracking esrag uniformly bounded.
Moreover, if the desired trajectory of the flat output reachegiven point*(t) = 2z, Vvt > t* > 0 and the
exogenous perturbations are constant from this point asv@w, (1) = .o, T (t) = o, VE=>t* >0,
then the tracking erro¢ converges exponentially to zero.

Proof: In order to apply the stability results of [14] based on Lyagu stability theory, their
hypotheses (H1)—(H3) have to be verified:
e (H1): In (33), Y is by construction at least?.
e (H2): Definel’ ¢ R"*'*2¢" to be any bounded, open and connected subsé&"of*2¢" such that
Vt € [0,0), Z € T. Define also the continuously differentiable functign : T — R""! such that
Y(&(C),¢) =0, forall ( € I" and Y as defined in (33). The smoothness®nsures the existence of
I’ and&. The mapg is nothing but a parametrization of equilibria of (33) cepending to frozen-time
inputs¢ € I'. In view of the particular structure of (33) displayed in J3the obviously has

E(C) = [§O(C)707 SRER) O]Tv VC el (34)

where ¢, takes values irR. If the interval containing all solution&(¢) is needed for the calculations
presented in (H3), the implicit equatigh(IT, IT,, £(¢), ¢) = 0 has to be solved by interval analysfs.

e (H3): To verify the eigenvalues o%% around the parametrization of equilibd¢) of (34) and thus
for all ¢ € I', consider (31) to get

[0 1 0 07
o o 1 --- 0

o) LX) L @)
ge |. e T B
(<) o o0 0 --- 1
LMo M1 M2 Hn

where u; = p;(¢) = % . ¢ €I', anda as given in (31). Thus the following characteristic polynaim
containing the interval parameteb andII, determines the possible root loci of the eigenvalue%%)’fr:

P(Hm H) = "t — P8 — -+ — Lo (36)

To determine whether the polynomigl(zo) of (36) has only zeros with real parts less than, A > 0
(and thus whether (H3) is satisfied), one of the following moels is applied:

1. If the coefficients of the characteristic polynomial areedgically independent with respect to the
interval parameters, the stability can be deduced analitien a necessary and sufficient way by the
well-known theorem by Kharitonov [16].

2. In the case, in which the coefficients of the characteristtyqmomial are algebraically dependent
with respect to the interval parameters, the stability candbtermined algebraically by the theorem of
Frazer and Duncan [17] (it is remarked, that Idr= II,, there exists by construction at least one stable
characteristic polynomial of (36), see Sec. IV).

12For a numerical solution, the authors propose to use theitigo Sivia X of [15, p. 104].
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3. Furthermore a numerical algorithm was developed by WahdrJaulin [18], which is based on interval
analysis. It can also be found in [15], where it is additibhalombined with constraint propagation to
shorten significantly the calculation time. Moreover, a nesue set approach based on the knowledge
of at least one stable characteristic polynomial is preskm [15].

As the hypotheses (H1)—(H3) of [14] are satisfied, theretexp > 0, a7 > 0, ad;(p) > 0 and a
da(p, T) > 0 such that

(O[] < & (37)
%/tw \Z(r)ldr < 6, t>0 (38)

then the corresponding soluti@of (33) satisfies
[e(®)l <p, t>0 (39)

that isthe systen{l) is stable under the tracking control la¢28).

Applying the Corollary of [14] in the cas& = Z.,, Vt > t* > 0 implies, in view of the structure
of (34), thatlim, .., e(t) = 0 ande(t*) lies inside the domain of attractithof the exponentially stable
equilibrium given by[,(¢),0,...,0]” evaluated at = [2%,0,...,0] . u

Remark 5.1:Note that the condition (38) assures, that robust stahiliély be proven if the velocity
of exogenous perturbation and its derivatidds(and their respective nhominal counterparts) is not too
big in an average sensé&ince Heaviside jumps with microstructure are considéoedhe model of the
exogenous perturbations, this might lead —depending orsyseem— to robustness in a lot of cases,
even if derivatives of the perturbatidd enter equation (9).

Remark 5.2:The first componen§,(¢) of the parametrized manifold in (34) corresponds to theestat
of the integral of the feedback part of (28). Singé&() =0,i=1,...,n, ¢ € I, the other components
of the manifold correspond to a zero tracking ereor 0. o

Remark 5.3:For the calculations within the mentioned methods, not dilyI, and &,, but alsoz*
can be understood as of interval type. More precisely, s#ices a function of time, for a given time
interval* t € t = [t,t1], the only interval parameter which has to be addedTtdI, and &, for the
analysis is therefore.

Remark 5.4:Partial state feedback is possible with the control stsa(@@). Its stability can also be
analyzed in the context of Theorem 5.1 by setting the resgecbntrol law coefficients\; = 0, i €
{k+2,...,n} (as in (17)). The minimal number of derivative actiohsecessarybut not implicitly
sufficien for stability can be determined fror%‘F using the necessary condition for negativity of the
eigenvalues, that ig;, ¢ € {0,...,n} < 0 (see (36)).

Remark 5.5:1n general, the choice of the nominal exogenous perturbatithin the given uncertainty
interval influences the robustness behavior. It is impartanremark, that this choice does not only
affect the coefficients of the respective characteristigmpamial, but also the magnitude of the so-called
“quasi-exogenous” perturbations, that stem from the ddsirajectory injection. The magnitude of these
perturbations evidently influences the convergence behatherefore the choice of the nominal value
within the uncertainty interval has to be undertaken cdgefu

VI. ACADEMIC EXAMPLES

In this section, two academic examples are presented inr aodbighlight the different aspects of
how the exogenous perturbation enters the respective iegsaffor non-academic examples of exact
feedfoward application to real systems under exogenousrpations, cf. the application to the induction
machine [19], [20] and the application to industrial seratdh reactors [21]). The first academic example
concerns a stable system, whereas the second academiclexesafs an unstable system.

13This result is comparable to linear systems when using @giat part in a Pl-controller: for constant perturbatidmes ¢ontrol law leads
to exponential stability, for non-constant perturbatiding control law leads to bounded stability.
4Consider for example a set point changdin t1] using spline functions.
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A. Application to a stable system
Given the single-input system

T] = X9t w
By = —254u (40)
with x(0) = [0,0]7. This control system is flat with = =1, and Eqns. (4) and (5) read as
X = [z:—w" (41)
u = i+(-wP-w (42)

Thus, for every given admissible nominal trajectory of the Butputt — z*(¢), the family of nominal
feedforwards is given by

= (3 —w,)? —w, =+ (2Y)3 (43)
The corresponding state transformation (8)
z = [, 29 + w|" (44)
leads to the control normal form (9)
21 = Zo
5 = —(n—w)li+ut+o (45)

with the initial condition given byz, = |71, 799 + @(0)]”. As shown in the proof of Theorem 2.1 of
Section II, the nominal input (43) linearizes the systemhié nominal perturbation conditiowy = w,
holds, and if the initial condition is consistent followiri@efinition 2.1, i.e.x, = z;. This feedforward
linearization impliesz(t) = z*(t), and thusx(t) = x*(t).

In order to counteract the eventual exogenous perturtsgtiancontrol law is designed following
Section I, in which first the assumption is made that thegexmus perturbations coincide with the
nominal ones in system (40), thatds= w,. In order to simplify notations, it is assumed in the ongoing
that noa priori information is known on the perturbatian € R, thus the nominal values are

vt wd(t) =0, j=1{0,1} (46)
Then control law (18) reads as
2
u=:+> Ne; + (2)? (47)
=0

with the tracking error definitions far; as in (16).
Considering now Section IV, the assumptien= w, has to be relaxed ang # w, has to be studied.
This leads to the approximate state (26)

¢=x (48)
and the approximate tracking error definitignof (27). The control law (28) reads then as
2
= +> Né + (2)? (49)
=0

To study the robustness of the system (40) under the cordwol(#9) in the vicinity of the desired
trajectory, the control law (49) is substituted into (45hieh yields

21 =

2
Zp = —(—@)+EF+Y A&+ () +@ (50)
1=0
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with the initial condition given byz, = [x1, 799 + @(0)]?. To find the real tracking error equation in
e =z — z*, the relation (30) betweea ande can be established as

& = e, i€40,1} (51)
ég = €2 — W, (52)
Now, the augmented tracking error systeneican be denoted by
& = e, 1€40,1} (53)
1
by = —(ea+25— @)+ ) Néi+ Malea — @)+ (25)° + &
=0

Following Section V, the robustness analysis of the augetketracking error system (53) can be led by
applying to it the results of Lawrence and Rugh [14] based yaplnov stability theory. Their hypotheses
(H1)—(H3) have to be verified:

e (H1): The vector field of (53) is at leas?.
e (H2): The parametrization of equilibria (34) of (53) compesading to frozen-time inputs;, w andw
is
1
E=15.

e (H3): To verify the eigenvalues of the linearization of (28pund the parametrization of equilibria (54),
this linearization is calculated as

ox| _ox
de|. Oe

((z5 — @)* + N — ©),0,0]" (54)

0 1 0
= |0 O 1 (55)
£(¢) Ao A1 —3(25 - W)Z + A9

Thus the following characteristic polynomial containitg tinterval parameters;, andw determines the
possible root loci of the eigenvalues %%‘F

Pz, @) = s+ (3(25 —w@)® — Xa)s® — A\ — Ao (56)
To decide whether this polynomial of (56) has only zeros wéhl parts less thanr A\, A > 0, it is not
necessary to apply interval algebra in this case. Since afteansformation off = s + A, the application
of a Routh-Hurwitz table yields the following conditions
Ay < 3(25 —@)? =3\ (57)
)\1)\0 — )\0 > )\3 — )\2(3(25 — ZD)Z — )\2) (58)
(3)\2 — 2)\(25 — W)z — )\2) — )\1)(2}; — W)Q — Ay — 3)\) > )\1)\0 — )\0 — )\3
+ M (3(25 — @) = A2) (59)
which can easily be checked for a given situation.
In the following the desired trajectory is chosen as a spdneh as

0<t<t, () = »
i<t <t 2(t) = Yp_oG(t—t)F G eR
tf <t <K +00, Z*(t) = Zr

with t; = 1s,t; = 4s, z = 0.0 and z = 1. The corresponding trajectories, z* and z* are depicted
in Fig 1. The controller gains are furthermore chosemM@as= —343, \; = —147, and \, = —21, the
perturbation is chosen as a spline such as

0<t<t, w(t) = w

H<t<t, o) = Si_u(t—t)* v eR

tr <t < +oo, 2f(t) = wy
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with ¢ = 2.45s, t; = 2.55S, w; = 0.0 andw; = 1.0. The corresponding trajectories andc are shown
in Fig. 2. The results of the application of the control lav®)4o the system (40) are given in Fig. 3 for
an initial conditionx(0) = (0.35 0.0).

The largest real part of eigenvalues%‘F (55) during the transition are depicted in Fig. 4 and shows
the stability margin required in (H3). Thus, a good trackamgl robustness of the application of the control
law (49) to the system (40) can be concluded.

0.30

-0.10

0.70

0.00

-0.70 ; - . :
1 2 3 4 5

o

Fig. 1. Flat output predicted trajectory?, z* and z*

B. Application to an unstable system
Consider now the unstable system (which is the unstabletemqart of the stable system (40))

.i’l = X9t w
ty = +ab4u (60)

with x(0) = [0,0]”. Following the development in the preceding subsectiorhis case the control law
can be denoted as

2
u=:+> Ne; — (3)° (61)
=0
The results of the application of the control law (61) to tlystem (60) is reported in Fig. 5, while the
maximum real part of the eigenvalues associated with theedidoop error equation is depicted in Fig. 6.
One still remarks a control with good tracking and robustna®perties.
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o
N

wA

ol

Fig. 2. Time trajectory of the perturbationr and <o

VIlI. CONCLUSION

The article presents a method to analyze robust stabilitgxafct feedforward linearization based on
differential flatness with respect to exogenous pertuobatiand time-varying parameters. It is remarked,
that representing the perturbed system in its so-callecdflatdinates leads in all cases to the fulfillment
of a sort of matching condition, that is the perturbatios,time derivatives and the input entering the
system at the same point.

In case of using a PID-like stabilization for the feedbackt wd the combined control structure, the
controller coefficients have to be traded-off with respexttiie desired trajectory, its derivatives and
generally the size of the uncertainty intervals of the exoge perturbations or time-varying parameters.
Also the choice of the nominal value of these parametersinvitfie given uncertainty intervals is of
interest for the performance of the closed loop system.

Modeling the exogenous perturbations by so-called “Héd@igumps with microstructure” permits to
stay close to physical reality. Since in the robustnessltréise velocity of the exogenous perturbation
and its derivatives have to be boundadan average sensehis might lead, depending on the system, to
robustness in a lot of cases.

These results are important for the practicability in rggblecations of exact feedforward linearization
based on differential flatne$3:in the case of a given flat nonlinear system, for which thereaaly
exists a linear PID-like controller stabilizing the systamthe vicinity of an operation point, a nonlinear
nominal feedforward based on flathess combined with thetiegi$’1D-like controller can lead to very
good tracking of, for instance, guided set point changes eveler exogenous perturbations.

For successful applications of this method, cf. the appiticato the induction machine [19], [20] and the applicatimnindustrial
semi-batch reactors [21].
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