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Robustness Analysis with Respect to Exogenous
Perturbations for Flatness-Based Exact Feedforward

Linearization
Veit Hagenmeyer, Emmanuel Delaleau

Abstract

A methodology to analyze robustness with respect to exogenous perturbations for exact feedforward lineariza-
tion based on differential flatness is presented. The analysis takes into consideration the tracking error equation and
makes thereafter use of a stability result by Kelemen coupled with results issued from interval analysis. This turns
exact feedforward linearization based on differential flatness into a general control methodology for flat systems.

Index Terms

Nonlinear systems, tracking control, differential flatness, exact feedforward linearization, stability analysis,
exogenous perturbations, robustness.

I. INTRODUCTION

IN order to emphasize that differential flatness1 can also be considered from a trajectory point of view
(and not only from a feedback linearization one), the authors have presented the concept ofexact

feedforward linearization based on differential flatnessin [3]. This concept allows to design the control
of nonlinear flat systems as a specific combination of a nominal feedforward input and a simple feedback
stabilizing control. In [4], the authors presented furthermore a method to analyze parametric robustness of
the proposed control scheme. Thus the results of [3], [4] andthose presented here turn exact feedforward
linearization based on differential flatness into a generalcontrol methodology for flat systems.

The purpose of the present contribution is to introduce a robustness analysis methodology with respect to
exogenous perturbations and time-varying parameters. It is presented by its application to exact feedforward
linearization in the case of the use of an extended PID-like control for the feedback part. A direct analysis
of the tracking error equation, to which the stability result by Kelemen [5] is applied, leads to the main
result of this contribution.

The contribution is organized as follows: Sec. II generalizes the notion of exact feedforward linearization
based on differential flatness to the case of exogenous perturbations and time-varying parameters. Using
this result, Sec. III establishes a specific control law design making use of the nominal values of the
exogenous perturbations and time-varying parameters. This method leads to a specific tracking error
equation when exogenous perturbations are considered; it is discussed in Sec. IV. In Sec. V robustness
is proven for the presented control strategy.

II. EXACT FEEDFORWARD L INEARIZATION IN THE CONTEXT OF EXOGENOUSPERTURBATIONS

Differential flatness is a structural property of a class of nonlinear systems, for which, roughly speaking,
all system variables can be written in terms of a set of specific variables (the so-called flat outputs) and
their derivatives. In [3] it is demonstrated, that these systems are linearizable by a nominal feedforward
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1See [1], [2] for an overview on differentially flat control systems.
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if the initial condition is known. Exact feedforward linearization is recalled in the context of exogenous
perturbations and time varying parameters after the following brief representation of differential flatness:

For the sake of simplicity, only SISO flat systems are considered in the sequel without loss of generality
(cf. [3] for the MIMO case). Given the SISO nonlinear system

ẋ(t) = f(̟(t),x(t), u(t)) (1)

with x(0) = x0. Thereby it holds that the timet ∈ R, the statex(t) ∈ R
n, and the inputu(t) ∈ R. The

exogenous perturbations(or time-varying system parameters)t 7→ ̟(t) ∈ R
q are supposed to be modeled

either by known sufficiently smooth time functions in the time-varying parameter case or close to physical
reality by consecutive Heaviside jumps with microstructure in the exogenous perturbation case. Heaviside
jumps with microstructure are a so-called class ofHeaviside generalized functions[6]. Roughly speaking,
Heaviside jumps with microstructure have an infinitely smooth jump transition at the origin (and in an
ǫ-neighborhood around it), therefore̟ ∈ C∞. The exogenous perturbations or time-varying parameters
are supposed to be partitionable as:

̟(j)(t) = ̟(j)
o (t) + ˜̟

(j)(t), ˜̟
(j)
i (t) ∈ [̟

(j)
i , ̟

(j)
i ], i = 1, . . . , q, j = 0, . . . , n− 1 (2)

where̟o is the nominal value of the exogenous perturbations2 or time-varying parameters and their time
derivatives respectively. In (1) the vector fieldf : R

q × R
n × R → R

n is considered to be smooth. The
system (1) is said to be(differentially) flat3 iff for all ̟(t) satisfying (2) there exists a flat outputz ∈ R,
such that

z = F (x) (3)

x = φ(Π, z, ż, . . . , z(n−1)) (4)

u = ψ(Π, z, ż, . . . , z(n)) (5)

with

Π = [Π1,Π2, . . . ,Πq]
T

= [̟1, ˙̟ 1, ¨̟ 1, . . . , ̟
(n−1)
1 , ̟2, ˙̟ 2, . . . , ̟q, . . . , ̟

(n−1)
q ]T

(Correspondingly,Πo denotes the nominal value ofΠ.) TherebyF , φ andψ are smooth functions at least
in open subsets4 of R

n, R
n(q+1) or R

n(q+1)+1, respectively. For the sake of simplicity, it is furthermore
assumed in the sequel that the flat output is independent ofΠ in two ways: in (3), first the functionF
is independent ofΠ, and secondF is the same function for allΠ defined by (2).5

The equations6 (4) and (5) yield —under the assumption of the knowledge ofΠ— that for every
given trajectory of the flat outputt 7→ z(t), the evolution of all other variables of the systemt 7→ x(t)
and t 7→ u(t) are given without integration of any differential equation. Moreover, for a sufficiently
smooth desired trajectory of the flat outputt 7→ z∗(t), eqn. (5) can be used to design the corresponding
feedforwardu∗(t) directly for the nominalΠo. The trajectoryz∗ is called thenominal trajectory, while
the trajectoryu∗ is called thenominal control. The family of nominal feedforwards is given by

u∗(t) = ψ(Πo(t), z
∗(t), ż∗(t), . . . , z∗(n)(t)) (6)

2If there is noa priori information given about the nominal time profile of the exogenous perturbation, let̟ oi(t) = ̟∗

oi, i = 1, . . . , q,
where the̟ ∗

oi are the constant expected mean values of the respective perturbations.
3This definition is an adaptation from [7], [8].
4The eventual singularities appearing inF , φ andψ are outside of this open subsets.
5This assumption is not very restrictive in the case of real systems. The flat output can often be chosen to be a physical variable (a position,

a current, a voltage, a temperature, etc.), which is independent of any unknown parameter. The range of the uncertainty of the parameter set
defined by (2) does not change generically the dynamic structure of the system. Moreover, the whole robustness analysis in the sequel can
also be led without this assumption, but then (31) becomes a Liouvillian system and the notationally nice structure of (35) is lost.

6The maximal number of derivatives ofz in (4) and (5) respectively are due to the results of [9], [10](see more details below in the proof
of Theorem 2.1).
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that is, for each admissible nominal trajectoryz∗, there is a nominal feedforwardu∗.
Definition 2.1: The initial condition of the desired trajectory of the flat output t 7→ z∗(t) is defined by

z
∗

0 = [z∗(0), ż∗(0), . . . , z∗(n−1)(0)]T . It is consistentwith the initial conditionx0, if x0 = φ(Πo(0), z∗0)
(c.f. eqn. (4)).

Exact feedforward linearization based on differential flatnessestablished in [3] can be generalized to
the case of exogenous perturbations as follows: to this end,interpret (1) and (3) as a control system with
input u, statex and outputz.

Theorem 2.1:If the desired trajectory of the flat output is consistent with the initial conditionx0, and
Π = Πo holds for all times, the application of the nominal control (6) to the control system (1) yields
an output that satisfiesz(t) = z∗(t), ∀ t ≥ 0, i.e. the output of the nonlinear system (1)–(3) corresponds
to the output of a Brunovský system driven byz∗(n) and initialized atz∗0.

Proof: Considering the results of [9], [10], it is easy to show, thatevery SISO7 flat system can be
represented as follows. Setting

z = [z, ż, . . . , z(n−1)]T = [z1, z2, . . . , zn]T (7)

the system (1) can be transformed via the well defined state transformation

z = F (Πo,x) (8)

(whereF is equal to the solution of (4)) w.r.t.z, into the control normal form

żi(t) = zi+1(t), i ∈ {1, . . . , n− 1}

żn(t) = α(Πo(t), z(t), u(t)) (9)

whereα is also smooth with respect to its arguments. (Recall that weassume here thatΠ = Πo.) The
initial condition of (9) corresponds to the one of (1) asz0 = z(0) = F (Π(0),x0) from (8). Remark, that
a sort of matching condition [11] is always satisfied in the sense, that the input, the perturbation and its
derivatives enter the system equation at the same spot. Applying the feedforward (6) to the differentially
flat system given by (1) is equivalent to the application ofu∗(t) of (6) to (9), which results in

żi(t) = zi+1(t), i ∈ {1, . . . , n− 1}

żn(t) = α
(

Πo(t), z(t), ψ(Πo(t), z
∗(t), ż∗n(t))

)

(10)

Thus (10) and (1)–(3)–(6) have the same solutiont 7→ z(t).
The proof proceeds by establishing that (10) admits the samesolution as the Brunoský form:

żi(t) = zi+1(t), i ∈ {1, . . . , n− 1}

żn(t) = v(t) (11)

whenv(t) = z∗(n)(t) andz(0) = z
∗

o.
By iterative integrations, one sees that the application ofv(t) = z∗(n) from the initial conditionz

∗

0

to (11) implies thatz(t) = z
∗(t).

Write now the differential equation satisfied byǫ = z − z
∗, wherez is any solution of (10) andz∗ is

the solution of (11) whenz(0) = z
∗

0 andv(t) = z∗(t). We obtain:

ǫ̇i(t) = ǫi+1(t), i ∈ {1, . . . , n− 1}

ǫ̇n(t) = α
(

Πo(t), z
∗(t) + ǫ(t), ψ(Πo(t), z

∗(t), ż∗n(t))
)

− ż∗n(t) (12)

In view of (9) it is evident, that (5) is the solution foru of

0 = α(Πo, z, u) − żn (13)

7The proof is written in the SISO case for notational convenience. A similar proof for the MIMO case can be led considering [3].
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with żn = z(n). Hence one gets

α(Πo, z, ψ(Π, z, żn)) = żn (14)

Consequently,ǫ = 0 is an equilibrium point of (12) and thus the solution of (10) initialized atz∗o is also
z
∗.

III. EXACT FEEDFORWARD L INEARIZATION AND CONTROL LAW DESIGN

In [3], exact feedforward linearization is used to design a specific PID-like stabilization of the desired
trajectory. The control law consists of two parts, a feedforward part (6), and a PID-like feedback part
that takes the tracking error into account. Since in [3] the control law is implicitly designed for the case
of nominal parameters and nominal exogenous perturbations, the assumption throughout this section is
that the exogenous perturbations coincide with the nominalones, that isΠ = Πo. The structure of the
combination of both parts can then be represented as in [3]:

Sincev = ż∗n is the input of the Brunovský form in Theorem 2.1, the new input v is designed as

v = ż∗n + Λ(e) (15)

where the tracking errore = [e1, e2, . . . , en]T and the augmented tracking error
e = [e0, e1, e2, . . . , en]

T are defined by (rememberz = F (Πo,x) of (8))

ei = zi − z∗i , i ∈ {1, . . . , n}; e0 =
∫ t

0
e1(τ)dτ (16)

The extended PID-like8 feedback part is

Λ(e) = λ0

∫ t

0
e1(τ)dτ +

k+1∑

i=1

λiei(t) =
k+1∑

i=0

λiei(t) (17)

wherek is a fixed integer in{0, . . . , n− 1}. Thus, the whole control structure can be denoted by

u = ψ(Πo, z
∗, v) = ψ

(

Πo, z
∗, ż∗n +

k+1∑

i=0

λiei

)

(18)

This structure consists of a specific combination of a nonlinear feedforward part based on differential
flatness, and a simple linear feedback part of extended PID type. Remark that this control structure
represents a truly nonlinear control.

The advantage of the structure (18) becomes evident in view of (14). On the desired trajectory9, one
getsα(Πo, z

∗, ψ(Πo, z
∗, v)) = v and therefore

∂α(Πo, z
∗, ψ(Πo, z

∗, v))

∂v
= 1 (19)

This property shows its effect on the structure of the error equation, which results from the application
of the control law (18) to (9):

żi = zi+1, i ∈ {1, . . . , n− 1}

żn = α

(

Πo, z, ψ
(

Πo, z
∗, ż∗n +

k+1∑

i=0

λiei

))

(20)

8”Extended” in the sense that multiple derivatives of the error can be used, where the D-parts are in the higher order errors ei, k ≥ 1,
cf. (16) and (7). Thereby it is important to remark that thesederivatives are not obtained by successive derivation of a (possibly) noisy
signal, but they are calculated using the measured state (orthe necessary part of it), eqn. (8) withΠ = Πo, and eqn. (16).

9Being on the desired trajectory meansz = z
∗, that is alsoz = z∗ and correspondinglyx = x

∗ (cf. (4)).
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Using (20) and (16), the corresponding tracking error system can be denoted as

ėi = ei+1, i ∈ {0, . . . , n− 1}

ėn = α









Πo, e + z
∗, ψ(Πo, z

∗, ż∗n +
k+1∑

i=0

λiei

︸ ︷︷ ︸

v

)









− ż∗n (21)

The linearized system around the desired trajectory (e = 0) is then given by

ėδ =





















0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
γ0 γ1 γ2 · · · γn











+











0
0
...
0
1











[

ν0 ν1 · · · νn

]











eδ (22)

where (remember the arguments ofα(Πo, z, u) in (9))

γi =
∂α

∂zi

∂zi

∂ei

∣
∣
∣
∣
∣
e=0

=
∂α

∂zi

∣
∣
∣
∣
∣
z=z∗

(23)

since ∂zi

∂ei
= 1 in view of (16), and furthermore (definingλi = 0, i ∈ {k + 2, . . . , n} if necessary)

νi =
∂α

∂u

∂u

∂v

∂v

∂ei

∣
∣
∣
∣
∣
e=0

=
∂v

∂ei

∣
∣
∣
∣
∣
e=0

= λi (24)

since ∂α
∂u

∂u
∂v
|e=0 = ∂α

∂v
|e=0 = 1 in view of (19) and (21).

When using full state information, that isk = n − 1 in (17), the structure of (22) shows that all
coefficients of the characteristic polynomial of the linearized system around the desired trajectory can be
modified, since it can be written as

sn+1 − γns
n − · · · − γ0 =

sn+1 − (
∂α

∂zn

∣
∣
∣
∣
∣
z=z∗

+ λn)sn − (
∂α

∂zn−1

∣
∣
∣
∣
∣
z=z∗

+ λn−1)s
n−1 − · · · − λ0 (25)

Remark 3.1:When considering time-dependent controller coefficientsλi = λi(z
∗(t), ż∗n(t)), i ∈ {0, . . . , n},

it is evident that the poles of this system can be placed for a given characteristic polynomial. This could
be interpreted as a dynamical kind of pseudo-linearization[12] around the desired trajectory or a desired
flatness based gain scheduling.

In [3], several structural properties of the application of(18) to (1) are discussed in detail implicitly
for nominal constantparametersΠ(t) = Πo. In this case, one of the main results of [3] consists in a
stability proof for (1) under (18). For nominaltime-varyingparametersΠ(t) = Πo(t) the stability proof
of [3] can easily be extended by including the nominalΠo(t) into the input vector of the error equation.10

Thus in the following, it is assumed, that (18) guarantees stability of (1) for Π(t) = Πo(t).

10In the same manner as it is also done for the main result of thiscontribution, see Theorem 5.1 below.
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IV. THE ERROR EQUATION OF EXACT FEEDFORWARD L INEARIZATION UNDER EXOGENOUS

PERTURBATIONS

In the caseΠ 6= Πo as generally defined in (2), it still makes sense to apply the controller of (18) if the
difference between the nominal exogenous perturbationsΠo and the real ones is “not too big”. Thereby
a difficulty appears for the feedback part of (17), since the exact value ofz cannot be reconstructed by
the knowledge ofx (rememberz = F (Π,x) of (8)). Therefore, the following approximate state11 has to
be considered

ζ = F (Πo,x) (26)

Thus the tracking error used for the feedback part (17) is defined as

ẽi = ζi − z∗i , i ∈ {1, . . . , n}, ẽ0 =
∫ t

0
ẽ1(τ)dτ (27)

Notice that forj = 0, 1, ẽj = ej , since the flat outputz is independent of̟ , see (3). Using (27), the
nonlinear control law (18) has to be rewritten as

u = ψ(Πo, z
∗, v) = ψ

(

Πo, z
∗, ż∗n +

k+1∑

i=0

λiẽi(t)

)

(28)

To study the robustness of the system (1) under the control law (28) in the vicinity of the desired trajectory,
the control law (28) is substituted into (9), which yields

żi = zi+1, i ∈ {1, . . . , n− 1}

żn = α
(

Π, z, ψ(Πo, z
∗, ż∗n +

k+1∑

i=0

λiẽi(t))
)

= α
(

Π, z, ψ(Πo, z
∗, ż∗n + Λ(ẽ))

)

(29)

whereẽ = [ẽ0, ẽ1, ẽ2, . . . , ẽn]T . To find the real tracking error equation ine = z−z
∗, the following relation

betweeñe = [ẽ1, ẽ2, . . . , ẽn]T ande can be established considering (8) and (4)

ẽ = F (Πo,x) − z
∗ = F (Πo,φ(Π, z)) − z

∗

= F (Πo,φ(Π, e + z
∗)) − z

∗ (30)

Since ẽ0 = e0, the feedback partΛ(ẽ) can thus be written as̃Λ(e). Then, using (29) the augmented
tracking error system ine can be denoted as

ėi = ei+1, i ∈ {0, . . . , n− 1} (31)

ėn = α
(

Π, e + z
∗, ψ(Πo, z

∗, ż∗n + Λ̃(e)
)

− ż∗n

An analysis of robust stability of (31) will be carried out inthe following section.

V. ROBUSTNESSANALYSIS

In this section it is shown, through the study of the error equation (31), how stability of the control
strategy (28) applied to the system (1) can be analyzed. For the sake of generality, full state information
is used in the PID-part, that isk = n − 1 in (28) for the sequel. How this assumption can be relaxed
thereafter is described at the end of this section.

The augmented tracking error equation (31) can be written structurally as (definingz∗ = [z∗1 , . . . , z
∗

n, ż
∗

n]T )

ėi = ei+1, i ∈ {0, . . . , n− 1}

ėn = β (Π,Πo, e, z
∗) (32)

11The difference betweenz andζ may not affect the whole state depending onF (Π,x).
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and therefore as (definingZ = [z∗T , ż∗n,Π
T
o ,Π

T ]T )

ė = Υ(e,Z) (33)

whereZ plays the role of an input to the augmented tracking error system ine. Since (33) is of nonlinear
nature, known theory of robustness of linear systems can notbe applied. However, the robust stability of
the presented control law (28) can be analyzed by making use of a result which was primarily introduced
by Kelemen [5], reinterpreted by Khalil and Kokotović [13]and elaborated by Lawrence and Rugh [14].
The version by Lawrence and Rugh [14] (to which the reader is referred for further details) is applied in
the sequel.

Theorem 5.1:If the initial error e(0), the velocity of the desired trajectory and the velocity of the
exogenous parametersZ are not too large, then the augmented tracking errore is uniformly bounded.
Moreover, if the desired trajectory of the flat output reaches a given pointz∗(t) = z∗

∞
, ∀t > t∗ > 0 and the

exogenous perturbations are constant from this point onwards (̟ o(t) = ̟o∞,̟(t) = ̟∞, ∀t > t∗ > 0,
then the tracking errore converges exponentially to zero.

Proof: In order to apply the stability results of [14] based on Lyapunov stability theory, their
hypotheses (H1)–(H3) have to be verified:
• (H1): In (33),Υ is by construction at leastC2.
• (H2): Define Γ ⊂ R

n+1+2qn to be any bounded, open and connected subset ofR
n+1+2qn such that

∀t ∈ [0,∞), Z ∈ Γ. Define also the continuously differentiable functionξ : Γ → R
n+1 such that

Υ(ξ(ζ), ζ) = 0, for all ζ ∈ Γ andΥ as defined in (33). The smoothness ofZ ensures the existence of
Γ andξ. The mapξ is nothing but a parametrization of equilibria of (33) corresponding to frozen-time
inputsζ ∈ Γ. In view of the particular structure of (33) displayed in (32) one obviously has

ξ(ζ) = [ξ0(ζ), 0, . . . , 0]T , ∀ζ ∈ Γ (34)

whereξ0 takes values inR. If the interval containing all solutionsξ0(ζ) is needed for the calculations
presented in (H3), the implicit equationβ (Π,Πo, ξ(ζ), ζ) = 0 has to be solved by interval analysis.12

• (H3): To verify the eigenvalues of∂Υ

∂e
around the parametrization of equilibriaξ(ζ) of (34) and thus

for all ζ ∈ Γ, consider (31) to get

∂Υ

∂e

∣
∣
∣
∣
∣
Γ

=̇
∂Υ

∂e

∣
∣
∣
∣
∣
ξ(ζ)

=











0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
...

0 0 0 · · · 1
µ0 µ1 µ2 · · · µn











(35)

whereµi = µi(ζ) = ∂α
∂ei

∣
∣
∣
Γ
, ζ ∈ Γ, andα as given in (31). Thus the following characteristic polynomial

containing the interval parameters̃Π andΠ̃o determines the possible root loci of the eigenvalues of∂Υ

∂e

∣
∣
∣
Γ
:

P(Πo,Π) = sn+1 − µns
n − · · · − µ0 (36)

To determine whether the polynomialP(̟) of (36) has only zeros with real parts less than−λ, λ > 0
(and thus whether (H3) is satisfied), one of the following methods is applied:
1. If the coefficients of the characteristic polynomial are algebraically independent with respect to the
interval parameters, the stability can be deduced analytically in a necessary and sufficient way by the
well-known theorem by Kharitonov [16].
2. In the case, in which the coefficients of the characteristic polynomial are algebraically dependent
with respect to the interval parameters, the stability can be determined algebraically by the theorem of
Frazer and Duncan [17] (it is remarked, that forΠ = Πo, there exists by construction at least one stable
characteristic polynomial of (36), see Sec. IV).

12For a numerical solution, the authors propose to use the algorithm SIVIA X of [15, p. 104].
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3. Furthermore a numerical algorithm was developed by Walter and Jaulin [18], which is based on interval
analysis. It can also be found in [15], where it is additionally combined with constraint propagation to
shorten significantly the calculation time. Moreover, a newvalue set approach based on the knowledge
of at least one stable characteristic polynomial is presented in [15].

As the hypotheses (H1)–(H3) of [14] are satisfied, there exists a ρ > 0, a T > 0, a δ1(ρ) > 0 and a
δ2(ρ, T ) > 0 such that

‖e(0)‖ < δ1 (37)
1

T

∫ t+T

t
‖Ż(τ)‖dτ < δ2, t ≥ 0 (38)

then the corresponding solutione of (33) satisfies

‖e(t)‖ < ρ, t ≥ 0 (39)

that is the system(1) is stable under the tracking control law(28).
Applying the Corollary of [14] in the caseZ = Z

∞
, ∀t > t∗ > 0 implies, in view of the structure

of (34), thatlimt→∞ e(t) = 0 ande(t∗) lies inside the domain of attraction13 of the exponentially stable
equilibrium given by[ξ0(ζ), 0, . . . , 0]T evaluated atζ = [z∗

∞
, 0, . . . , 0]T .

Remark 5.1:Note that the condition (38) assures, that robust stabilitycan be proven if the velocity
of exogenous perturbation and its derivativesΠ̇ (and their respective nominal counterparts) is not too
big in an average sense. Since Heaviside jumps with microstructure are consideredfor the model of the
exogenous perturbations, this might lead —depending on thesystem— to robustness in a lot of cases,
even if derivatives of the perturbationΠ enter equation (9).

Remark 5.2:The first componentξ0(ζ) of the parametrized manifold in (34) corresponds to the state
of the integral of the feedback part of (28). Sinceξi(ζ) = 0, i = 1, . . . , n, ζ ∈ Γ, the other components
of the manifold correspond to a zero tracking errore = 0.

Remark 5.3:For the calculations within the mentioned methods, not onlyΠ̃, Π̃o and ξ0, but alsoz
∗

can be understood as of interval type. More precisely, sincez
∗ is a function of time, for a given time

interval14 t ∈ t̃ = [t0, t1], the only interval parameter which has to be added toΠ̃, Π̃o and ξ0 for the
analysis is thereforẽt.

Remark 5.4:Partial state feedback is possible with the control strategy (28). Its stability can also be
analyzed in the context of Theorem 5.1 by setting the respective control law coefficientsλi = 0, i ∈
{k + 2, . . . , n} (as in (17)). The minimal number of derivative actionsk necessary(but not implicitly
sufficient) for stability can be determined from∂Υ

∂e

∣
∣
∣
Γ

using the necessary condition for negativity of the
eigenvalues, that isµi, i ∈ {0, . . . , n} < 0 (see (36)).

Remark 5.5:In general, the choice of the nominal exogenous perturbation within the given uncertainty
interval influences the robustness behavior. It is important to remark, that this choice does not only
affect the coefficients of the respective characteristic polynomial, but also the magnitude of the so-called
“quasi-exogenous” perturbations, that stem from the desired trajectory injection. The magnitude of these
perturbations evidently influences the convergence behavior, therefore the choice of the nominal value
within the uncertainty interval has to be undertaken carefully.

VI. A CADEMIC EXAMPLES

In this section, two academic examples are presented in order to highlight the different aspects of
how the exogenous perturbation enters the respective equations (for non-academic examples of exact
feedfoward application to real systems under exogenous perturbations, cf. the application to the induction
machine [19], [20] and the application to industrial semi-batch reactors [21]). The first academic example
concerns a stable system, whereas the second academic example treats an unstable system.

13This result is comparable to linear systems when using an integral part in a PI-controller: for constant perturbations the control law leads
to exponential stability, for non-constant perturbationsthe control law leads to bounded stability.

14Consider for example a set point change in[t0, t1] using spline functions.
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A. Application to a stable system

Given the single-input system

ẋ1 = x2 +̟

ẋ2 = −x3
2 + u (40)

with x(0) = [0, 0]T . This control system is flat withz = x1, and Eqns. (4) and (5) read as

x = [z, ż −̟]T (41)

u = z̈ + (ż −̟)3 − ˙̟ (42)

Thus, for every given admissible nominal trajectory of the flat outputt 7→ z∗(t), the family of nominal
feedforwards is given by

u∗ = z̈∗ + (ż∗ −̟o)
3 − ˙̟ o = z̈∗ + (ż∗)3 (43)

The corresponding state transformation (8)

z = [x1, x2 +̟]T (44)

leads to the control normal form (9)

ż1 = z2

ż2 = −(z2 −̟)3 + u+ ˙̟ (45)

with the initial condition given byz0 = [x10, x20 + ̟(0)]T . As shown in the proof of Theorem 2.1 of
Section II, the nominal input (43) linearizes the system if the nominal perturbation condition̟ = ̟o

holds, and if the initial condition is consistent followingDefinition 2.1, i.e.x0 = z
∗

0. This feedforward
linearization impliesz(t) = z

∗(t), and thusx(t) = x
∗(t).

In order to counteract the eventual exogenous perturbations, a control law is designed following
Section III, in which first the assumption is made that the exogenous perturbations coincide with the
nominal ones in system (40), that is̟= ̟o. In order to simplify notations, it is assumed in the ongoing,
that noa priori information is known on the perturbation̟ ∈ R, thus the nominal values are

∀t : ̟(j)
o (t) = 0, j = {0, 1} (46)

Then control law (18) reads as

u = z̈∗ +
2∑

i=0

λiei + (ż∗)3 (47)

with the tracking error definitions forei as in (16).
Considering now Section IV, the assumption̟= ̟o has to be relaxed and̟ 6= ̟o has to be studied.

This leads to the approximate state (26)

ζ = x (48)

and the approximate tracking error definitionẽi of (27). The control law (28) reads then as

u = z̈∗ +
2∑

i=0

λiẽi + (ż∗)3 (49)

To study the robustness of the system (40) under the control law (49) in the vicinity of the desired
trajectory, the control law (49) is substituted into (45), which yields

ż1 = z2

ż2 = −(z2 −̟)3 + z̈∗ +
2∑

i=0

λiẽi + (z∗2)
3 + ˙̟ (50)
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with the initial condition given byz0 = [x10, x20 + ̟(0)]T . To find the real tracking error equation in
e = z − z

∗, the relation (30) betweeñe ande can be established as

ẽi = ei, i ∈ {0, 1} (51)

ẽ2 = e2 −̟, (52)

Now, the augmented tracking error system ine can be denoted by

ėi = ei+1, i ∈ {0, 1} (53)

ė2 = −(e2 + z∗2 −̟)3 +
1∑

i=0

λiẽi + λ2(e2 −̟) + (z∗2)
3 + ˙̟

Following Section V, the robustness analysis of the augmented tracking error system (53) can be led by
applying to it the results of Lawrence and Rugh [14] based on Lyapunov stability theory. Their hypotheses
(H1)–(H3) have to be verified:
• (H1): The vector field of (53) is at leastC2.
• (H2): The parametrization of equilibria (34) of (53) corresponding to frozen-time inputsz∗2 , ̟ and ˙̟
is

ξ = [
1

λ0

((z∗2 −̟)3 + λ2̟ − ˙̟ ), 0, 0]T (54)

• (H3): To verify the eigenvalues of the linearization of (53)around the parametrization of equilibria (54),
this linearization is calculated as

∂Υ

∂e

∣
∣
∣
∣
∣
Γ

=̇
∂Υ

∂e

∣
∣
∣
∣
∣
ξ(ζ)

=






0 1 0
0 0 1
λ0 λ1 −3(z∗2 −̟)2 + λ2




 (55)

Thus the following characteristic polynomial containing the interval parametersz∗2 and̟ determines the
possible root loci of the eigenvalues of∂Υ

∂e

∣
∣
∣
Γ
:

P(z∗2 , ̟) = s3 + (3(z∗2 −̟)2 − λ2)s
2 − λ1s

1 − λ0 (56)

To decide whether this polynomial of (56) has only zeros withreal parts less than−λ, λ > 0, it is not
necessary to apply interval algebra in this case. Since after a transformation ofq = s+ λ, the application
of a Routh-Hurwitz table yields the following conditions

λ2 < 3(z∗2 −̟)2 − 3λ (57)

λ1λ0 − λ0 > λ3 − λ2(3(z∗2 −̟)2 − λ2) (58)

(3λ2 − 2λ(z∗2 −̟)2 − λ2) − λ1)(z
∗

2 −̟)2 − λ2 − 3λ) > λ1λ0 − λ0 − λ3

+ λ2(3(z∗2 −̟)2 − λ2) (59)

which can easily be checked for a given situation.
In the following the desired trajectory is chosen as a splinesuch as

0 6 t 6 ti, z∗(t) = zi
ti 6 t 6 tf , z∗(t) =

∑5
k=0 ζk(t− ti)

k, ζk ∈ R

tf 6 t 6 +∞, z∗(t) = zf

with ti = 1 s, tf = 4 s, zi = 0.0 and zf = 1. The corresponding trajectoriesz∗, ż∗ and z̈∗ are depicted
in Fig 1. The controller gains are furthermore chosen asλ0 = −343, λ1 = −147, andλ2 = −21, the
perturbation is chosen as a spline such as

0 6 t 6 t′i, ̟(t) = ̟i

t′i 6 t 6 t′f , ̟(t) =
∑3

k=0 υk(t− ti)
k, υk ∈ R

t′f 6 t 6 +∞, z∗(t) = ̟f
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with t′i = 2.45 s, t′f = 2.55 s,̟i = 0.0 and̟f = 1.0. The corresponding trajectories̟ and ˙̟ are shown
in Fig. 2. The results of the application of the control law (49) to the system (40) are given in Fig. 3 for
an initial conditionx(0) = (0.35 0.0)T .

The largest real part of eigenvalues of∂Υ

∂e

∣
∣
∣
Γ

(55) during the transition are depicted in Fig. 4 and shows
the stability margin required in (H3). Thus, a good trackingand robustness of the application of the control
law (49) to the system (40) can be concluded.

0 1 2 3 4 5
−0.1

0.5

1.1

0 1 2 3 4 5
−0.10

0.30

0.70

0 1 2 3 4 5
−0.70

0.00

0.70

Fig. 1. Flat output predicted trajectory:z∗, ż∗ and z̈∗

B. Application to an unstable system

Consider now the unstable system (which is the unstable counterpart of the stable system (40))

ẋ1 = x2 +̟

ẋ2 = +x3
2 + u (60)

with x(0) = [0, 0]T . Following the development in the preceding subsection, inthis case the control law
can be denoted as

u = z̈∗ +
2∑

i=0

λiei − (ż∗)3 (61)

The results of the application of the control law (61) to the system (60) is reported in Fig. 5, while the
maximum real part of the eigenvalues associated with the closed-loop error equation is depicted in Fig. 6.
One still remarks a control with good tracking and robustness properties.
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1.1
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3.5
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11.5
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Fig. 2. Time trajectory of the perturbation:̟ and ˙̟

VII. CONCLUSION

The article presents a method to analyze robust stability ofexact feedforward linearization based on
differential flatness with respect to exogenous perturbations and time-varying parameters. It is remarked,
that representing the perturbed system in its so-called flatcoordinates leads in all cases to the fulfillment
of a sort of matching condition, that is the perturbation, its time derivatives and the input entering the
system at the same point.

In case of using a PID-like stabilization for the feedback part of the combined control structure, the
controller coefficients have to be traded-off with respect to the desired trajectory, its derivatives and
generally the size of the uncertainty intervals of the exogenous perturbations or time-varying parameters.
Also the choice of the nominal value of these parameters within the given uncertainty intervals is of
interest for the performance of the closed loop system.

Modeling the exogenous perturbations by so-called “Heaviside jumps with microstructure” permits to
stay close to physical reality. Since in the robustness result the velocity of the exogenous perturbation
and its derivatives have to be boundedin an average sense, this might lead, depending on the system, to
robustness in a lot of cases.

These results are important for the practicability in real applications of exact feedforward linearization
based on differential flatness:15 in the case of a given flat nonlinear system, for which there already
exists a linear PID-like controller stabilizing the systemin the vicinity of an operation point, a nonlinear
nominal feedforward based on flatness combined with the existing PID-like controller can lead to very
good tracking of, for instance, guided set point changes even under exogenous perturbations.

15For successful applications of this method, cf. the application to the induction machine [19], [20] and the applicationto industrial
semi-batch reactors [21].
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Fig. 3. Simulation result of the application of the control law (49) to the stable system (40):x1 in solid line andz∗ in dashed line
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Fig. 5. Simulation result of the application of the control law (61) to the unstable system (60):x1 in solid line andz∗ in dashed line
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