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Bernstein processes are Brownian diffusions that appear in Euclidean Quantum Mechanics. The consideration of the symmetries of the associated Hamilton-Jacobi-Bellman equation allows one to obtain various relations between stochastic processes (Lescot-Zambrini, Progress in Probability, vols 58 and 59). More recently it has appeared that each one-factor affine interest rate model (in the sense of Leblanc-Scaillet) could be described using such a Bernstein process.
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Introduction

The relationship between Bernstein processes and Mathematical Finance was first glimpsed in §5 of [START_REF] Patie | On some first passage times problems motivated by financial applications[END_REF], where the Alili-Patie family of transformations S α,β (see [START_REF] Alili | Sur les premiers instants de croisement du mouvement brownien et d'une famille de courbes continues[END_REF], §2, for the particular case α = 1, and [START_REF] Patie | On some first passage times problems motivated by financial applications[END_REF], pp.60-61, for the general case) was reinterpreted in the context of isovectors for the (backward) heat equation. Furthermore, Patie's composition formula ( [START_REF] Patie | On some first passage times problems motivated by financial applications[END_REF], p.60) for these transformations was derived from the commutation relations of the canonical basis of the aforementioned isovector algebra.

As the motivation for Patie's work had been to compute certain option prices in the framework of an affine interest rate model (see [START_REF] Patie | On some first passage times problems motivated by financial applications[END_REF], pp. 101-104), it was natural to look for a direct parametrization of such a model by a Bernstein process. It turns out that, for any one-factor interest rate model in the sense of Leblanc and Scaillet ([4],p. 351), the associated square root process coincides, up to some (possibly infinite) random time, with a Bernstein process ( §3, Theorem 3.4). The potential 1 q 2 (that had been considered in [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p. 220, on physical grounds) appears here naturally (Theorem 3.4) : this is one more example of the deep links between Euclidean Quantum Mechanics and Mathematical Finance.

An isovector calculation

We shall work within the context of [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], §3. We consider the Hamilton-Jacobi-Bellman equation

(HJ B V ) ∂S ∂t + θ 2 2 ∂ 2 S ∂q 2 - 1 2 ( ∂S ∂q ) 2 + V = 0 with potential V (t, q) = C q 2 + Dq 2
, where we have replaced (as explained in [START_REF] Lescot | Euclidean Quantum Mechanics and Interest Rate Models[END_REF]) √ by θ.
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In order to determine the Lie algebra H V of pure isovectors for (HJ B V ), i.e. the algebra ℵ of [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], we have to solve the auxiliary equation (3.29) from [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF],p. 215, i.e. :

-

...

T N q 2 - .. lq + . σ+ 1 2 
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T N q(-C q 3 +2Dq)+l(-

2C q 3 +2Dq)+ . T N ( C q 2 +Dq 2 )- θ 2 4 
..

T N = 0 ,
that is :

q 2 (2D . T N - 1 4 
...

T N ) + q(- .. l + 2Dl) + . σ - θ 2 4 
...

T N -2Cl q 3 = 0 .

As T N , l and σ depend only upon t, the system is equivalent to :

               2Cl = 0 .. l = 2Dl . σ = θ 2 4 .. T N ... T N = 8D . T N .
Two different cases now appear : 1) C = 0 Then one must have l = 0, in which case the second condition holds automatically, and the system reduces itself to :

     . σ = θ 2 4 .. T N ... T N = 8D . T N 1)a) D > 0 Setting ǫ = √ 8D, we find . T N = C 1 e ǫt + C 2 e -ǫt ,
whence

T N = C 1 ǫ e ǫt - C 2 ǫ e -ǫt + C 3 and σ = θ 2 4 . T N + C 4 therefore : σ = θ 2 C 1 4 e ǫt + θ 2 C 2 4 e -ǫt + C 4
where (C j ) 1≤j≤4 denote arbitrary (real) constants. In particular T N = 0 follows

dim(H V ) = 4 .
T N = C 1 t 2 + C 2 t + C 3 for constants C 1 , C 2 , C 3 . Then . σ = θ 2 4
..

T N = θ 2 C 1 2 and σ = θ 2 C 1 2 t + C 4 .
Therefore, here too, dim(H V ) = 4; furthermore, we get an explicit expression for the isovectors :

N t = T N = C 1 t 2 + C 2 t + C 3 , N q = 1 2 q . T N + l = 1 2 q(2C 1 t + C 2 ) = C 1 tq + C 2 q 2 ,
and

N S = -φ = - 1 4 q 2 .. T N -q . l + σ = - 1 4 q 2 .2C 1 + θ 2 2 C 1 t + C 4 = C 1 2 (θ 2 t -q 2 ) + C 4 .
A canonical basis for H V is thus given by (M i ) 1≤i≤4 , where M i is characterized by C j = δ ij (Kronecker's symbol). Using the notation of [START_REF] Lescot | Isovectors for the Hamilton-Jacobi-Bellman Equation[END_REF], it appears that

M 1 = 1 2 N 6 , M 2 = 1 2 N 4 , M 3 = N 1 , and 
M 4 = - 1 θ 2 N 3 , therefore H V is generated by N 1 , N 3 , N 4 and N 6 .
We thereby recover the result of [START_REF] Lescot | Probabilistic deformation of contact geometry, diffusion processes and their quadratures[END_REF], p. 220, modulo the correction of a misprint. This list ties in nicely with the symmetry properties of certain diffusions related to Bessel processes (see [START_REF] Lescot | [END_REF] for a detailed explanation).

1)c)D < 0 Setting now ǫ = √ -8D, we find

.

T N = C 1 cos (ǫt) + C 2 sin (ǫt) , whence T N = C 1 ǫ sin (ǫt) - C 2 ǫ cos (ǫt) + C 3 ,
and, as above :

σ = θ 2 4 . T N + C 4 , therefore : σ = θ 2 C 1 4 cos (ǫt) + θ 2 C 2 4 sin (ǫt) + C 4
where (C j ) 1≤j≤4 denote arbitrary (real) constants. In particular ,

dim(H V ) = 4 .
2)C = 0 Then the system becomes

           .. l = 2Dl . σ = θ 2 4 .. T N ... T N = 8D . T N .
The equation for l on the one hand, and the system for (σ, T N ) on the other hand, are independent, and, as above, the first one has a two-dimensional space of solutions and the second one a four-dimensional space of solutions, i.e.

dim(H V ) = 6 . Whence Theorem 2.1. The isovector algebra H V associated with V has dimension 6 if and only if C = 0 ; in the opposite case, it has dimension 4.

Parametrization of a one-factor affine model

As general references we shall use, concerning Bernstein processes, our recent survey ( [START_REF] Lescot | Euclidean Quantum Mechanics and Interest Rate Models[END_REF]), and, concerning affine models, Hénon's PhD thesis( [START_REF] Hénon | Un modèle de taux avec volatilité stochastique[END_REF]) as well as Leblanc and Scaillet's seminal paper ([4]).

An one-factor affine interest rate model is characterized by the instantaneous rate r(t), satisfying the following stochastic differential equation :

dr(t) = αr(t) + β dw(t) + (φ -λr(t)) dt (3.1)
under the risk-neutral probability Q (α = 0 corresponds to the so-called Vasicek model, and β = 0 corresponds to the Cox-Ingersoll-Ross model ; cf. [START_REF] Leblanc | Path dependent options on yields in the affine term structure model[END_REF]).

Assuming α > 0, let us set

φ = def φ + λβ α , δ = def 4 φ α ,
and let us also assume that φ ≥ 0.

The following two quantities will play an important role :

C := α 2 8 ( φ - α 4 )( φ - 3α 4 ) = α 4 128 (δ -1)(δ -3)
and

D := λ 2 8 .
Let us set X t = αr(t) + β. has a unique strong solution such that r(0) = r 0 . Furthermore, in case that αr 0 + β ≥ 0 , one has αr(t) + β ≥ 0 for all t ≥ 0 ; in particular, r(t) satisfies (3.1).

Proof. Let us set X t = αr(t) + β ; it is easy to see that, in terms of X t , equation 3.2 becomes:

dX t = αdr(t) = α( |X t |dw(t) + (φ -λ X t -β α )dt) = α |X t |dw(t) + (α φ -λX t )dt .
We are therefore in the situation of (1), p.313, in [START_REF] Göing-Jaeschke | A survey and some generalizations of Bessel processes[END_REF], with c = α, a = α φ, and b = -λ ; the result follows.

In case λ = 0, one may also refer to [START_REF] Hénon | Un modèle de taux avec volatilité stochastique[END_REF],p.55, Proposition 12.1, with σ = α, κ = λ and a = α φ λ .

We shall henceforth assume all of the hypotheses of Proposition 3.1 to be satisfied.

Corollary 3.2. One has

X t = e -λt Y ( α 2 (e λt -1)

4λ

) for λ = 0 , and X t = Y ( α 2 t 4 ) for λ = 0 where Y is a BESQ δ (squared Bessel process with parameter δ) having initial value Y 0 = αr 0 + β.

Proof. In case λ = 0, one applies the result of [START_REF] Hénon | Un modèle de taux avec volatilité stochastique[END_REF], p. 314. For λ = 0, let

Z t := 4 α 2 X t ; it appears that dZ t = 2 |Z t |dw(t) + δdt , whence Z t is a BESQ δ -process. As X t := α 2 4 Z t ,
the scaling property of Bessel processes yields the result.

Theorem 3.3. If δ ≥ 2 one has, almost surely :

∀t > 0 X t > 0 ;
on the other hand, if δ < 2, almost surely there is a t > 0 such that X t = 0.

Proof. We apply Corollary 1, p. 317, from [START_REF] Leblanc | Path dependent options on yields in the affine term structure model[END_REF](12.2) yielding that

∀t > 0 X t > 0 . (3.3)
One may also use [START_REF] Hénon | Un modèle de taux avec volatilité stochastique[END_REF], p.56, from which follows that (3.3) is equivalent to 2aκ σ 2 ≥ 1 ; but, according to the above identifications,

2aκ σ 2 = 2 α φ λ λ α 2 = 2 φ α = δ 2 .
Our main result is the following : and the potential

V (t, q) = C q 2 + Dq 2 . such that ∀t ∈ [0, T [ z(t) = y(t) .
In particular, for δ ≥ 2, z itself is a Bernstein process.

Proof. One has (cf. Proposition 3.1 and its proof)

dX t = α X t dw(t) + (α φ -λX t )dt = αz(t)dw(t) + (α φ -λz(t) 2 )dt . Taking now f (x) = √ x, we have ∀x > 0 f ′ (x) = 1 2 √ x and f ′′ (x) = - 1 4 x -3 2 , therefore, for all t ∈]0, T [, f ′ (X t ) = 1 2z(t) and f ′′ (X t ) = -1 4 z(t) -3
. The application of Itô's formula now gives :

dz(t) = d(f (X t )) = f ′ (X t )dX t + 1 2 f ′′ (X t )(dX t ) 2 = 1 2z(t) (αz(t)dw(t) + (α φ -λz(t) 2 )dt) - 1 8 z(t) -3 α 2 z(t) 2 dt = α 2 dw(t) + 1 8z(t) (4α φ -4λz(t) 2 -α 2 )dt .
Let us now define η by

η(t, q) := e λ φt α - λq 2 α 2 q 2 φ α - 1 2 = e λδt 4 - λq 2 α 2 q δ -1 2 .
It is easy to check that η solves the equation

θ 2 ∂η ∂t = - θ 4 2 ∂ 2 η ∂q 2 + V η for V = C q 2 + Dq 2 ; in other words, S := -θ 2 ln(η) = -θ 2 ( λδt 4 - λq 2 α 2 + δ -1 2 ln(q)) = - α 2 λδt 16 + λq 2 4 -α 2 ( δ - 1 8 
) ln(q) satisfies (HJ B V ). Furthermore we have :

B := θ 2 ∂η ∂q η = - ∂S ∂q = - λq 2 + α 2 (δ -1) 8q = 1 8q (α 2 δ -α 2 -4λq 2 ) whence B(t, z(t)) = 1 8z(t) (4α φ -α 2 -4λz(t) 2 )
and z satisfies the stochastic differential equation associated with η :

∀t ∈]0, T [ dz(t) = θdw(t) + B(t, z(t))dt
(as in [START_REF] Lescot | Euclidean Quantum Mechanics and Interest Rate Models[END_REF], §1, equation (B)) ; the result follows. Let us analyze more closely the situation in which C = 0 ; the general case will be commented upon in [START_REF] Lescot | [END_REF].

1) φ = α 4 , i.e. δ = 1 .
Then y(t) is a solution of

dy(t) = α 2 dw(t) - λ 2 y(t)dt ,
i.e. y(t) is an Ornstein-Uhlenbeck process (it was already known that the Ornstein-Uhlenbeck process was a Bernstein process for a quadratic potential). Therefore z(t) coïncides, on the random interval [0, T [, with an Ornstein-Uhlenbeck process. Here

η(t, q) = e λt 4 - λq 2 α 2 .
From

y(t) = e -λt 2 (y 0 + α 2 t 0 e λs 2 dw(s)) = e -λt 2 (z 0 + w( α 2 (e λt -1) 4λ 
))

( w denoting another Brownian motion), it appears that y(t) follows a normal law with mean e -λt 2 z 0 and variance α 2 (1-e -λt ) 4λ

. The density ρ t (q) of y(t) is therefore given by :

ρ t (q) = 2 √ λ α 2π(1 -e -λt ) exp (- 2λ(q -e -λt 2 z 0 ) 2 α 2 (1 -e -λt )
) .

Whence

∀t > 0 η * (t, q) = ρ t (q) η(t, q) = 1 α λ π sinh ( λt 2 ) e ( -λq 2 -λq 2 e -λt + 4λqz 0 e -λt 2 -2λz 2 0 e -λt α 2 (1 -e -λt )
)

and one may check that, as was to be expected, η * satisfies the following equation (C

(V ) 2 in [5]) : -θ 2 ∂η * ∂t = - θ 4 2 ∂ 2 η * ∂q 2 + V η * . (3.4) 2) φ = 3α 4 
, i.e. δ = 3. In that case, according to Theorem 3.2, T = +∞ whence y = z. Furthermore

η(t, q) = qe λ α 2 ( 3α 2 t 4 -q 2
) . Let us now assume X 0 = 0 and λ = 0 ; then, according to Corollary 3.2,

Let us define

s(t) = e - λt 2 
X t = e -λt Y ( α 2 (e λt -1) 4λ )
where Y is a BESQ 3 Bessel process with parameter 3) such that Y (0) = 0. But, for each fixed t > 0, Y t has the same law as tY 1 , and Y 1 = ||B 1 || 2 is the square of the norm of a 3-dimensional Brownian motion ; the law of Y 1 is therefore

1 √ 2π e -u 2 √ u1 u≥0 du .
Therefore the density ρ t (q) of the law of z(t) is given by :

ρ t (q) = 1 √ 2π 16λ 3 2 α 3 (1 -e -λt ) 3 2 
q 2 e -2λq 2 α 2 (1e -λt ) and ∀t > 0 η * (t, q) = ρ t (q) η(t, q) = 16λ Here, too, one may check directly that η * satisfies equation (3.4) above.

Proposition 3 . 1 .

 31 Let r 0 ∈ R ; then the stochastic differential equation dr(t) = |αr(t) + β| dw(t) + (φλr(t)) dt (3.2)

Theorem 3 . 4 .

 34 Let us define the process z(t) = X t and the stopping time T = inf{t > 0|X t = 0}; as seen in Theorem 3.3, T = +∞ a.s. for δ ≥ 2, and T < +∞ a.s. for δ < 2. Then there exists a Bernstein process y(t) for θ = α 2

Proposition 3 . 5 .

 35 The isovector algebra H V associated with V has dimension 6 if and only if φ ∈ { α 4 , 3α 4 }, i.e. δ ∈ {1, 3} ; in the opposite case, it has dimension 4. Proof. It is enough to apply Theorem 2.1, observing that the condition C = 0 is equivalent to φ ∈ { α 4 , 3α 4 }. In the context of Hénon's already mentioned PhD thesis ([START_REF] Hénon | Un modèle de taux avec volatilité stochastique[END_REF],p.55) we have φ = κa, λ = κ, α = σ 2 et β = 0, whence φ = κa and the condition C = 0 is equivalent to

  Referring once more to Proposition 3.1 and its proof, we see thatdX t = α X t dw(t) + ( 3α 2 4 -λX t )dt .

				1 z(t)	;
	then an easy computation, using Itô's formula in the same way as above, shows
	that	ds(t) = -	α 2	e

λt 2 s(t) 2 dw(t) ; in particular, s(t) is a martingale.
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