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A methodology to analyze robustness with respect to exogenous perturbations for exact feedforward linearization based on differential flatness is presented. The analysis takes into consideration the tracking error equation and makes thereafter use of a stability result by Kelemen coupled with results issued from interval analysis. This turns exact feedforward linearization based on differential flatness into a general control methodology for flat systems.

if the initial condition is known. Exact feedforward linearization is recalled in the context of exogenous perturbations and time varying parameters after the following brief representation of differential flatness:

For the sake of simplicity, only SISO flat systems are considered in the sequel without loss of generality (cf. [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF] for the MIMO case). Given the SISO nonlinear system ẋ(t) = f(̟(t), x(t), u(t)) [START_REF] Sira-Ramírez | Differentially Flat Systems[END_REF] with x(0) = x 0 . Thereby it holds that the time t ∈ R, the state x(t) ∈ R n , and the input u(t) ∈ R. The exogenous perturbations (or time-varying system parameters) t → ̟(t) ∈ R q are supposed to be modeled either by known sufficiently smooth time functions in the time-varying parameter case or close to physical reality by consecutive Heaviside jumps with microstructure in the exogenous perturbation case. Heaviside jumps with microstructure are a so-called class of Heaviside generalized functions [START_REF] Colombeau | Multiplication of Distributions[END_REF]. Roughly speaking, Heaviside jumps with microstructure have an infinitely smooth jump transition at the origin (and in an ǫ-neighborhood around it), therefore ̟ ∈ C ∞ . The exogenous perturbations or time-varying parameters are supposed to be partitionable as:

̟ (j) (t) = ̟ (j) o (t) + ̟(j) (t), ̟(j) i (t) ∈ [̟ (j) i , ̟ (j) 
i ], i = 1, . . . , q, j = 0, . . . , n -1

where ̟ o is the nominal value of the exogenous perturbations2 or time-varying parameters and their time derivatives respectively. In (1) the vector field f : R q × R n × R → R n is considered to be smooth. The system (1) is said to be (differentially) flat 3 iff for all ̟(t) satisfying ( 2) there exists a flat output z ∈ R, such that

z = F (x) (3 
) x = φ(Π, z, ż, . . . , z (n-1) ) (4) u = ψ(Π, z, ż, . . . , z (n) )

with Π = [Π 1 , Π 2 , . . . , Π q ] T = [̟ 1 , ̟1 , ̟1 , . . . , ̟

(n-1) 1

, ̟ 2 , ̟2 , . . . , ̟ q , . . . , ̟ (n-1) q ] T (Correspondingly, Π o denotes the nominal value of Π.) Thereby F , φ and ψ are smooth functions at least in open subsets 4 of R n , R n(q+1) or R n(q+1)+1 , respectively. For the sake of simplicity, it is furthermore assumed in the sequel that the flat output is independent of Π in two ways: in (3), first the function F is independent of Π, and second F is the same function for all Π defined by (2). 5The equations6 (4) and ( 5) yield -under the assumption of the knowledge of Πthat for every given trajectory of the flat output t → z(t), the evolution of all other variables of the system t → x(t) and t → u(t) are given without integration of any differential equation. Moreover, for a sufficiently smooth desired trajectory of the flat output t → z * (t), eqn. ( 5) can be used to design the corresponding feedforward u * (t) directly for the nominal Π o . The trajectory z * is called the nominal trajectory, while the trajectory u * is called the nominal control. The family of nominal feedforwards is given by

u * (t) = ψ(Π o (t), z * (t), ż * (t), . . . , z * (n) (t)) (6) 
that is, for each admissible nominal trajectory z * , there is a nominal feedforward u * . Definition 2.1: The initial condition of the desired trajectory of the flat output t → z * (t) is defined by

z * 0 = [z * (0), ż * (0), . . . , z * (n-1) (0)] T . It is consistent with the initial condition x 0 , if x 0 = φ(Π o (0), z * 0 ) (c.f. eqn. (4)).
Exact feedforward linearization based on differential flatness established in [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF] can be generalized to the case of exogenous perturbations as follows: to this end, interpret (1) and (3) as a control system with input u, state x and output z.

Theorem 2.1: If the desired trajectory of the flat output is consistent with the initial condition x 0 , and Π = Π o holds for all times, the application of the nominal control (6) to the control system (1) yields an output that satisfies z(t) = z * (t), ∀ t ≥ 0, i.e. the output of the nonlinear system (1)-( 3) corresponds to the output of a Brunovský system driven by z * (n) and initialized at z * 0 . Proof: Considering the results of [START_REF] Jakubczyk | On linearization of control systems[END_REF], [START_REF] Charlet | On dynamic feedback linearization[END_REF], it is easy to show, that every SISO 7 flat system can be represented as follows. Setting

z = [z, ż, . . . , z (n-1) ] T = [z 1 , z 2 , . . . , z n ] T (7) 
the system (1) can be transformed via the well defined state transformation

z = F (Π o , x) (8) 
(where F is equal to the solution of ( 4)) w.r.t. z, into the control normal form

żi (t) = z i+1 (t), i ∈ {1, . . . , n -1} żn (t) = α(Π o (t), z(t), u(t)) (9) 
where α is also smooth with respect to its arguments. (Recall that we assume here that Π = Π o .) The initial condition of ( 9) corresponds to the one of (1) as z 0 = z(0) = F (Π(0), x 0 ) from [START_REF]A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF]. Remark, that a sort of matching condition [START_REF] Khalil | Nonlinear systems[END_REF] is always satisfied in the sense, that the input, the perturbation and its derivatives enter the system equation at the same spot. Applying the feedforward (6) to the differentially flat system given by ( 1) is equivalent to the application of u * (t) of ( 6) to [START_REF] Jakubczyk | On linearization of control systems[END_REF], which results in

żi (t) = z i+1 (t), i ∈ {1, . . . , n -1} żn (t) = α Π o (t), z(t), ψ(Π o (t), z * (t), ż * n (t)) (10) 
Thus [START_REF] Charlet | On dynamic feedback linearization[END_REF] and ( 1)-( 3)-( 6) have the same solution t → z(t).

The proof proceeds by establishing that (10) admits the same solution as the Brunoský form:

żi (t) = z i+1 (t), i ∈ {1, . . . , n -1} żn (t) = v(t) (11) 
when v(t) = z * (n) (t) and z(0) = z * o . By iterative integrations, one sees that the application of v(t) = z * (n) from the initial condition z * 0 to [START_REF] Khalil | Nonlinear systems[END_REF] implies that z(t) = z * (t).

Write now the differential equation satisfied by ǫ = zz * , where z is any solution of (10) and z * is the solution of (11) when z(0) = z * 0 and v(t) = z * (t). We obtain:

ǫi (t) = ǫ i+1 (t), i ∈ {1, . . . , n -1} ǫn (t) = α Π o (t), z * (t) + ǫ(t), ψ(Π o (t), z * (t), ż * n (t)) -ż * n (t) (12) 
In view of (9) it is evident, that (5) is the solution for u of

0 = α(Π o , z, u) -żn (13) 
with żn = z (n) . Hence one gets

α(Π o , z, ψ(Π, z, żn )) = żn (14) 
Consequently, ǫ = 0 is an equilibrium point of [START_REF] Reboulet | A new method for linearizing non-linear systems: the pseudolinearization[END_REF] and thus the solution of (10) initialized at z * o is also z * .

III. EXACT FEEDFORWARD LINEARIZATION AND CONTROL LAW DESIGN

In [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF], exact feedforward linearization is used to design a specific PID-like stabilization of the desired trajectory. The control law consists of two parts, a feedforward part [START_REF] Colombeau | Multiplication of Distributions[END_REF], and a PID-like feedback part that takes the tracking error into account. Since in [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF] the control law is implicitly designed for the case of nominal parameters and nominal exogenous perturbations, the assumption throughout this section is that the exogenous perturbations coincide with the nominal ones, that is Π = Π o . The structure of the combination of both parts can then be represented as in [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF]:

Since v = ż * n is the input of the Brunovský form in Theorem 2.1, the new input v is designed as v = ż * n + Λ(e) (15) 
where the tracking error e = [e 1 , e 2 , . . . , e n ] T and the augmented tracking error e = [e 0 , e 1 , e 2 , . . . , e n ] T are defined by (remember z = F (Π o , x) of ( 8))

e i = z i -z * i , i ∈ {1, . . . , n}; e 0 = t 0 e 1 (τ )dτ (16) 
The extended PID-like8 feedback part is

Λ(e) = λ 0 t 0 e 1 (τ )dτ + k+1 i=1 λ i e i (t) = k+1 i=0 λ i e i (t) (17) 
where k is a fixed integer in {0, . . . , n -1}. Thus, the whole control structure can be denoted by

u = ψ(Π o , z * , v) = ψ Π o , z * , ż * n + k+1 i=0 λ i e i (18) 
This structure consists of a specific combination of a nonlinear feedforward part based on differential flatness, and a simple linear feedback part of extended PID type. Remark that this control structure represents a truly nonlinear control. The advantage of the structure [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF] becomes evident in view of [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF]. On the desired trajectory 9 , one gets

α(Π o , z * , ψ(Π o , z * , v)) = v and therefore ∂α(Π o , z * , ψ(Π o , z * , v)) ∂v = 1 (19) 
This property shows its effect on the structure of the error equation, which results from the application of the control law [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF] to [START_REF] Jakubczyk | On linearization of control systems[END_REF]:

żi = z i+1 , i ∈ {1, . . . , n -1} żn = α Π o , z, ψ Π o , z * , ż * n + k+1 i=0 λ i e i (20) 
Using ( 20) and ( 16), the corresponding tracking error system can be denoted as

ėi = e i+1 , i ∈ {0, . . . , n -1} ėn = α       Π o , e + z * , ψ(Π o , z * , ż * n + k+1 i=0 λ i e i v )       -ż * n (21) 
The linearized system around the desired trajectory (e = 0) is then given by

ėδ =                 0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . 0 0 0 • • • 1 γ 0 γ 1 γ 2 • • • γ n         +         0 0 . . . 0 1         ν 0 ν 1 • • • ν n         e δ (22) 
where (remember the arguments of α(Π o , z, u) in ( 9))

γ i = ∂α ∂z i ∂z i ∂e i e=0 = ∂α ∂z i z=z * ( 23 
)
since ∂z i ∂e i = 1 in view of ( 16), and furthermore (defining λ i = 0, i ∈ {k + 2, . . . , n} if necessary) 19) and [START_REF] Hagenmeyer | Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an Extended Kalman Filter approach[END_REF]. When using full state information, that is k = n -1 in [START_REF] Frazer | On the criteria for the stability of small motions[END_REF], the structure of ( 22) shows that all coefficients of the characteristic polynomial of the linearized system around the desired trajectory can be modified, since it can be written as

ν i = ∂α ∂u ∂u ∂v ∂v ∂e i e=0 = ∂v ∂e i e=0 = λ i (24) since ∂α ∂u ∂u ∂v | e=0 = ∂α ∂v | e=0 = 1 in view of (
s n+1 -γ n s n -• • • -γ 0 = s n+1 -( ∂α ∂z n z=z * + λ n )s n -( ∂α ∂z n-1 z=z * + λ n-1 )s n-1 -• • • -λ 0 ( 25 
)
Remark 3.1: When considering time-dependent controller coefficients λ i = λ i (z * (t), ż * n (t)), i ∈ {0, . . . , n}, it is evident that the poles of this system can be placed for a given characteristic polynomial. This could be interpreted as a dynamical kind of pseudo-linearization [START_REF] Reboulet | A new method for linearizing non-linear systems: the pseudolinearization[END_REF] around the desired trajectory or a desired flatness based gain scheduling.

In [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF], several structural properties of the application of ( 18) to (1) are discussed in detail implicitly for nominal constant parameters Π(t) = Π o . In this case, one of the main results of [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF] consists in a stability proof for (1) under [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF]. For nominal time-varying parameters Π(t) = Π o (t) the stability proof of [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF] can easily be extended by including the nominal Π o (t) into the input vector of the error equation. 10Thus in the following, it is assumed, that (18) guarantees stability of (1) for Π(t) = Π o (t).

IV. THE ERROR EQUATION OF EXACT FEEDFORWARD LINEARIZATION UNDER EXOGENOUS PERTURBATIONS In the case Π = Π o as generally defined in (2), it still makes sense to apply the controller of [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF] if the difference between the nominal exogenous perturbations Π o and the real ones is "not too big". Thereby a difficulty appears for the feedback part of [START_REF] Frazer | On the criteria for the stability of small motions[END_REF], since the exact value of z cannot be reconstructed by the knowledge of x (remember z = F (Π, x) of ( 8)). Therefore, the following approximate state 11 has to be considered

ζ = F (Π o , x) (26) 
Thus the tracking error used for the feedback part ( 17) is defined as

ẽi = ζ i -z * i , i ∈ {1, . . . , n}, ẽ0 = t 0 ẽ1 (τ )dτ (27) 
Notice that for j = 0, 1, ẽj = e j , since the flat output z is independent of ̟, see [START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF]. Using (27), the nonlinear control law [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF] has to be rewritten as

u = ψ(Π o , z * , v) = ψ Π o , z * , ż * n + k+1 i=0 λ i ẽi (t) (28) 
To study the robustness of the system (1) under the control law (28) in the vicinity of the desired trajectory, the control law ( 28) is substituted into (9), which yields

żi = z i+1 , i ∈ {1, . . . , n -1} żn = α Π, z, ψ(Π o , z * , ż * n + k+1 i=0 λ i ẽi (t)) = α Π, z, ψ(Π o , z * , ż * n + Λ( ẽ)) (29) 
where ẽ = [ẽ 0 , ẽ1 , ẽ2 , . . . , ẽn ] T . To find the real tracking error equation in e = z-z * , the following relation between ẽ = [ẽ 1 , ẽ2 , . . . , ẽn ] T and e can be established considering ( 8) and ( 4)

ẽ = F (Π o , x) -z * = F (Π o , φ(Π, z)) -z * = F (Π o , φ(Π, e + z * )) -z * (30) 
Since ẽ0 = e 0 , the feedback part Λ( ẽ) can thus be written as Λ(e). Then, using (29) the augmented tracking error system in e can be denoted as

ėi = e i+1 , i ∈ {0, . . . , n -1} (31) ėn = α Π, e + z * , ψ(Π o , z * , ż * n + Λ(e) -ż * n
An analysis of robust stability of (31) will be carried out in the following section.

V. ROBUSTNESS ANALYSIS In this section it is shown, through the study of the error equation (31), how stability of the control strategy (28) applied to the system (1) can be analyzed. For the sake of generality, full state information is used in the PID-part, that is k = n -1 in (28) for the sequel. How this assumption can be relaxed thereafter is described at the end of this section.

The augmented tracking error equation (31) can be written structurally as (defining

z * = [z * 1 , . . . , z * n , ż * n ] T ) ėi = e i+1 , i ∈ {0, . . . , n -1} ėn = β (Π, Π o , e, z * ) (32) 
and therefore as (defining

Z = [z * T , ż * n , Π T o , Π T ] T ) ė = Υ(e, Z) (33) 
where Z plays the role of an input to the augmented tracking error system in e. Since (33) is of nonlinear nature, known theory of robustness of linear systems can not be applied. However, the robust stability of the presented control law (28) can be analyzed by making use of a result which was primarily introduced by Kelemen [START_REF] Kelemen | A stability property[END_REF], reinterpreted by Khalil and Kokotović [START_REF] Khalil | On stability properties of nonlinear systems with slowly varying inputs[END_REF] and elaborated by Lawrence and Rugh [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF]. The version by Lawrence and Rugh [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF] (to which the reader is referred for further details) is applied in the sequel. Theorem 5.1: If the initial error e(0), the velocity of the desired trajectory and the velocity of the exogenous parameters Z are not too large, then the augmented tracking error e is uniformly bounded. Moreover, if the desired trajectory of the flat output reaches a given point z * (t) = z * ∞ , ∀t t * > 0 and the exogenous perturbations are constant from this point onwards (̟ o (t) = ̟ o∞ , ̟(t) = ̟ ∞ , ∀t t * > 0, then the tracking error e converges exponentially to zero.

Proof: In order to apply the stability results of [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF] based on Lyapunov stability theory, their hypotheses (H1)-(H3) have to be verified: • (H1): In (33), Υ is by construction at least C 2 . • (H2): Define Γ ⊂ R n+1+2qn to be any bounded, open and connected subset of R n+1+2qn such that ∀t ∈ [0, ∞), Z ∈ Γ. Define also the continuously differentiable function ξ : Γ → R n+1 such that Υ(ξ(ζ), ζ) = 0, for all ζ ∈ Γ and Υ as defined in (33). The smoothness of Z ensures the existence of Γ and ξ. The map ξ is nothing but a parametrization of equilibria of (33) corresponding to frozen-time inputs ζ ∈ Γ. In view of the particular structure of (33) displayed in (32) one obviously has

ξ(ζ) = [ξ 0 (ζ), 0, . . . , 0] T , ∀ζ ∈ Γ (34) 
where ξ 0 takes values in R. If the interval containing all solutions ξ 0 (ζ) is needed for the calculations presented in (H3), the implicit equation β (Π, Π o , ξ(ζ), ζ) = 0 has to be solved by interval analysis. 12• (H3): To verify the eigenvalues of ∂Υ ∂e around the parametrization of equilibria ξ(ζ) of (34) and thus for all ζ ∈ Γ, consider (31) to get

∂Υ ∂e Γ = ∂Υ ∂e ξ(ζ) =         0 1 0 • • • 0 0 0 1 • • • 0 . . . . . . . . . 0 0 0 • • • 1 µ 0 µ 1 µ 2 • • • µ n         (35) 
where :

µ i = µ i (ζ) = ∂α ∂e i Γ , ζ ∈ Γ,
P(Π o , Π) = s n+1 -µ n s n -• • • -µ 0 ( 36 
)
To determine whether the polynomial P(̟) of (36) has only zeros with real parts less than -λ, λ > 0 (and thus whether (H3) is satisfied), one of the following methods is applied:

1. If the coefficients of the characteristic polynomial are algebraically independent with respect to the interval parameters, the stability can be deduced analytically in a necessary and sufficient way by the well-known theorem by Kharitonov [START_REF] Kharitonov | Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[END_REF].

2. In the case, in which the coefficients of the characteristic polynomial are algebraically dependent with respect to the interval parameters, the stability can be determined algebraically by the theorem of Frazer and Duncan [START_REF] Frazer | On the criteria for the stability of small motions[END_REF] (it is remarked, that for Π = Π o , there exists by construction at least one stable characteristic polynomial of (36), see Sec. IV).

3. Furthermore a numerical algorithm was developed by Walter and Jaulin [START_REF] Walter | Guaranteed characterization of stability domains via set inversion[END_REF], which is based on interval analysis. It can also be found in [START_REF] Jaulin | Applied Interval Analysis[END_REF], where it is additionally combined with constraint propagation to shorten significantly the calculation time. Moreover, a new value set approach based on the knowledge of at least one stable characteristic polynomial is presented in [START_REF] Jaulin | Applied Interval Analysis[END_REF]. As the hypotheses (H1)-(H3) of [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF] are satisfied, there exists a ρ > 0, a T > 0, a δ 1 (ρ) > 0 and a δ 2 (ρ, T ) > 0 such that e(0) < δ 1 (37)

1 T t+T t Ż(τ ) dτ < δ 2 , t ≥ 0 (38)
then the corresponding solution e of (33) satisfies e(t) < ρ, t ≥ 0 (39) that is the system (1) is stable under the tracking control law (28).

Applying the Corollary of [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF] in the case Z = Z ∞ , ∀t > t * > 0 implies, in view of the structure of (34), that lim t→∞ e(t) = 0 and e(t * ) lies inside the domain of attraction 13 of the exponentially stable equilibrium given by [ξ 0 (ζ), 0, . . . , 0] T evaluated at ζ = [z * ∞ , 0, . . . , 0] T . Remark 5.1: Note that the condition (38) assures, that robust stability can be proven if the velocity of exogenous perturbation and its derivatives Π (and their respective nominal counterparts) is not too big in an average sense. Since Heaviside jumps with microstructure are considered for the model of the exogenous perturbations, this might lead -depending on the system-to robustness in a lot of cases, even if derivatives of the perturbation Π enter equation [START_REF] Jakubczyk | On linearization of control systems[END_REF].

Remark 5.2: The first component ξ 0 (ζ) of the parametrized manifold in (34) corresponds to the state of the integral of the feedback part of (28). Since ξ i (ζ) = 0, i = 1, . . . , n, ζ ∈ Γ, the other components of the manifold correspond to a zero tracking error e = 0.

Remark 5.3: For the calculations within the mentioned methods, not only Π, Πo and ξ 0 , but also z * can be understood as of interval type. More precisely, since z * is a function of time, for a given time interval 14 t ∈ t = [t 0 , t 1 ], the only interval parameter which has to be added to Π, Πo and ξ 0 for the analysis is therefore t.

Remark 5.4: Partial state feedback is possible with the control strategy (28). Its stability can also be analyzed in the context of Theorem 5.1 by setting the respective control law coefficients λ i = 0, i ∈ {k + 2, . . . , n} (as in [START_REF] Frazer | On the criteria for the stability of small motions[END_REF]). The minimal number of derivative actions k necessary (but not implicitly sufficient) for stability can be determined from ∂Υ ∂e Γ using the necessary condition for negativity of the eigenvalues, that is µ i , i ∈ {0, . . . , n} < 0 (see (36)).

Remark 5.5: In general, the choice of the nominal exogenous perturbation within the given uncertainty interval influences the robustness behavior. It is important to remark, that this choice does not only affect the coefficients of the respective characteristic polynomial, but also the magnitude of the so-called "quasi-exogenous" perturbations, that stem from the desired trajectory injection. The magnitude of these perturbations evidently influences the convergence behavior, therefore the choice of the nominal value within the uncertainty interval has to be undertaken carefully.

VI. ACADEMIC EXAMPLES

In this section, two academic examples are presented in order to highlight the different aspects of how the exogenous perturbation enters the respective equations (for non-academic examples of exact feedfoward application to real systems under exogenous perturbations, cf. the application to the induction machine [START_REF] Hagenmeyer | Flatness-based control of the induction drive minimizing energy dissipation[END_REF], [START_REF] Hagenmeyer | Continuous-time nonlinear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example[END_REF] and the application to industrial semi-batch reactors [START_REF] Hagenmeyer | Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an Extended Kalman Filter approach[END_REF]). The first academic example concerns a stable system, whereas the second academic example treats an unstable system.

with the initial condition given by z 0 = [x 10 , x 20 + ̟(0)] T . To find the real tracking error equation in e = zz * , the relation (30) between ẽ and e can be established as

ẽi = e i , i ∈ {0, 1} (51) ẽ2 = e 2 -̟, (52) 
Now, the augmented tracking error system in e can be denoted by

ėi = e i+1 , i ∈ {0, 1} (53) 
ė2 = -(e 2 + z * 2 -̟) 3 + 1 i=0 λ i ẽi + λ 2 (e 2 -̟) + (z * 2 ) 3 + ̟
Following Section V, the robustness analysis of the augmented tracking error system (53) can be led by applying to it the results of Lawrence and Rugh [START_REF] Lawrence | On a stability theorem for nonlinear systems with slowly varying inputs[END_REF] based on Lyapunov stability theory. Their hypotheses (H1)-(H3) have to be verified: • (H1): The vector field of (53) is at least C 2 .

• (H2): The parametrization of equilibria (34) of (53) corresponding to frozen-time inputs z * 2 , ̟ and

̟ is ξ = [ 1 λ 0 ((z * 2 -̟) 3 + λ 2 ̟ -̟), 0, 0] T (54) 
• (H3): To verify the eigenvalues of the linearization of (53) around the parametrization of equilibria (54), this linearization is calculated as

∂Υ ∂e Γ = ∂Υ ∂e ξ(ζ) =    0 1 0 0 0 1 λ 0 λ 1 -3(z * 2 -̟) 2 + λ 2    (55) 
Thus the following characteristic polynomial containing the interval parameters z * 2 and ̟ determines the possible root loci of the eigenvalues of ∂Υ ∂e Γ :

P(z * 2 , ̟) = s 3 + (3(z * 2 -̟) 2 -λ 2 )s 2 -λ 1 s 1 -λ 0 (56) 
To decide whether this polynomial of (56) has only zeros with real parts less than -λ, λ > 0, it is not necessary to apply interval algebra in this case. Since after a transformation of q = s + λ, the application of a Routh-Hurwitz table yields the following conditions

λ 2 < 3(z * 2 -̟) 2 -3λ (57) λ 1 λ 0 -λ 0 > λ 3 -λ 2 (3(z * 2 -̟) 2 -λ 2 ) (58) (3λ 2 -2λ(z * 2 -̟) 2 -λ 2 ) -λ 1 )(z * 2 -̟) 2 -λ 2 -3λ) > λ 1 λ 0 -λ 0 -λ 3 + λ 2 (3(z * 2 -̟) 2 -λ 2 ) (59) 
which can easily be checked for a given situation.

In the following the desired trajectory is chosen as a spline such as 

0 t t i , z * (t) = z i t i t t f , z * (t) = 5 k=0 ζ k (t -t i ) k , ζ k ∈ R t f t +∞, z * (t) = z f with t i = 1 s, t f =
0 t t ′ i , ̟(t) = ̟ i t ′ i t t ′ f , ̟(t) = 3 k=0 υ k (t -t i ) k , υ k ∈ R t ′ f t +∞, z * (t) = ̟ f with t ′ i = 2.45 s, t ′ f = 2.
55 s, ̟ i = 0.0 and ̟ f = 1.0. The corresponding trajectories ̟ and ̟ are shown in Fig. 2. The results of the application of the control law (49) to the system (40) are given in Fig. 3 for an initial condition x(0) = (0.35 0.0) T .

The largest real part of eigenvalues of ∂Υ ∂e Γ (55) during the transition are depicted in Fig. 4 and shows the stability margin required in (H3). Thus, a good tracking and robustness of the application of the control law (49) to the system (40) can be concluded. 

B. Application to an unstable system

Consider now the unstable system (which is the unstable counterpart of the stable system (40))

ẋ1 = x 2 + ̟ ẋ2 = +x 3 2 + u (60) 
with x(0) = [0, 0] T . Following the development in the preceding subsection, in this case the control law can be denoted as

u = z * + 2 i=0 λ i e i -( ż * ) 3 (61) 
The results of the application of the control law (61) to the system (60) is reported in Fig. 5, while the maximum real part of the eigenvalues associated with the closed-loop error equation is depicted in Fig. 6. One still remarks a control with good tracking and robustness properties. The article presents a method to analyze robust stability of exact feedforward linearization based on differential flatness with respect to exogenous perturbations and time-varying parameters. It is remarked, that representing the perturbed system in its so-called flat coordinates leads in all cases to the fulfillment of a sort of matching condition, that is the perturbation, its time derivatives and the input entering the system at the same point.

In case of using a PID-like stabilization for the feedback part of the combined control structure, the controller coefficients have to be traded-off with respect to the desired trajectory, its derivatives and generally the size of the uncertainty intervals of the exogenous perturbations or time-varying parameters. Also the choice of the nominal value of these parameters within the given uncertainty intervals is of interest for the performance of the closed loop system.

Modeling the exogenous perturbations by so-called "Heaviside jumps with microstructure" permits to stay close to physical reality. Since in the robustness result the velocity of the exogenous perturbation and its derivatives have to be bounded in an average sense, this might lead, depending on the system, to robustness in a lot of cases.

These results are important for the practicability in real applications of exact feedforward linearization based on differential flatness: 15 in the case of a given flat nonlinear system, for which there already exists a linear PID-like controller stabilizing the system in the vicinity of an operation point, a nonlinear nominal feedforward based on flatness combined with the existing PID-like controller can lead to very good tracking of, for instance, guided set point changes even under exogenous perturbations. 
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 1 Fig. 1. Flat output predicted trajectory: z * , ż * and z *
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 3 Fig. 3. Simulation result of the application of the control law (49) to the stable system (40): x1 in solid line and z * in dashed line
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 5 Fig. 5. Simulation result of the application of the control law (61) to the unstable system (60): x1 in solid line and z * in dashed line

Fig. 6 .

 6 Fig. 6. Largest real part of eigenvalues of ∂Υ ∂e Γ around the respective parametrization of equilibria

If there is no a priori information given about the nominal time profile of the exogenous perturbation, let ̟o i (t) = ̟ * o i , i = 1, . . . , q, where the ̟ * o i are the constant expected mean values of the respective perturbations.

This definition is an adaptation from[START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF],[START_REF]A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems[END_REF].

The eventual singularities appearing in F , φ and ψ are outside of this open subsets.

This assumption is not very restrictive in the case of real systems. The flat output can often be chosen to be a physical variable (a position, a current, a voltage, a temperature, etc.), which is independent of any unknown parameter. The range of the uncertainty of the parameter set defined by (2) does not change generically the dynamic structure of the system. Moreover, the whole robustness analysis in the sequel can also be led without this assumption, but then (31) becomes a Liouvillian system and the notationally nice structure of (35) is lost.

The maximal number of derivatives of z in (4) and (5) respectively are due to the results of[START_REF] Jakubczyk | On linearization of control systems[END_REF],[START_REF] Charlet | On dynamic feedback linearization[END_REF] (see more details below in the proof of Theorem 2.1).

The proof is written in the SISO case for notational convenience. A similar proof for the MIMO case can be led considering[START_REF] Hagenmeyer | Exact feedforward linearization based on differential flatness[END_REF].

"Extended" in the sense that multiple derivatives of the error can be used, where the D-parts are in the higher order errors ei, k ≥ 1, cf. (16) and[START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF]. Thereby it is important to remark that these derivatives are not obtained by successive derivation of a (possibly) noisy signal, but they are calculated using the measured state (or the necessary part of it), eqn. (8) with Π = Πo, and eqn.[START_REF] Kharitonov | Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[END_REF].

Being on the desired trajectory means z = z * , that is also z = z * and correspondingly x = x * (cf. (4)).

In the same manner as it is also done for the main result of this contribution, see Theorem 5.1 below.

The difference between z and ζ may not affect the whole state depending on F (Π, x).

For a numerical solution, the authors propose to use the algorithm SIVIAX of [15, p. 104].

This result is comparable to linear systems when using an integral part in a PI-controller: for constant perturbations the control law leads to exponential stability, for non-constant perturbations the control law leads to bounded stability.

Consider for example a set point change in [t0, t1] using spline functions.

For successful applications of this method, cf. the application to the induction machine[START_REF] Hagenmeyer | Flatness-based control of the induction drive minimizing energy dissipation[END_REF],[START_REF] Hagenmeyer | Continuous-time nonlinear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example[END_REF] and the application to industrial semi-batch reactors[START_REF] Hagenmeyer | Flatness-based two-degree-of-freedom control of industrial semi-batch reactors using a new observation model for an Extended Kalman Filter approach[END_REF].

A. Application to a stable system

Given the single-input system ẋ1 = x 2 + ̟ ẋ2 = -x 3 2 + u (40) with x(0) = [0, 0] T . This control system is flat with z = x 1 , and Eqns. ( 4) and ( 5) read as

Thus, for every given admissible nominal trajectory of the flat output t → z * (t), the family of nominal feedforwards is given by

The corresponding state transformation (8)

leads to the control normal form ( 9)

with the initial condition given by z 0 = [x 10 , x 20 + ̟(0)] T . As shown in the proof of Theorem 2.1 of Section II, the nominal input (43) linearizes the system if the nominal perturbation condition ̟ = ̟ o holds, and if the initial condition is consistent following Definition 2.1, i.e. x 0 = z * 0 . This feedforward linearization implies z(t) = z * (t), and thus x(t) = x * (t).

In order to counteract the eventual exogenous perturbations, a control law is designed following Section III, in which first the assumption is made that the exogenous perturbations coincide with the nominal ones in system (40), that is ̟ = ̟ o . In order to simplify notations, it is assumed in the ongoing, that no a priori information is known on the perturbation ̟ ∈ R, thus the nominal values are

Then control law (18) reads as

with the tracking error definitions for e i as in [START_REF] Kharitonov | Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[END_REF].

Considering now Section IV, the assumption ̟ = ̟ o has to be relaxed and ̟ = ̟ o has to be studied. This leads to the approximate state (26)

and the approximate tracking error definition ẽi of (27). The control law (28) reads then as

To study the robustness of the system (40) under the control law (49) in the vicinity of the desired trajectory, the control law (49) is substituted into (45), which yields