

On affine interest rate models

Paul Lescot

▶ To cite this version:

Paul Lescot. On affine interest rate models. 2010. hal-00431615v2

HAL Id: hal-00431615 https://hal.science/hal-00431615v2

Preprint submitted on 11 Jun 2010 (v2), last revised 26 Oct 2011 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON AFFINE INTEREST RATE MODELS

PAUL LESCOT

ABSTRACT. Bernstein processes are Brownian diffusions that appear in Euclidean Quantum Mechanics. The consideration of the symmetries of the associated Hamilton-Jacobi-Bellman equation allows one to obtain various relations between stochastic processes (Lescot-Zambrini, **Progress in Probability**, vols 58 and 59). More recently it has appeared that each *one-factor affine interest rate model* (in the sense of Leblanc-Scaillet) could be described using such a Bernstein process.

MSC 91G30, 60H10

Keywords: interest rate models, isovectors, Bessel processes.

1. An isovector calculation

We shall work within the context of [7], §3. We consider the Hamilton–Jacobi–Bellman equation

$$(\mathcal{HJB}^V) \qquad \qquad \frac{\partial S}{\partial t} + \frac{\theta^2}{2} \frac{\partial^2 S}{\partial q^2} - \frac{1}{2} (\frac{\partial S}{\partial q})^2 + V = 0$$

with potential

$$V(t,q) = \frac{C}{q^2} + Dq^2 ;$$

where we have replaced (as explained in [4]) $\sqrt{\hbar}$ by θ .

In order to determine the Lie algebra \mathcal{H}_V of pure isovectors for (\mathcal{HJB}^V) , i.e. the algebra \aleph of [7], we have to solve the auxiliary equation (3.29) from [7],p. 215, i.e.

$$-\frac{1}{4} \overset{\cdots}{T_N} q^2 - \overset{\cdot}{l} q + \overset{\cdot}{\sigma} + \frac{1}{2} \overset{\cdot}{T_N} q \big(-\frac{C}{q^3} + 2Dq \big) + l \big(-\frac{2C}{q^3} + 2Dq \big) + \overset{\cdot}{T_N} \big(\frac{C}{q^2} + Dq^2 \big) - \frac{\theta^2}{4} \overset{\cdot}{T_N} = 0 \ ,$$

that is

$$q^2(2D\dot{T_N} - \frac{1}{4}\ddot{T_N}) + q(-\ddot{l} + 2Dl) + \dot{\sigma} - \frac{\theta^2}{4}\ddot{T_N} - \frac{2Cl}{q^3} = 0 \ .$$

As T_N , l and σ depend only upon t, the system is equivalent to :

$$\begin{cases} 2Cl = 0 \\ \ddot{l} = 2Dl \\ \dot{\sigma} = \frac{\theta^2}{4} T_N^{...} \\ \ddot{T}_N = 8DT_N^{...} \end{cases}$$

Two different cases now appear:

1) $C \neq 0$

Date: May 20th, 2010.

Then one must have l=0, in which case the second condition holds automatically, and the system reduces itself to :

$$\begin{cases} \dot{\sigma} = \frac{\theta^2}{4} \ddot{T_N} \\ \ddot{T_N} = 8D\dot{T_N} \end{cases}$$

1)a) D > 0

Setting $\epsilon = \sqrt{8D}$, we find

$$\dot{T_N} = C_1 e^{\epsilon t} + C_2 e^{-\epsilon t} ,$$

whence

$$T_N = \frac{C_1}{\epsilon} e^{\epsilon t} - \frac{C_2}{\epsilon} e^{-\epsilon t} + C_3$$

and

$$\sigma = \frac{\theta^2}{4} \dot{T_N} + C_4$$

therefore:

$$\sigma = \frac{\theta^2 C_1}{4} e^{\epsilon t} + \frac{\theta^2 C_2}{4} e^{-\epsilon t} + C_4$$

where $(C_j)_{1 \leq j \leq 4}$ denote arbitrary (real) constants. In particular

$$dim(\mathcal{H}_V) = 4$$
.

1)b)D = 0

Then from $\ddot{T}_N = 0$ follows

$$T_N = C_1 t^2 + C_2 t + C_3$$

for constants C_1, C_2, C_3 . Then

$$\dot{\sigma} = \frac{\theta^2}{4} \ddot{T_N} = \frac{\theta^2 C_1}{2}$$

and

$$\sigma = \frac{\theta^2 C_1}{2} t + C_4 \ .$$

Therefore, here too, $dim(\mathcal{H}_V) = 4$; furthermore, we get an explicit expression for the isovectors :

$$N^t = T_N = C_1 t^2 + C_2 t + C_3 ,$$

$$N^{q} = \frac{1}{2}q\dot{T_{N}} + l$$

$$= \frac{1}{2}q(2C_{1}t + C_{2})$$

$$= C_{1}tq + \frac{C_{2}q}{2},$$

and

$$\begin{split} N^S &= -\phi \\ &= -\frac{1}{4}q^2 T_N^{\cdot \cdot} - q \dot{l} + \sigma \\ &= -\frac{1}{4}q^2 \cdot 2C_1 + \frac{\theta^2}{2}C_1 t + C_4 \\ &= \frac{C_1}{2}(\theta^2 t - q^2) + C_4 \; . \end{split}$$

A canonical basis for \mathcal{H}_V is thus given by $(M_i)_{1 \leq i \leq 4}$, where M_i is characterized by $C_j = \delta_{ij}$ (Kronecker's symbol). Using the notation of [6], it appears that

$$M_1 = \frac{1}{2}N_6 ,$$

$$M_2 = \frac{1}{2}N_4 ,$$

$$M_3 = N_1 ,$$

and

$$M_4 = -\frac{1}{\theta^2} N_3 ,$$

therefore \mathcal{H}_V is generated by N_1 , N_3 , N_4 and N_6 . We thereby recover the result of [7], p. 220, modulo the correction of a misprint. This list ties in nicely with the symmetry properties of certain diffusions related to Bessel processes (see [5] for a detailed explanation).

1)c)D < 0

Setting now $\epsilon = \sqrt{-8D}$, we find

$$\dot{T_N} = C_1 \cos(\epsilon t) + C_2 \sin(\epsilon t)$$
,

whence

$$T_N = \frac{C_1}{\epsilon} \sin(\epsilon t) - \frac{C_2}{\epsilon} \cos(\epsilon t) + C_3 ,$$

and, as above:

$$\sigma = \frac{\theta^2}{4} \dot{T_N} + C_4 ,$$

therefore:

$$\sigma = \frac{\theta^2 C_1}{4} \cos(\epsilon t) + \frac{\theta^2 C_2}{4} \sin(\epsilon t) + C_4$$

where $(C_j)_{1 \leq j \leq 4}$ denote arbitrary (real) constants. In particular ,

$$dim(\mathcal{H}_V) = 4$$
.

2)
$$C = 0$$

Then the system becomes

$$\begin{cases} \ddot{l} = 2Dl \\ \dot{\sigma} = \frac{\theta^2}{4} \ddot{T_N} \\ \ddot{T_N} = 8D\dot{T_N} \end{cases}.$$

The equation for l on the one hand, and the system for (σ, T_N) on the other hand, are independent, and, as above, the first one has a two–dimensional space of solutions and the second one a four–dimensional space of solutions, *i.e.*

$$dim(\mathcal{H}_V) = 6$$
.

Whence

Theorem 1.1. The isovector algebra \mathcal{H}_V associated with V has dimension 6 if and only if C = 0; in the opposite case, it has dimension 4.

2. Parametrization of a one-factor affine model

As general references we shall use, concerning Bernstein processes, our recent survey ([4]), and, concerning affine models, Hénon's PhD thesis([2]) as well as Leblanc and Scaillet's seminal paper ([3]). An one-factor affine interest rate model is characterized by the instantaneous rate r(t), satisfying the following stochastic differential equation:

$$dr(t) = \sqrt{\alpha r(t) + \beta} \ dw(t) + (\phi - \lambda r(t)) \ dt \ (*)$$

under the risk–neutral probability Q ($\alpha = 0$ corresponds to the so–called Vasicek model, and $\beta = 0$ corresponds to the Cox–Ingersoll–Ross model; cf. [3]).

Assuming $\alpha > 0$, let us set

$$\tilde{\phi} =_{def} \phi + \frac{\lambda \beta}{\alpha} ,$$

$$\delta =_{def} \frac{4\tilde{\phi}}{\alpha}$$
,

and let us also assume $\lambda > 0$ and $\tilde{\phi} \geq 0$.

The following two quantities will play an important role:

$$C := \frac{\alpha^2}{8} (\tilde{\phi} - \frac{\alpha}{4})(\tilde{\phi} - \frac{3\alpha}{4})$$
$$= \frac{\alpha^4}{128} (\delta - 1)(\delta - 3)$$

and

$$D:=\frac{\lambda^2}{8}\ .$$

Let us set $X_t = \alpha r(t) + \beta$.

Proposition 2.1. Let $r_0 \in \mathbf{R}$; then the stochastic differential equation

$$dr(t) = \sqrt{|\alpha r(t) + \beta|} \ dw(t) + (\phi - \lambda r(t)) \ dt \ (**)$$

has a unique strong solution such that $r(0) = r_0$. Furthermore, in case that

$$\alpha r_0 + \beta \geq 0$$
,

one has $\alpha r(t) + \beta \geq 0$ for all $t \geq 0$; in particular, r(t) satisfies (*).

Proof. Let us set $X_t = \alpha r(t) + \beta$; it is easy to see that, in terms of X_t , equation (**) becomes:

$$\begin{split} dX_t &= \alpha dr(t) \\ &= \alpha(\sqrt{|X_t|}dw(t) + (\phi - \lambda \frac{X_t - \beta}{\alpha})dt) \\ &= \alpha\sqrt{|X_t|}dw(t) + (\alpha\tilde{\phi} - \lambda X_t)dt \;. \end{split}$$

We are therefore in the situation of [2],p.55, Proposition 12.1, with $\sigma=\alpha, \ \kappa=\lambda$ and $a=\frac{\alpha\tilde{\phi}}{\lambda}$; the result follows.

We shall henceforth assume all of the hypotheses of Proposition 2.1 to be satisfied.

Theorem 2.2. If $\delta \geq 2$ one has, almost surely :

$$\forall t > 0 \ X_t > 0 ;$$

on the other hand, if $\delta < 2$, almost surely there is a t > 0 such that $X_t = 0$.

Proof. We apply (12.2) in [2], p.56, yielding that

$$\forall t > 0 \ X_t > 0$$

is equivalent to $\frac{2a\kappa}{\sigma^2} \geq 1$; but, according to the above identifications,

$$\frac{2a\kappa}{\sigma^2} = \frac{2\frac{\alpha\tilde{\phi}}{\lambda}\lambda}{\alpha^2} = \frac{2\tilde{\phi}}{\alpha} = \frac{\delta}{2} \ .$$

Our main result is the following:

Theorem 2.3. Let us define the process

$$z(t) = \sqrt{X_t}$$

and the stopping time

$$T = \inf\{t > 0 | X_t = 0\};$$

as seen in Theorem 2.2, $T=+\infty$ a.s. for $\delta \geq 2$, and $T<+\infty$ a.s. for $\delta < 2$. Then there exists a Bernstein process y(t) for

$$\theta = \frac{\alpha}{2}$$

and the potential

$$V(t,q) = \frac{C}{a^2} + Dq^2 .$$

such that

$$\forall t \in [0, T[\ z(t) = y(t)\ .$$

In particular, for $\delta \geq 2$, z itself is a Bernstein process.

Proof. One has (cf. Proposition 2.1 and its proof)

$$dX_t = \alpha \sqrt{X_t} dw(t) + (\alpha \tilde{\phi} - \lambda X_t) dt$$

= \alpha z(t) dw(t) + (\alpha \tilde{\phi} - \lambda z(t)^2) dt.

Taking now $f(x) = \sqrt{x}$, we have

$$\forall x > 0 \ f'(x) = \frac{1}{2\sqrt{x}} \text{ and } f''(x) = -\frac{1}{4}x^{-\frac{3}{2}} \ ,$$

therefore, for all $t \in]0, T[$, $f^{'}(X_t) = \frac{1}{2z(t)}$ and $f^{''}(X_t) = -\frac{1}{4}z(t)^{-3}$. The application of Itô's formula now gives :

$$dz(t) = d(f(X_t))$$

$$= f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2$$

$$= \frac{1}{2z(t)}(\alpha z(t)dw(t) + (\alpha \tilde{\phi} - \lambda z(t)^2)dt) - \frac{1}{8}z(t)^{-3}\alpha^2 z(t)^2 dt$$

$$= \frac{\alpha}{2}dw(t) + \frac{1}{8z(t)}(4\alpha \tilde{\phi} - 4\lambda z(t)^2 - \alpha^2)dt.$$

Let us now define η by

$$\begin{split} \eta(t,q) &:= e^{\frac{\lambda\tilde{\phi}t}{\alpha}} - \frac{\lambda q^2}{\alpha^2} \frac{2\tilde{\phi}}{q} - \frac{1}{2} \\ &= e^{\frac{\lambda\delta t}{4}} - \frac{\lambda q^2}{\alpha^2} \frac{\delta - 1}{q} \; . \end{split}$$

It is easy to check that η solves the equation

$$\theta^2 \frac{\partial \eta}{\partial t} = -\frac{\theta^4}{2} \frac{\partial^2 \eta}{\partial q^2} + V \eta$$

for

$$V = \frac{C}{a^2} + Dq^2 \; ;$$

in other words,

$$S := -\theta^2 \ln(\eta)$$

$$= -\theta^2 \left(\frac{\lambda \delta t}{4} - \frac{\lambda q^2}{\alpha^2} + \frac{\delta - 1}{2} \ln(q)\right)$$

$$= -\frac{\alpha^2 \lambda \delta t}{16} + \frac{\lambda q^2}{4} - \alpha^2 \left(\frac{\delta - 1}{8}\right) \ln(q)$$

satisfies (\mathcal{HJB}^V) . Furthermore we have :

$$\tilde{B} := \theta^2 \frac{\frac{\partial \eta}{\partial q}}{\eta}$$

$$= -\frac{\partial S}{\partial q}$$

$$= -\frac{\lambda q}{2} + \frac{\alpha^2 (\delta - 1)}{8q}$$

$$= \frac{1}{8q} (\alpha^2 \delta - \alpha^2 - 4\lambda q^2)$$

whence

$$\tilde{B}(t, z(t)) = \frac{1}{8z(t)} (4\alpha \tilde{\phi} - \alpha^2 - 4\lambda z(t)^2)$$

and z satisfies the stochastic differential equation associated with η :

$$\forall t \in]0,T[\ dz(t) = \theta dw(t) + \tilde{B}(t,z(t))dt$$

(as in [4], §1, equation (\mathcal{B})); the result follows.

Corollary 2.4. Let us now assume $X_0 = 0$; then

$$X_t = e^{-\lambda t} Y(\frac{\alpha^2 (e^{\lambda t} - 1)}{4\lambda})$$

where Y is a $BESQ^{\delta}$ (squared Bessel process with parameter δ .

Proof. One applies the result of [1], p. 314.

Proposition 2.5. The isovector algebra \mathcal{H}_V associated with V has dimension 6 if and only if $\tilde{\phi} \in \{\frac{\alpha}{4}, \frac{3\alpha}{4}\}$, i.e. $\delta \in \{1, 3\}$; in the opposite case, it has dimension 4.

Proof. It is enough to apply Theorem 1.1, observing that the condition C=0 is equivalent to $\tilde{\phi} \in \{\frac{\alpha}{4}, \frac{3\alpha}{4}\}.$

In the context of Hénon's already mentioned PhD thesis ([2],p.55) we have $\phi = \kappa a, \ \lambda = \kappa, \ \alpha = \sigma^2 \text{ et } \beta = 0, \text{ whence } \tilde{\phi} = \kappa a \text{ and the condition } C = 0 \text{ is}$ equivalent to

$$\kappa a \in \{\frac{\sigma^2}{4}, \frac{3\sigma^2}{4}\} \ .$$

Let us analyze more closely the case ${\cal C}=0$; the general case will be commented

upon in [5].
$$\mathbf{1})\tilde{\phi} = \frac{\alpha}{4}, \ i.e. \ \delta = 1.$$
 Then $y(t)$ is a solution of

$$dy(t) = \frac{\alpha}{2}dw(t) - \frac{\lambda}{2}y(t)dt ,$$

i.e. y(t) is an Ornstein-Uhlenbeck process (it was already known that the Ornstein-Uhlenbeck process was a Bernstein process for a quadratic potential). Therefore z(t) coïncides, on the random interval [0,T], with an Ornstein-Uhlenbeck process. Here

$$\eta(t,q) = e^{\frac{\lambda t}{4}} - \frac{\lambda q^2}{\alpha^2} .$$

From

$$y(t) = e^{-\frac{\lambda t}{2}} (y_0 + \frac{\alpha}{2} \int_0^t e^{\frac{\lambda s}{2}} dw(s))$$
$$= e^{-\frac{\lambda t}{2}} (z_0 + \tilde{w}(\frac{\alpha^2 (e^{\lambda t} - 1)}{4\lambda}))$$

(\tilde{w} denoting another Brownian motion), it appears that y(t) follows a normal law with mean $e^{-\frac{\lambda t}{2}}z_0$ and variance $\frac{\alpha^2(1-e^{-\lambda t})}{4\lambda}$. The density $\rho_t(q)$ of y(t) is therefore

$$\rho_t(q) = \frac{2\sqrt{\lambda}}{\alpha\sqrt{2\pi(1 - e^{-\lambda t})}} \exp\left(-\frac{2\lambda(q - e^{-\frac{\lambda t}{2}}z_0)^2}{\alpha^2(1 - e^{-\lambda t})}\right).$$

Whence

$$\eta_*(t,q) = \frac{\rho_t(q)}{\eta(t,q)}$$

$$= \frac{1}{\alpha} \sqrt{\frac{\lambda}{\pi \sinh\left(\frac{\lambda t}{2}\right)}} e^{\left(\frac{-\lambda q^2 - \lambda q^2 e^{-\lambda t} + 4\lambda q z_0 e^{-\frac{\lambda t}{2}} - 2\lambda z_0^2 e^{-\lambda t}}{\alpha^2 (1 - e^{-\lambda t})}\right)}$$

and one may check that, as was to be expected, η_* satisfies the equation

$$-\theta^2 \frac{\partial \eta_*}{\partial t} = -\frac{\theta^4}{2} \frac{\partial^2 \eta_*}{\partial q^2} + V \eta_* .$$

$$(2)\tilde{\phi} = \frac{3\alpha}{4}$$
, i.e. $\delta = 3$

2) $\tilde{\phi} = \frac{3\alpha}{4}$, i.e. $\delta = 3$. In that case, according to Theorem 2.2, $T = +\infty$ whence y = z. Furthermore

$$\eta(t,q) = qe^{\frac{\lambda}{\alpha^2}} \left(\frac{3\alpha^2 t}{4} - q^2\right)$$

Let us define

$$s(t) = e^{-\frac{\lambda t}{2}} \frac{1}{z(t)} ;$$

then an easy computation, using Itô's formula in the same way as above, shows that

$$ds(t) = -\frac{\alpha}{2}e^{\frac{\lambda t}{2}}s(t)^2dw(t) ;$$

in particular, s(t) is a martingale.

Referring once more to Proposition 2.1 and its proof, we see that

$$dX_t = \alpha \sqrt{X_t} dw(t) + (\frac{3\alpha^2}{4} - \lambda X_t) dt .$$

Let us now assume $X_0 = 0$; then, according to Corollary 2.4,

$$X_t = e^{-\lambda t} Y(\frac{\alpha^2 (e^{\lambda t} - 1)}{4\lambda})$$

where Y is a $BESQ^3$ (squared Bessel process with parameter 3). But, for each fixed t>0, Y_t has the same law as tY_1 , and $Y_1=||B_1||^2$ is the square of the norm of a 3-dimensional Brownian motion; the law of Y_1 is therefore

$$\frac{1}{\sqrt{2\pi}}e^{-\frac{u}{2}}\sqrt{u}\mathbf{1}_{u\geq 0}du.$$

Therefore the density $\rho_t(q)$ of the law of z(t) is given by :

$$\rho_t(q) = \frac{1}{\sqrt{2\pi}} \frac{16\lambda^{\frac{3}{2}}}{\alpha^3 (1 - e^{-\lambda t})^{\frac{3}{2}}} q^2 e^{-\frac{2\lambda q^2}{\alpha^2 (1 - e^{-\lambda t})}}$$

and

$$\eta_*(t,q) = \frac{\rho_t(q)}{\eta(t,q)} = \frac{16\lambda^{\frac{3}{2}}}{\alpha^3 \sqrt{2\pi}} (1 - e^{-\lambda t})^{-\frac{3}{2}} q e^{-\frac{3\lambda t}{4} - \frac{\lambda q^2}{\alpha^2 \tanh(\frac{\lambda t}{2})}}.$$

3. Acknowledgements

I am grateful to the colleagues who invited me to present preliminary versions of this work and thereby provided me with a much—needed moral support: Professor Barbara Rüdiger (Koblenz, July 2007), Professor Pierre Patie (Bern, January 2009) and Professors Paul Bourgade and Ali Süleiman Ustünel (Institut Henri Poincaré, February 2009). Comments by Professor Pierre Patie led to many improvements in the formulations. I am also indebted to Mohamad Houda for a careful reading of previous versions of the paper.

References

- A. Göing-Jaeschke and M. Yor, A survey and some generalizations of Bessel processes, Bernoulli, 9(2), 2003, 313-349
- [2] S.Hénon, Un modèle de taux avec volatilité stochastique, PhD thesis, 2005
- [3] B. Leblanc and O. Scaillet, Path dependent options on yields in the affine term structure model, Finance and Stochastics, 2(4), 1998, 349–367
- [4] P. Lescot, Bernstein Processes, Euclidean Quantum Mechanics and Interest Rate Models, to appear in the Proceedings of the 1st workshop Statistical Physics and Mathematics for Complex Systems (23-24 october 2008, ISMANS, Le Mans, France), 2010; available at http://www.univ-rouen.fr/LMRS/Persopage/Lescot/procdef.pdf.
- [5] P. Lescot and P. Patie, (in preparation)
- [6] P.Lescot and J.-C. Zambrini, Isovectors for the Hamilton-Jacobi-Bellman Equation, Formal Stochastic Differentials and First Integrals in Euclidean Quantum Mechanics, Proceedings of the Ascona conference (2002), 187–202. Birkhaüser (Progress in Probability, vol 58), 2004.
- [7] P.Lescot and J.-C. Zambrini, Probabilistic deformation of contact geometry, diffusion processes and their quadratures, Seminar on Stochastic Analysis, Random Fields and applications V, 203-226. Birkhaüser(Progress in Probability, vol. 59), 2008.

Laboratoire de Mathématiques Raphaël Salem, UMR 6085 CNRS, Université de Rouen, Technopôle du Madrillet, Avenue de l'Université, B.P. 12, 76801 Saint-Etienne-du-Rouvray (FRANCE), Tél. 00 33 (0)2 32 95 52 24, Fax 00 33 (0)2 32 95 52 86, Paul.Lescot@univ-rouen.fr.