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ON AFFINE INTEREST RATE MODELS

PAUL LESCOT

Abstract. Bernstein processes are Brownian diffusions that appear in Eu-
clidean Quantum Mechanics. The consideration of the symmetries of the as-
sociated Hamilton-Jacobi-Bellman equation allows one to obtain various re-
lations between stochastic processes (Lescot-Zambrini, Progress in Proba-

bility, vols 58 and 59). More recently it has appeared that each one–factor

affine interest rate model (in the sense of Leblanc-Scaillet) could be described
using such a Bernstein process.

MSC 91G30, 60H10
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1. Introduction

The relationship between Bernstein processes and Mathematical Finance was
first glimpsed in §5 of [9], where the Alili–Patie family of transformations Sα,β

(see [1],§2, for the particular case α = 1, and [9], pp.60–61, for the general case)
was reinterpreted in the context of isovectors for the (backward) heat equation.
Furthermore, Patie’s composition formula ([9], p.60) for these transformations was
derived from the commutation relations of the canonical basis of the aforementioned
isovector algebra.

As the motivation for Patie’s work had been to compute certain option prices
in the framework of an affine interest rate model (see [9], pp. 101–104), it was
natural to look for a direct parametrization of such a model by a Bernstein process.
It turns out that, for any one–factor interest rate model in the sense of Leblanc
and Scaillet ([4],p. 351), the associated square root process coincides, up to some
(possibly infinite) random time, with a Bernstein process (§3, Theorem 3.4). The

potential
1

q2
(that had been considered in [8], p. 220, on physical grounds) appears

here naturally (Theorem 3.4) : this is one more example of the deep links between
Euclidean Quantum Mechanics and Mathematical Finance.

2. An isovector calculation

We shall work within the context of [8], §3. We consider the Hamilton–Jacobi–
Bellman equation

(HJBV )
∂S

∂t
+

θ2

2

∂2S

∂q2
− 1

2
(
∂S

∂q
)2 + V = 0

with potential

V (t, q) =
C

q2
+Dq2 ,

where we have replaced (as explained in [5])
√
~ by θ.
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2 PAUL LESCOT

In order to determine the Lie algebra HV of pure isovectors for (HJBV ), i.e.
the algebra ℵ of [8], we have to solve the auxiliary equation (3.29) from [8],p. 215,
i.e. :

−1

4

...

TNq2−
..

lq+
.
σ+

1

2

.

TNq(−C

q3
+2Dq)+l(−2C

q3
+2Dq)+

.

TN(
C

q2
+Dq2)− θ2

4

..

TN = 0 ,

that is :

q2(2D
.

TN − 1

4

...

TN) + q(−
..

l + 2Dl) +
.
σ − θ2

4

...

TN − 2Cl

q3
= 0 .

As TN , l and σ depend only upon t, the system is equivalent to :






























2Cl = 0
..

l = 2Dl

.
σ =

θ2

4

..

TN

...

TN = 8D
.

TN .

Two different cases now appear :
1) C 6= 0
Then one must have l = 0, in which case the second condition holds automati-

cally, and the system reduces itself to :











.
σ =

θ2

4

..

TN

...

TN = 8D
.

TN

1)a) D > 0

Setting ǫ =
√
8D, we find

.

TN = C1e
ǫt + C2e

−ǫt ,

whence

TN =
C1

ǫ
eǫt − C2

ǫ
e−ǫt + C3

and

σ =
θ2

4

.

TN + C4

therefore :

σ =
θ2C1

4
eǫt +

θ2C2

4
e−ǫt + C4

where (Cj)1≤j≤4 denote arbitrary (real) constants. In particular

dim(HV ) = 4 .

1)b)D = 0

Then from
...

TN = 0 follows

TN = C1t
2 + C2t+ C3
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for constants C1, C2, C3. Then

.
σ =

θ2

4

..

TN =
θ2C1

2

and

σ =
θ2C1

2
t+ C4 .

Therefore, here too, dim(HV ) = 4; furthermore, we get an explicit expression
for the isovectors :

N t = TN = C1t
2 + C2t+ C3 ,

N q =
1

2
q

.

TN + l

=
1

2
q(2C1t+ C2)

= C1tq +
C2q

2
,

and

NS = −φ

= −1

4
q2

..

TN − q
.

l + σ

= −1

4
q2.2C1 +

θ2

2
C1t+ C4

=
C1

2
(θ2t− q2) + C4 .

A canonical basis for HV is thus given by (Mi)1≤i≤4, where Mi is characterized
by Cj = δij (Kronecker’s symbol). Using the notation of [7], it appears that

M1 =
1

2
N6 ,

M2 =
1

2
N4 ,

M3 = N1 ,

and

M4 = − 1

θ2
N3 ,

therefore HV is generated by N1, N3, N4 and N6. We thereby recover the result
of [8], p. 220, modulo the correction of a misprint. This list ties in nicely with the
symmetry properties of certain diffusions related to Bessel processes (see [6] for a
detailed explanation).

1)c)D < 0
Setting now ǫ =

√
−8D, we find

.

TN = C1 cos (ǫt) + C2 sin (ǫt) ,

whence
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TN =
C1

ǫ
sin (ǫt)− C2

ǫ
cos (ǫt) + C3 ,

and, as above :

σ =
θ2

4

.

TN + C4 ,

therefore :

σ =
θ2C1

4
cos (ǫt) +

θ2C2

4
sin (ǫt) + C4

where (Cj)1≤j≤4 denote arbitrary (real) constants. In particular ,

dim(HV ) = 4 .

2)C = 0
Then the system becomes























..

l = 2Dl

.
σ =

θ2

4

..

TN

...

TN = 8D
.

TN .

The equation for l on the one hand, and the system for (σ, TN ) on the other
hand, are independent, and, as above, the first one has a two–dimensional space of
solutions and the second one a four–dimensional space of solutions, i.e.

dim(HV ) = 6 .

Whence

Theorem 2.1. The isovector algebra HV associated with V has dimension 6 if and
only if C = 0 ; in the opposite case, it has dimension 4.
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3. Parametrization of a one–factor affine model

As general references we shall use, concerning Bernstein processes, our recent
survey ([5]), and, concerning affine models, Hénon’s PhD thesis([3]) as well as
Leblanc and Scaillet’s seminal paper ([4]).

An one–factor affine interest rate model is characterized by the instantaneous
rate r(t), satisfying the following stochastic differential equation :

dr(t) =
√

αr(t) + β dw(t) + (φ− λr(t)) dt(3.1)

under the risk–neutral probability Q (α = 0 corresponds to the so–called Vasicek
model, and β = 0 corresponds to the Cox–Ingersoll–Ross model ; cf. [4]).

Assuming α > 0, let us set

φ̃ =def φ+
λβ

α
,

δ =def

4φ̃

α
,

and let us also assume that φ̃ ≥ 0.
The following two quantities will play an important role :

C :=
α2

8
(φ̃− α

4
)(φ̃− 3α

4
)

=
α4

128
(δ − 1)(δ − 3)

and

D :=
λ2

8
.

Let us set Xt = αr(t) + β.

Proposition 3.1. Let r0 ∈ R ; then the stochastic differential equation

dr(t) =
√

|αr(t) + β| dw(t) + (φ− λr(t)) dt(3.2)

has a unique strong solution such that r(0) = r0. Furthermore, in case that

αr0 + β ≥ 0 ,

one has αr(t) + β ≥ 0 for all t ≥ 0 ; in particular, r(t) satisfies (3.1).

Proof. Let us set Xt = αr(t) + β ; it is easy to see that, in terms of Xt, equation
3.2 becomes:

dXt = αdr(t)

= α(
√

|Xt|dw(t) + (φ− λ
Xt − β

α
)dt)

= α
√

|Xt|dw(t) + (αφ̃ − λXt)dt .

We are therefore in the situation of (1), p.313, in [2], with c = α, a = αφ̃, and
b = −λ ; the result follows.

In case λ 6= 0, one may also refer to [3],p.55, Proposition 12.1, with σ = α, κ = λ

and a =
αφ̃

λ
. �
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We shall henceforth assume all of the hypotheses of Proposition 3.1 to be satis-
fied.

Corollary 3.2. One has
{

Xt = e−λt Y (α
2(eλt−1)

4λ ) for λ 6= 0 , and

Xt = Y (α
2t
4 ) for λ = 0

where Y is a BESQδ(squared Bessel process with parameter δ) having initial value
Y0 = αr0 + β.

Proof. In case λ 6= 0, one applies the result of [3], p. 314. For λ = 0, let

Zt :=
4

α2
Xt ;

it appears that

dZt = 2
√

|Zt|dw(t) + δdt ,

whence Zt is a BESQδ–process. As

Xt :=
α2

4
Zt ,

the scaling property of Bessel processes yields the result. �

Theorem 3.3. If δ ≥ 2 one has, almost surely :

∀t > 0 Xt > 0 ;

on the other hand, if δ < 2, almost surely there is a t > 0 such that Xt = 0.

Proof. We apply Corollary 1, p. 317, from [4](12.2) yielding that

∀t > 0 Xt > 0 .(3.3)

One may also use [3], p.56, from which follows that (3.3) is equivalent to

2aκ

σ2
≥ 1 ;

but, according to the above identifications,

2aκ

σ2
=

2
αφ̃

λ
λ

α2
=

2φ̃

α
=

δ

2
.

�

Our main result is the following :

Theorem 3.4. Let us define the process

z(t) =
√

Xt

and the stopping time

T = inf{t > 0|Xt = 0};
as seen in Theorem 3.3, T = +∞ a.s. for δ ≥ 2, and T < +∞ a.s. for δ < 2.
Then there exists a Bernstein process y(t) for

θ =
α

2
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and the potential

V (t, q) =
C

q2
+Dq2 .

such that

∀t ∈ [0, T [ z(t) = y(t) .

In particular, for δ ≥ 2, z itself is a Bernstein process.

Proof. One has (cf. Proposition 3.1 and its proof)

dXt = α
√

Xtdw(t) + (αφ̃ − λXt)dt

= αz(t)dw(t) + (αφ̃− λz(t)2)dt .

Taking now f(x) =
√
x, we have

∀x > 0 f
′

(x) =
1

2
√
x

and f
′′

(x) = −1

4
x− 3

2 ,

therefore, for all t ∈]0, T [, f ′

(Xt) =
1

2z(t)
and f

′′

(Xt) = − 1
4z(t)

−3. The application

of Itô’s formula now gives :

dz(t) = d(f(Xt))

= f
′

(Xt)dXt +
1

2
f

′′

(Xt)(dXt)
2

=
1

2z(t)
(αz(t)dw(t) + (αφ̃ − λz(t)2)dt) − 1

8
z(t)−3α2z(t)2dt

=
α

2
dw(t) +

1

8z(t)
(4αφ̃− 4λz(t)2 − α2)dt .

Let us now define η by

η(t, q) := e

λφ̃t

α
− λq2

α2 q

2φ̃

α
− 1

2

= e

λδt

4
− λq2

α2 q

δ − 1

2 .

It is easy to check that η solves the equation

θ2
∂η

∂t
= −θ4

2

∂2η

∂q2
+ V η

for

V =
C

q2
+Dq2 ;

in other words,

S := −θ2 ln(η)

= −θ2(
λδt

4
− λq2

α2
+

δ − 1

2
ln(q))

= −α2λδt

16
+

λq2

4
− α2(

δ − 1

8
) ln(q)

satisfies (HJBV ). Furthermore we have :
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B̃ := θ2

∂η

∂q

η

= −∂S

∂q

= −λq

2
+

α2(δ − 1)

8q

=
1

8q
(α2δ − α2 − 4λq2)

whence

B̃(t, z(t)) =
1

8z(t)
(4αφ̃− α2 − 4λz(t)2)

and z satisfies the stochastic differential equation associated with η :

∀t ∈]0, T [ dz(t) = θdw(t) + B̃(t, z(t))dt

(as in [5], §1, equation (B)) ; the result follows. �

Proposition 3.5. The isovector algebra HV associated with V has dimension 6 if
and only if φ̃ ∈ {α

4 ,
3α
4 }, i.e. δ ∈ {1, 3} ; in the opposite case, it has dimension 4.

Proof. It is enough to apply Theorem 2.1, observing that the condition C = 0 is
equivalent to φ̃ ∈ {α

4 ,
3α
4 }. �

In the context of Hénon’s already mentioned PhD thesis ([3],p.55) we have

φ = κa, λ = κ, α = σ2 et β = 0, whence φ̃ = κa and the condition C = 0 is
equivalent to

κa ∈ {σ
2

4
,
3σ2

4
} .

Let us analyze more closely the situation in which C = 0 ; the general case will be
commented upon in [6].

1)φ̃ =
α

4
, i.e. δ = 1 .

Then y(t) is a solution of

dy(t) =
α

2
dw(t) − λ

2
y(t)dt ,

i.e. y(t) is an Ornstein–Uhlenbeck process (it was already known that the Ornstein–
Uhlenbeck process was a Bernstein process for a quadratic potential). Therefore
z(t) cöıncides, on the random interval [0, T [, with an Ornstein–Uhlenbeck process.
Here

η(t, q) = e

λt

4
− λq2

α2 .

From

y(t) = e−
λt

2 (y0 +
α

2

∫ t

0

e
λs

2 dw(s))

= e−
λt

2 (z0 + w̃(
α2(eλt − 1)

4λ
))
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(w̃ denoting another Brownian motion), it appears that y(t) follows a normal law

with mean e−
λt

2 z0 and variance α2(1−e−λt)
4λ . The density ρt(q) of y(t) is therefore

given by :

ρt(q) =
2
√
λ

α
√

2π(1− e−λt)
exp (−2λ(q − e−

λt

2 z0)
2

α2(1 − e−λt)
) .

Whence

∀t > 0 η∗(t, q) =
ρt(q)

η(t, q)

=
1

α

√

√

√

√

λ

π sinh (
λt

2
)

e
(
−λq2 − λq2e−λt + 4λqz0e

−λt

2 − 2λz20e
−λt

α2(1− e−λt)
)

and one may check that, as was to be expected, η∗ satisfies the following equation

(C(V )
2 in [5]) :

− θ2
∂η∗

∂t
= −θ4

2

∂2η∗

∂q2
+ V η∗ .(3.4)

2)φ̃ =
3α

4
, i.e. δ = 3.

In that case, according to Theorem 3.2, T = +∞ whence y = z. Furthermore

η(t, q) = qe

λ

α2
(
3α2t

4
− q2)

.

Let us define

s(t) = e
−
λt

2
1

z(t)
;

then an easy computation, using Itô’s formula in the same way as above, shows
that

ds(t) = −α

2
e

λt

2 s(t)2dw(t) ;

in particular, s(t) is a martingale.
Referring once more to Proposition 3.1 and its proof, we see that

dXt = α
√

Xtdw(t) + (
3α2

4
− λXt)dt .

Let us now assume X0 = 0 and λ 6= 0 ; then, according to Corollary 3.2,

Xt = e−λtY (
α2(eλt − 1)

4λ
)

where Y is a BESQ3(squared Bessel process with parameter 3) such that Y (0) = 0.
But, for each fixed t > 0, Yt has the same law as tY1, and Y1 = ||B1||2 is the square
of the norm of a 3–dimensional Brownian motion ; the law of Y1 is therefore

1√
2π

e−
u

2

√
u1u≥0du .
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Therefore the density ρt(q) of the law of z(t) is given by :

ρt(q) =
1√
2π

16λ
3

2

α3(1 − e−λt)
3

2

q2e
−

2λq2

α2(1− e−λt)

and

∀t > 0 η∗(t, q) =
ρt(q)

η(t, q)
=

16λ
3

2

α3
√
2π

(1− e−λt)−
3

2 qe

−
3λt

4
− λq2

α2 tanh(λt2 ) .

Here, too, one may check directly that η∗ satisfies equation (3.4) above.
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