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Introduction

Let A be an artin algebra over an artin commutative ring k. The representation theory of A deals with the study of the category mod A of (right) A-modules of finite type. One of the most powerful tools in this study is the Auslander-Reiten theory, based on irreducible morphisms and almost split sequences (see [START_REF] Auslander | Representation Theory of Artin Algebras[END_REF]). Although irreducible morphisms have permitted important advances in representation theory, some of their basic properties still remain mysterious to us. An important example is the composition of two irreducible morphisms: It obviously lies in rad 2 (where rad l is the l-th power of the radical ideal rad of mod A) but it may lie in rad 3 , rad ∞ or even be the zero morphism. Of course, the situation still makes sense with the composite of arbitrary many irreducible morphisms. A first, but partial, treatment of this situation was given by Igusa and Todorov ( [START_REF] Igusa | Radical layers of representable functors[END_REF]) with the following result: "If X0

f 1 -→ X1 → • • • → Xn-1 fn --→
Xn is a sectional path of irreducible morphisms between indecomposable modules, then the composite fn • • • f1 lies in rad n (X0, Xn) and not in rad n+1 (X0, Xn), in particular, it is non-zero." In [START_REF] Liu | Degrees of irreducible maps and the shapes of Auslander-Reiten quivers[END_REF], Liu introduced the left and right degrees of an irreducible morphism f : X → Y as follows: The left degree d l (f ) of f is the least integer m 1 such that there exists Z ∈ mod A and g ∈ rad m (Z, X)\rad m+1 (Z, X) satisfying f g ∈ rad m+2 (Z, Y ). If no such an integer m exists, then d l (f ) = ∞. The right degree is defined dually. This notion was introduced to study the composition of irreducible morphisms. In particular, Liu extended the above study of Igusa and Todorov to presectional paths. Later it was used to determine the possible shapes of the Auslander-Reiten components of A (see [START_REF] Liu | Degrees of irreducible maps and the shapes of Auslander-Reiten quivers[END_REF][START_REF] Liu | Shapes of Connected Components of the Auslander-Reiten Quivers of Artin Algebras[END_REF]). More recently, the composite of irreducible morphisms was studied in [START_REF] Chaio | On the composite of two irreducible morphisms in the radical cube[END_REF], [START_REF] Chaio | On the composite of irreducible morphisms in almost sectional paths[END_REF], [START_REF] Chaio | On the composite of three irreducible morphisms in the fourth power of the radical[END_REF] and [START_REF] Chaio | The composite of irreducible morphisms in standard components[END_REF]. The work made in the first three of these papers is based on the notion of degree of irreducible morphisms. The definition of the degree raises the following problem: Determine when d l (f ) = ∞ or dr(f ) = ∞. Consider an irreducible morphism f : X → Y with X indecomposable. Then, the following conditions have been related in the recent literature:

(1)

d l (f ) = n < ∞, (2) 
Ker(f ) lies in the Auslander-Reiten component containing X. Indeed, these two conditions were proved to be equivalent if the Auslander-Reiten component containing X is convex, generalized standard and with length ( [START_REF] Chaio | On the degree of irreducible morphisms[END_REF], actually this equivalence

The first and third authors acknowledge partial support of CONICET, Argentina. The third author is a researcher of CONICET. The third author acknowledges financial support from the Department of Mathematics of FCEyN, Universidad Nacional de Mar del Plata and also from the PICS 3410 of CNRS, France.

still holds true if one removes the convex hypothesis) and when the Auslander-Reiten quiver is standard ( [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF]). In this text, we shall see that such results are key-steps to show that the degree of irreducible morphisms is a useful notion to determine the representation type of A. Indeed, we recall the following well-known conjecture appeared first in [START_REF] Liu | Shapes of Connected Components of the Auslander-Reiten Quivers of Artin Algebras[END_REF] and related to the Brauer-Thrall conjectures: "If the Auslander-Reiten quiver of A is connected, then A is of finite representation type." This conjecture is related to the degree of irreducible morphisms as follows:

In the above situation of assertions ( 1) and ( 2), the existence of f such that d l (f ) = ∞ is related to the existence of at least two Auslander-Reiten components. Actually, it was proved in [START_REF] Chaio | On the degree of irreducible morphisms[END_REF]Thm. 3.11] that if A is of finite representation type, then every irreducible morphism between indecomposables either has finite right degree or has finite left degree. Conversely, one can wonder if the converse holds true. In this text, we prove the following main theorem where we assume that k is an algebraically closed field.

Theorem A. Let A be a connected finite dimensional k-algebra over an algebraically closed field. The following conditions are equivalent: (a) A is of finite representation type. (b) For every indecomposable projective A-module P , the inclusion rad(P ) ֒→ P has finite right degree. (c) For every indecomposable injective A-module I, the quotient I → I/soc(I) has finite left degree. (d) For every irreducible epimorphism f : X → Y with X or Y indecomposable, the left degree of f is finite. (e) For every irreducible monomorphism f : X → Y with X or Y indecomposable, the right degree of f is finite.

Hence, going back to the above conjecture, if one knows that the Auslander-Reiten quiver of A is connected, by (b) and (c) it suffices to study the degree of finitely many irreducible morphisms in order to prove that A is of finite representation type. Our proof of the above theorem only uses considerations on degrees and their interaction with coverings of translation quivers. In particular it uses no advanced characterization of finite representation type (such as the Brauer-Thrall conjectures or multiplicative bases, for example). The theorem shows that the degrees of irreducible morphisms are somehow related to the representation type of A. Note also that our characterization is expressed in terms of the knowledge of the degree of finitely many irreducible morphisms. In order to prove the theorem we investigate the degree of irreducible morphisms and more particularly assertions (1) and (2) above. Assuming that k is an algebraically closed field and given f : X → Y an irreducible epimorphism with X indecomposable, we prove that the assertion (1) is equivalent to (3) below and implies [START_REF] Bongartz | Covering spaces in representation theory[END_REF], with no assumption on the Auslander-Reiten component Γ containing X:

(3)There exists Z ∈ Γ and h ∈ rad n (Z, X)\rad n+1 (Z, X) such that f h = 0. Therefore, the existence of an irreducible monomorphism (or epimorphism) with infinite left (or right) degree indicates that there are more than one component in the Auslander-Reiten quiver (at least when Γ is generalized standard). We also prove that (2) implies (1) (and therefore implies (3)) under the additional assumption that Γ is generalized standard. The equivalence between (1) and (3) and the fact that it works for any Auslander-Reiten component are the chore facts in the proof of the theorem. For this purpose we use the covering techniques introduced in [START_REF] Riedtmann | Algebren, Darstellungsköcher, Ueberlagerungen und zurück[END_REF]. Indeed, these techniques allow one to reduce the study of the degree of irreducible morphisms in a component to the study of the degree of irreducible morphisms in a suitable covering called the generic covering. Among other things, the generic covering is a translation quiver with length. As was proved in [START_REF] Chaio | On the degree of irreducible morphisms[END_REF] such a condition is particularly useful in the study of the degree of an irreducible morphism.

The text is therefore organized as follows. In the first section we recall some needed definitions. In the second section we extend to any Auslander-Reiten component the pioneer result [13, 2.2, 2.3] on covering techniques which, in its original form, only works for the Auslander-Reiten quiver of representation-finite algebras. The results of this section are used in the third one to prove the various implications between assertions (1), ( 2) and (3) in 3.1 and 3.5. As explained above, these results have been studied previously and they were proved under additional assumptions. In particular, the corresponding corollaries proved at that time can be generalized accordingly. In the fourth section we prove our main Theorem A using the previous results. The proof of our main results are based on the covering techniques developed in the second section. In the last section, we use these to study when the non-zero composite of n irreducible morphisms lies in the n + 1-th power of the radical and we extend the cited-above result ( [START_REF] Igusa | Radical layers of representable functors[END_REF]) of Igusa and Todorov on the composite of a sectional paths to sums of composites of sectional paths.

Preliminaries

Notations on modules

Let A be a finite dimensional k-algebra. We denote by ind A a full subcategory of mod A which contains exactly one representative of each isomorphism class of indecomposable modules. Also, we write rad for the radical of mod A. Hence, given indecomposable modules X, Y , the space rad(X, Y ) is the subspace of HomA(X, Y ) consisting of non-isomorphisms X → Y . For l 1, we write rad l for the l-th power of the ideal rad, recursively defined by rad 1 = rad and rad l+1 = rad.rad l (= rad l .rad). For short we shall say that some morphisms u1, . . . , ur : X → Y are linearly independent modulo rad n (X, Y ) if their respective classes modulo rad n (X, Y ) are linearly independent in HomA(X, Y )/rad n (X, Y ). We recall that the Auslander-Reiten quiver of A is the translation quiver Γ(mod A) with vertices the modules in ind A, such that the number of arrows X → Y equals the dimension of the quotient space rad(X, Y )/rad 2 (X, Y ) for every vertices X, Y ∈ Γ and whose translation is induced by the Auslander-Reiten translation τA = DTr. Hence, the translation quivers we shall deal with are not valued quivers and may have multiple (parallel) arrows. If Γ is a component of Γ(mod A) (or an Auslander-Reiten component, for short), we write ind Γ for the full subcategory of ind A with objects the modules in Γ. Recall that a hook is a path X → Y → Z of irreducible morphisms between indecomposable modules such that Z is nonprojective and X = τAZ. Also, a path X0 → X1 → • • • → X l-1 → X l of irreducible morphisms is sectional if neither of its subpaths of length 2 is a hook.

We refer the reader to [START_REF] Liu | Degrees of irreducible maps and the shapes of Auslander-Reiten quivers[END_REF] for properties on the degree of irreducible morphisms.

Radical in mesh-categories

Let Γ be a translation quiver, that is, Γ is a quiver with no loops (but possibly with parallel arrows); endowed with two distinguished subsets of vertices, the elements of which are called projectives and injectives, respectively; and endowed with a bijection τ : x → τ x (the translation) from the set of non-projectives to the set of non-injectives; such that for every vertices x, y with x non-projective, there is a bijection α → σα from the set of arrows y → x to the set of arrows τ x → y. All translation quivers are assumed to be locally finite, that is, every vertex is the source or the target of at most finitely many arrows (Auslander-Reiten components are always locally finite quivers). The subquiver of Γ formed by the arrows starting at τ x and the arrows arriving at x is called the mesh ending at x. We write k(Γ) for the mesh-category of Γ, that is, the factor category of the path category kΓ by the ideal generated by the morphisms P α : •→x α σα where α runs through the arrows arriving at x, for a given non-projective vertex x. If u is a path in Γ, we write u for the corresponding morphism in k(Γ). We denote by Rk(Γ) the ideal of k(Γ) generated by {α | α an arrow in Γ}. Note that in general Rk(Γ) is not a radical of the category k(Γ). The l-th power R l k(Γ) is defined recursively by 

R 1 k(Γ) = Rk(Γ) and R l+1 k(Γ) = Rk(Γ).R l k(Γ) (= R l k(Γ).Rk(Γ)). If Γ is
(a) k(Γ)(x, y) = Rk(Γ)(x, y) = R 2 k(Γ)(x, y) = . . . = R l k(Γ)(x, y). (b) R i k(Γ)(x, y) = 0 if i > l.
In view of the preceding proposition, we call a length function on Γ a function l which assigns an integer l(x) ∈ Z to every vertex x ∈ Γ, in such a way that l(y) = l(x) + 1 whenever there is an arrow x → y in Γ (see [2, 1.6]). Clearly, if Γ has a length function, then Γ is with length. Finally, we define hooks and sectional paths in translation quivers as we did for hooks and sectional paths of irreducible morphisms in module categories.

Coverings of translation quivers

Let Γ be a connected translation quiver. A covering of translation quivers ([2, 1.3]) is a morphism p : Γ ′ → Γ of quivers such that:

(a)Γ ′ is a translation quiver. (b)A vertex x ∈ Γ ′ is projective (or injective, respectively) if and only if so is px.

(c)p commutes with the translations in Γ and Γ ′ (when these are defined). (d)For every vertex x ∈ Γ ′ , the map α → p(α) induces a bijection from the set of arrows in Γ ′ starting from x (or ending at x) the set of arrows in Γ starting from p(x) (or ending at p(x), respectively). We shall use a particular covering π : e Γ → Γ which we call the generic covering. Following [2, 1.2], we define the equivalence relation ∼ on the set of unoriented paths in Γ as generated by the following properties (i)If α : x → y is an arrow in Γ, then αα -1 ∼ ey and α -1 α ∼ ex (where ex denotes the stationary path at x, of length 0). (ii)If x is a non-projective vertex and the mesh in Γ ending at x has the form

x1 β 1 ) ) S S S S S S τ x α 1 5 5 j j j j j j αr ) ) T T T T T T x xr βr 5 5 k k k k k k (e) Assume that λ1u1 + • • • + λrur ∈ R n+1 k( e Γ).
It follows from (a) and from 1.1 that λ1u1 + • • • + λrur = 0, that is, λ1u1 + • • • + λrur lies in the mesh-ideal. By definition of the mesh-ideal, this implies that ui contains a hook whenever λi = 0. Using (d), we deduce that λ1 = • • • = λr = 0. The converse is obvious.

The second property (b) in 1.2 is not satisfied by the universal cover when Γ has multiple arrows. This is the reason for using the generic covering instead.

Well-behaved functors

Let A be a finite dimensional k-algebra where k is an algebraically closed field, Γ a component of Γ(mod A) and π : e Γ → Γ the generic covering. Following [2, 3.1 Ex. (b)] (see also [START_REF] Riedtmann | Algebren, Darstellungsköcher, Ueberlagerungen und zurück[END_REF]), a k-linear functor F : k( e Γ) → ind Γ is called well-behaved if it satisfies the following conditions for every vertex x ∈ e Γ: (a)

F x = πx; (b) If α1 : x → x1, . . . , αr : x → xr are the arrows in e Γ starting from x, then [F (α1), . . . , F (αr)] t : F x → F x1 ⊕ • • • ⊕ F xr is minimal left almost split; (c) If α1 : x1 → x, . . . , αr : xr → x are the arrows in e Γ ending at x, then [F (α1), . . . , F (αr)] : F x1 ⊕ • • • ⊕ F xr → F x is minimal right almost split.
Note that these conditions imply that F maps meshes in e Γ to almost split sequences in mod A. For convenience, we extend this notion to functors p : kX → ind Γ where X is a subquiver of e Γ. The functor p is called well-behaved if and only if (1) px = πx for every vertex x ∈ X ;

(2) given a vertex x ∈ X , if x α 1 --→ x1, . . . , x αr --→ xr are the arrows in X starting in x, then the morphism [p(α1), . . . , p(αr)] t : πx → r L i=1 πxi is irreducible; (3) given a vertex x ∈ X , if x1 β 1 -→ x, . . . , xr βr -→ x are the arrows in X ending in x, then the morphism [p(β1), . . . , p(βr)] : r L i=1 πxi → πx is irreducible; (4) if the vertex x is non-projective and if X contains the mesh in e Γ ending in x x1 β 1 ) ) S S S S S S τ x α 1 5 5 j j j j j j αr ) ) T T T T T T x xr βr 5 5 k k k k k k then the sequence 0 → τAπx [p(α 1 ),...,p(αr )] t -----------→ r L i=1 πxi [p(β 1 ),..

.,p(βr )]

----------→ πx → 0 is exact and almost split. Recall that if X Then there exists a well-behaved functor F : k( e Γ) → ind Γ such that F (α) = q(α) for every arrow α ∈ Y.

Proof. It is sufficient to prove that there exists a well-behaved functor p : k e Γ → ind Γ. For that purpose, we shall prove that:

-If Y satisfies (a), then q extends to a well-behaved functor p : kX → ind Γ with X a full convex subquiver of e Γ satisfying (b). -If Y satisfies (b), then q extends to a well-behaved functor p : kX → ind Γ with X a full convex subquiver of e Γ satisfying (c). -If Y satisfies (c), then q extends to a well-behaved functor p : k e Γ → ind Γ. We shall consider pairs, (X , p) where X is a full convex subquiver of e Γ containing Y and p : kX → ind Γ is a well-behaved functor extending q. For any two such pairs (X , p) and (X ′ , p ′ ), we shall write (X , p) (X ′ , p ′ ) if and only if X ⊆ X ′ and p ′ extends p. This clearly defines a partial order on the set of such pairs.

Assume that Y satisfies (a). Consider the set Σ of those pairs (X , p) where X is a full convex subquiver of e Γ containing Y, contained in e Γ n ∩ e Γ m , and p : kX → ind Γ is a well-behaved functor extending q. Then Σ is non-empty since it contains (X , p). Moreover, (Σ, ) is totally inductive. Therefore, it has a maximal element, say (X , p). We claim that X is stable under predecessors in e Γ n . By absurd, assume that this is not the case. Then there exists an arrow x → y in e Γ n with x ∈ X and y ∈ X . We choose such an x with l(x) maximal. This is possible because X ⊆ e Γ m . Note that there is no arrow z → x in e Γ with z ∈ X , because, otherwise, the path z → x → y would contradict the convexity of X . Therefore, the full subquiver X ′ of e Γ generated by X and x has, as arrows, those in X together with the arrows in e Γ starting in x and ending at some vertex in X , say

x1 = y x α 1 4 4 i i i i i i αr * * U U U U U U U xr.
In particular, the convexity of X and the maximality of l(x) imply that X ′ is convex. Assume that x is injective, or else x is non-injective and τ -1 x ∈ X . The arrows π(α1), . . . , π(αr) in Γ are pairwise distinct and start in πx. Therefore, there exists an irreducible morphism [u1, . . . , ur] t : πx → r L i=1 πxi. We thus extend p : kX → ind Γ to a functor p ′ : kX ′ → ind Γ by setting p ′ (αi) = ui, for every i. Note that a mesh in e Γ is contained in X if and only if it is contained in X ′ , by assumption on x and because there is no arrow in e Γ ending at x and starting in some vertex in X . Assume now that x is non-injective and τ -1 x ∈ X . By maximality of l(x), every arrow in e Γ ending at τ -1 x lies in X . Therefore, α1, . . . , αr are all the arrows in e Γ starting in x and the mesh in e Γ starting in x is as follows

x1 β 1 ) ) T T T T T T x α 1 6 6 m m m m m m αr ( ( Q Q Q Q Q Q τ -1 x . xr βr 5 5 j j j j j j
Since p is well-behaved, the morphism [p(β1), . . . , p(βr)] :

r L i=1 πxi → τ -1
A πx is irreducible and, therefore, minimal right almost split, because π(β1), . . . , π(βr) are all the arrows in Γ ending in τ -1 A πx. Hence, there is an almost split sequence in mod A

0 → πx [u 1 ,...,ur ] t -------→ r M i=1 πxi [p(β 1 ),..

.,p(βr )]

- ---------→ τ -1 A πx → 0 and we extend p : kX → ind Γ to a functor p ′ : kX ′ → ind Γ by setting p(αi) = ui, for every i.

In any case, p ′ is well-behaved. Indeed, by construction of p ′ and because p is well-behaved, we have: p ′ transforms every mesh in e Γ contained in X ′ into an almost split sequence in mod A; moreover, given vertices z, t ∈ X ′ , if γ1, . . . , γs : z → t are all the arrows in X ′ from z to t, then the morphism [p ′ (γ1), . . . , p ′ (γs)] t : πz → s L i=1 πt is irreducible (or, equivalently, the (a) For every M ∈ Γ and l 1, let I be the set of those indices i ∈ {1, . . . , r} such that li l and f i,l has domain M . Then the morphism

[f i,l ; i ∈ I] : M → L i∈I X i,l is irreducible.
(b) For every M ∈ Γ and l 1, let J be the set of those indices i ∈ {1, . . . , r} such that li l and f i,l has codomain M . Then the morphism

[f i,l ; i ∈ I] t : L i∈I X i,l-1 → M is irreducible.
(c) There is no hook of the form

• f i,j --→ • f i ′ ,j+1 ----→ •. Remark 2.3. (1)
The definition implies that each of the paths in the given family is sectional.

(2) If r = 1 the definition coincides with that of a sectional path.

(3) If li = 1 for every i, then the definition is equivalent to say that the morphism

[f1,1, . . . , fr,1] t : X → r L i=1
Xi,1 is irreducible.

(4) Since k is an algebraically closed field, the fist two conditions together are equivalent to the following single condition: For every M, N ∈ Γ and l 1, let K be the set of indices i ∈ {1, . . . , r} such that li l and f i,l is a morphism from M to N , then the morphisms

f i,l : M → N , i ∈ K, are linearly independent modulo rad 2 (M, N ). Proposition 2.4. Let X be in Γ and x ∈ π -1 (X). Let {X f i,1 --→ Xi,1 → • • • → X i,l i -1 f i,l i ---→ X i,l i }i=1,.
..,r be a sectional family of paths starting in X and of irreducible morphisms. Then there exist r paths in e Γ x1,1

/ / • • • / / x 1,l 1 -1 α 1,l 1 / / x 1,l 1 x α 1,1 = = | | | | | | | | α 2,1 / / α r,1 ! ! B B B B B B B B x2,1 / / • • • / / x 2,l 2 -1 α 2,l 2 / / x 2,l 2 xr,1 / / • • • / / x r,lr -1 α r,lr / / x r,lr
starting in x, such that πxi,j = Xi,j, for every i, j, and the arrows αi,j are pairwise distinct. Moreover, for any such data, there exists a well-behaved functor F : k( e Γ) → ind Γ such that F (αi,j) = fi,j, for every i, j.

Proof. We first construct the vertices xi,j and the arrows αi,j. For every i ∈ {1, . . . , r}, the path X parallel paths in e Γ

x α i,1 ---→ xi,1 → • • • → xi,j-1 α i,j --→ xi,j → y1 → • • • → ys → x i ′ ,j ′ , and 
x α i ′ ,1 ---→ x i ′ ,1 → • • • → x i ′ ,j ′ -1 α i ′ ,j ′ ----→ x i ′ ,j ′ .
Note that the image under π of the second path is a path

X → X i ′ ,1 → • • • → X i ′ ,j ′ -1 → X i ′ ,j ′ in Γ which is sectional (2.3, ( 1 
)
). Since π : e Γ → Γ is a covering of translation quivers, this implies that the path x

α i ′ ,1 ---→ x i ′ ,1 → • • • → x i ′ ,j ′ -1 α i ′ ,j ′ ----→ x i ′ ,j ′ is sectional. Applying 1.
2 then shows that j ′ = j + s + 1 and the sequence of vertices (x, xi,1, . . . , xi,j, y1, . . . , ys, x i ′ ,j ′ ) and (x, x i ′ ,1 , . . . , x i ′ ,j ′ ) coincide. From this, we deduce the following facts:

(1) Y is convex in e Γ.

(2) Y contains no path y → • → z with z non-projective and y = τ z.

(3) If there is an arrow y → z in Y, then there exist i, j such that y = xi,j-1 and z = xi,j.

Moreover, given i ′ , j ′ , we have y = x i ′ ,j ′ -1 if and only if z = x i ′ ,j ′ . We now define a well-behaved functor q : kY → ind Γ such that q(αi,j) = fi,j for every i, j. Let y, z ∈ Y be vertices such that there exists at least one arrow from y to z. Then there is a path in e Γ from x to z, say of length n. Since e Γ is with length and because of (3) above, we deduce that if z = xi,j for some i, j, then j = n and y = xi,j-1. We thus define Iy,z to be the set of indices i ∈ {1, . . . , r} such that n li and y = xi,n-1, z = xi,n. The set of arrows in e Γ from y to z is therefore equal to {αi,n | i ∈ Iy,z} ∪ {γ1, . . . , γs} where γ1, . . . , γs are pairwise distinct arrows, none of which is equal to either of the arrows α i ′ ,j ′ , i ′ ∈ {1, . . . , r} and j ′ ∈ {1, . . . , l i ′ }. Recall that the irreducible morphisms fi,n : πy → πz, for i ∈ Iy,z, are linearly independent modulo rad 2 (πy, πz) (2.2 and 2.3). Since π induces a bijection from the set of arrows in e Γ from y to z to the set of arrows in Γ from πy to πz, we deduce that there exist irreducible morphisms g1, . . . , gs : πy → πz such that g1, . . . , gs together with fi,n, for i ∈ Iy,z, are linearly independent modulo rad 2 (πy, πz). We then set q(αi,n) = fi,n, for every i ∈ Iy,z, and q(γj) = gj, for every j = 1, . . . , s. This defines q on every arrow from y to z, for every vertices y, z ∈ Y. Hence the functor q : kY → ind Γ. The construction of q and the above property (2) of Y show that q is well-behaved and q(αi,j) = fi,j, for every i, j.

Finally, let l be a length function on e Γ. Then Y is a convex full subquiver of e Γ such that l(y) ∈ {l(x), l(x) + 1, . . . , l(x) + max i=1,...,r li}, for every vertex y ∈ Y. Therefore, 2.1, (a), implies that there exists a well-behaved functor F : k( e Γ) → ind Γ such that F (αi,j) = q(αi,j) = fi,j, for every i, j.

Remark 2.5. The proofs we gave for 2.1 and 2.4 strongly rely on the fact that the generic covering π induces a bijection from the set of arrows in e Γ from x to y to the set of arrows in Γ from πx to πy, for every vertices x, y ∈ e Γ. In particular, these proofs are not likely to be adapted to the situation where one replaces the generic covering e Γ of Γ by the universal covering.

The following result follows from 2.4. It will be particularly useful to us.

Proposition 2.6. Let X, X1, . . . , Xr lie on Γ and f = ˆf1, . . . , fr ˜t : X → X1 ⊕ . . . ⊕ Xr be an irreducible morphism in mod A. Let x ∈ π -1 (X) and x α i -→ xi be an arrow in e Γ such that πxi = Xi for every i ∈ {1, . . . , r}. Then there exists a well-behaved functor F : k( e Γ) → ind Γ such that F (αi) = fi for every i.

Proof. It follows from 2.3, (3), that the family of morphisms {f1, . . . , fr} is a sectional family of paths starting in X. The conclusion thus follows from 2.4.

We now study some properties of well-behaved functors which are essential to our work. We begin with the following basic lemma. 

L F z=F y R n k( e Γ)(x, z)/R n+1 k( e Γ)(x, z) → rad n (F x, F y)/rad n+1 (F x, F y) L F z=F y R n k( e Γ)(z, x)/R n+1 k( e Γ)(z, x) → rad n (F y, F x)/rad n+1 (F F x) .
(b) The two following maps induced by F are injective:

M F z=F y k( e Γ)(x, z) → HomA(F x, F y) and M F z=F y k( e Γ)(z, x) → HomA(F y, F x).
(c) Γ is generalized standard if and only if F is a covering functor, that is, the two maps of (b) are bijective (see [2, 3.1]).

Proof. We prove the assertions concerning morphisms F x → F y. Those concerning F y → F x are proved using similar arguments. Let αi : x → xi, i = 1, . . . , r, be the arrows in e Γ starting from x. So we have a minimal left almost split morphism in mod A:

F x [F (α 1 ),...,F (αr )] t -----------→ r M i=1 F xi .
(a) We denote by Fn the map L

F z=F y R n k( e Γ)(x, z)/R n+1 k( e Γ)(x, z) → rad n (F x, F y)/rad n+1 (F x, F y).
We prove that Fn is surjective by induction on n 0. So given a morphism f ∈ rad n (F x, F y) we prove that there exists (φz)z ∈ L

F z=F y R n k( e Γ)(x, z) such that f = P z F (φz) mod rad n+1 .
We start with n = 0. Let f ∈ HomA(F x, F y). k( e Γ)(x, z) be such that P z F (φz) ∈ rad n , then φz ∈ R n k( e Γ)(x, z) for every z". Clearly, this will prove the injectivity of all the Fn. We proceed by induction on n 0. Assume that n = 0 and that P z F (φz) ∈ rad(F x, F y). If F x = F y then x = z for every z such that F z = F y and, therefore, φz ∈ Rk( e Γ)(x, z). If F x = F y then φz ∈ Rk( e Γ)(x, z) if x = z and there exists λ ∈ k such that φx = λ1x. So λ1F x ∈ rad(F x, F y), that is, λ = 0. Thus, φz ∈ Rk( e Γ)(x, z) for every z. This proves that (H0) holds true. Now let n 0, assume that (Hn) holds true and let (φz)z ∈ L F z=F y k( e Γ)(x, z) be such that 

If F x = F y then f ∈ rad(F x, F y). Otherwise, f = λ1F x mod rad with λ ∈ k, that is, f = F (λ1x) mod rad for some λ ∈ k. So
P z F (φz) ∈ rad n+2 . So, φz ∈ R n+1 k( e Γ)(
i θz,iαi ∈ R n+2 k( e Γ)
. This proves that (Hn) holds true if x is injective. Now assume that x is not injective. The mesh in e Γ starting at x is as follows:

x1 β 1 ( ( Q Q Q Q Q Q x α 1 7 7 p p p p p p αr ' ' N N N N N N . . . τ -1 x xr βr 6 6 m m m m m m .
Since F is well-behaved, there is an almost split sequence in mod A:

0 → F x [F (α 1 ),...,F (αr )] t -----------→ r M i=1 F xi [F (β 1 ),...,F (β r )] -----------→ τ -1 A F x → 0 .
From (⋆), we deduce that there exists h ∈ HomA(τ -1 A F x, F y) such that

P z F (θz,i) -hi = hF (β i ),
for every i. Since F0, . . . , Fn-1 are surjective, there exists (χz)z ∈ L F z=F y k( e Γ)(τ -1 x, z) such that h = P z F (χz) mod rad n . Therefore, the following equality holds true for every i:

X z F (θz,i) = X z F (χzβ i ) + hi mod rad n+1 .
Therefore,

P z F (θz,i -χzβ i ) ∈ rad n+1 (F xi, F z), for every i, because hi ∈ rad n+2 (F xi, F y).
Hence, θz,i -χzβ i ∈ R n+1 k( e Γ)(xi, z), for every i, z, because (Hn) holds true. This gives, for every z:

φz = ψz + X i (θz,i -χzβ i )αi ∈ R n+2 k( e Γ)(x, z) .
This proves that (Hn+1) holds true. Therefore, for every n 0 the map Fn is injective and, therefore, bijective. rad n (F x, F y) for every n 0. Since Fn is injective for every n, we deduce that φz ∈ R n k( e Γ)(x, z) for every z and n. On the other hand, given z such that F z = F y, there exists l 0 such that all the paths from x to z in e Γ are of length l, so that R n k( e Γ)(x, z) = 0 for n > l. Therefore φz = 0 for every z. This proves the injectivity of the first given map. The second map is dealt with using dual arguments.

(c) Assume that Γ is generalized standard and let f ∈ HomA(F x, F y). So there exists n 0 such that rad n (F x, F y) = 0. On the other hand, the surjectivity of the maps Fm (m 0) shows that f = P z F (φz) mod rad n for some (φz)z ∈ L F z=F y k( e Γ)(x, z). Therefore f = P z F (φz). So the first given map in (c) is surjective and so is the second one thanks to dual arguments. This and (b) prove that F is a covering functor. Conversely, assume that F is a covering functor and let x, y ∈ e Γ be vertices. Therefore, there are only finitely many vertices z ∈ e Γ such that F z = F y and k( e Γ)(x, z) = 0 because HomA(F x, F y) is finite dimensional. This and the fact that e Γ is with length imply that there exists n 0 such that R n k( e Γ)(x, z) = 0 for every z such that F z = F y. The injectivity of Fn then implies that rad n (F x, F y) = 0. So Γ is generalized standard.

Remark 2.8. It is not difficult to check that the proofs of 2.6 and Theorem B still work if Γ is an Auslander-Reiten component of T (instead of mod A) where T is a triangulated Krull-Schmidt category over k with finite dimensional Hom spaces and Auslander-Reiten triangles.

Degrees of irreducible morphisms

In this section we prove some characterizations for the left (or right) degree of an irreducible morphism to be finite. These shall be used later for the proof of our main result. Each statement has its dual counterpart which will be omitted. The following proposition was first proved in [START_REF] Chaio | On the degree of irreducible morphisms[END_REF] for generalized standard convex Auslander-Reiten components of an artin algebra. In a weaker form it was also proved in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] for standard Auslander-Reiten components. We thank Shiping Liu for pointing out that the arguments used to prove the first statement can be adapted to prove the second statement. Note that the two statements are not dual to each other. 

∈ rad n (Z, X)\rad n+1 (Z, X) such that f g ∈ rad n+2 (Z, Y ), that is fig ∈ rad n+2 (Z, Xi) for every i. Because of Theorem B, there exists (φz)z ∈ L F z=Z R n k( e Γ)(z, x) such that g = P z F (φz) mod rad n+1 (Z, X) and φz 0 ∈ R n+1 k( e Γ)(z0, x)
for some z0.

Therefore fig = P z F (αiφz) mod rad n+2 (Z, Xi) for every i. Since fig ∈ rad n+2 (Z, Xi)
we infer, using Theorem B, that αiφz ∈ R n+2 k( e Γ)(z, x) for every z and every i. On the other hand, φz 0 ∈ R n+1 k( e Γ)(z0, x) implies that any path in e Γ from z0 to x has length at most n. Hence, any path from z0 to xi has length at most n + 1 for every i. Thus αiφz 0 = 0 for every i. We then set h = F (φz 0 ). Then f h = P i F (αiφz 0 ) = 0 and h ∈ rad n (Z, X)\rad n+1 (Z, X), because φz 0 ∈ R n \R n+1 and because of Theorem B.

(b) Now assume that dr(f ) = n. There exists Z ∈ Γ and g ∈ rad n (Y, Z)\rad n+1 (Y, Z) such that gf ∈ rad n+2 (X, Z). We write g = [g1, . . . , gr] with gi : Xi → Z. Hence, gi ∈ rad n (Xi, Z); there exists i0 ∈ {1, . . . , r} such that gi 0 ∈ rad n+1 (Xi 0 , Z); and P i gifi ∈ rad n+2 (X, Z).

For every i, there exists (φi,z)z ∈ L

F z=Z R n k( e Γ)(xi, z) such that gi = P z F (φi,z) mod rad n+1 ;
and, also, there exists z0 such that F z0 = Z and φi 0 ,z 0 ∈ R n+1 k( e Γ)(xi 0 , z0), because of Theorem B and the above properties of the gi. In particular, the paths in e Γ from xi 0 to z0 all have length at most n, and, therefore, the paths from x to z0 all have length at most n + 1.

On the other hand,

P i gifi = P z F " P i φi,zαi
« mod rad n+2 lies in rad n+2 (X, Z). Hence,

P i φi,zαi ∈ R n+2 k( e Γ)(x, z)
for every z, because of Theorem B. This and the above property on the length of the paths in e Γ from x to z0 imply that

P i φi,z 0 αi = 0 We then set hi = F (φi,z 0 ) : Xi → Z and h = [h1, . . . , hr] : Y → Z. Then hf = F " P i φi,z 0 αi « = 0, h ∈ rad n (Y, Z) because φi,z 0 ∈ R n k( e Γ)(xi, z0) for every i, and h ∈ rad n+1 (Y, Z) because φi 0 ,z 0 ∈ R n+1 k( e Γ)(xi 0 , z0) (see Theorem B). Remark 3.2. Keep the notations of 3.1. (a) If d l (f ) = n, then, by definition, there exist Z ∈ Γ and g ∈ rad n (Z, X)\rad n+1 (Z, X) such that f g ∈ rad n+2 (Z, X1 ⊕ • • • ⊕ Xr).
The proof of 3.1 shows that there exists h ∈ rad n (Z, X)\rad n+1 (Z, X) such that f h = 0 (that is, the domain of h is equal to the domain of g). Of course, the same remark holds true if dr(f ) = n. (b) It is still an open question to know whether the morphism h in 3.1 can be chosen to be a composition of irreducible morphisms (instead of a sum of compositions of such). Recall that this is indeed the case if α(Γ) 2 ( [START_REF] Chaio | On the degree of irreducible morphisms[END_REF]).

Now we derive some consequences of 3.1. The following corollary follows directly from 3.1. We omit its proof. Note that it was proved in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] for irreducible morphisms between indecomposable modules lying in a standard component.

Corollary 3.3. Let f : X → Y be an irreducible morphism in mod A with X indecomposable. If d l (f ) is finite, then f is not mono and dr(f ) = ∞. In particular, every minimal left almost split morphism in mod A has infinite left degree.

The following proposition compares d l (f ) and d l (g) when there is an almost split sequence of the form 0 → τAY

[g,g ′ ] t ----→ X ′ ⊕ X [f ′ ,f ] ---→ Y → 0. Recall that it was proved in [11, 1.2] that d l (f ) < ∞ implies d l (g) d l (f ) -1 (
in the more general setting of artin algebras). Note that the following result was proved in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] in the case where the indecomposable module Y lies in a standard component. Proposition 3.4. Let f : X → Y be an irreducible morphism with Y indecomposable and non-projective. Assume that the almost split sequence in mod A:

X ′ f ′ ( ( Q Q Q Q Q Q 0 / / τAY g 5 5 k k k k k k g ′ ) ) S S S S S S Y / / 0 X f 6 6 l l l l l l is such that X ′ = 0. Then d l (f ) < ∞ if and only if d l (g) < ∞. In such a case, d l (f ) = n if and only if d l (g) = n -1. Proof. It was proved in [11, 1.2] that if d l (f ) < ∞, then d l (g) d l (f ) -1. Converly, assume that d l (g) = m < ∞.
Then there exists Z ∈ ind A and h ∈ rad m (Z, τAY )\rad m+1 (Z, τAY ) such that gh = 0, because of 3.1. Consider the morphism g ′ h ∈ rad m+1 (Z, X). The morphism [g, g ′ ] t is minimal left almost split so it has infinite left degree, because of 3.3. Since [g, g ′ ] t h = [0, g ′ h] we deduce that g ′ h ∈ rad m+2 (Z, X). On the other hand,

f g ′ h = (f g ′ + f ′ g)h = 0. This proves that d l (f ) m + 1 = d l (g) + 1.
The following proposition is a key-step towards Theorem A. Proposition 3.5. Let f : X → Y be an irreducible morphism in mod A with X indecomposable, Γ be the Auslander-Reiten component of A containing X and n 1 be an integer. The two following conditions are equivalent: (a) d l (f ) = n. (b) f is not mono and the morphism ker(f ) : Ker(f ) ֒→ X lies in rad n (Ker(f ), X)\rad n+1 (Ker(f ), X). These conditions imply the following one: (c) f is not mono and Ker(f ) ∈ Γ. If Γ is generalized standard, then the three conditions are equivalent.

Proof. If d l (f ) = n < ∞, then 3.1 implies that there exists n 0, Z ∈ Γ and h ∈ rad n (Z, X)\rad n+1 (Z, X) such that f h = 0. In particular, f is not mono (and, therefore, Ker(f ) is indecomposable, because f is irreducible). Therefore, we have a factorization

Z h ∃ v v m m m m m m Ker(f ) / / X f / / Y
which implies that ker(f ) ∈ rad n+1 (Ker(f ), X) and, therefore, Ker(f ) ∈ Γ. Let i be such that ker(f ) ∈ rad i (Ker(f ), X). So i n and, since f ker(f ) = 0, we have d l (f ) i. Thus, i = n and ker(f ) ∈ rad n (Ker(f ), X)\rad n+1 (Ker(f ), X). This proves that (a) implies (b) and (c). If f is not mono and ker(f ) ∈ rad n (Ker(f ), X)\rad n+1 (Ker(f ), X) then Ker(f ) ∈ Γ. From the equality f ker(f ) = 0 we deduce that d l (f ) n < ∞. Since (a) implies (b) we deduce that d l (f ) = n. This proves that (b) implies (a) and (c).

Finally, if Γ is generalized standard and Ker(f ) ∈ Γ, then the inclusion Ker(f ) ֒→ X lies on rad n (Ker(f ), X)\rad n+1 (Ker(f ), X) for some n 1 because rad ∞ (Ker(f ), X) = 0. Thus, (b) and, therefore, (a) holds true.

Keep the notations of 3.5 and of its proof and assume that d l (f ) = n. Let g : Z → Ker(f ) a morphism such that ker(f )g = h. Both morphisms ker(f ) and h lie in rad n \rad n+1 so that g ∈ rad(Z, Ker(f )). Since both Z and Ker(f ) are indecomposable, we deduce that g : Z → Ker(f ) is an isomorphism. In other words, we have the following Corollary 3.6. Let f : X → Y be an irreducible morphism with X indecomposable. If d l (f ) = n and if there exists Z ∈ ind A and h ∈ rad n (Z, X)\rad n+1 (Z, X) such that f h = 0, then h = ker(f ).

Proof. This follows from the arguments given before the lemma.

Using 3.5 we can prove the following result. . . . f ′ r ˜t. By [START_REF] Liu | Shapes of Connected Components of the Auslander-Reiten Quivers of Artin Algebras[END_REF]Lem. 1.3], the irreducible morphisms f1, . . . , fr all have finite left degree. By [START_REF] Liu | Degrees of irreducible maps and the shapes of Auslander-Reiten quivers[END_REF]Lem. 1.7] we deduce that for every i there exist a scalar λi ∈ k * and a morphism ri ∈ rad 2 (X, Xi) such that f ′ i = λifi + ri. This clearly implies that d l (f ) = d l (f ′ ). Let n = d l (f ) and ι : Ker(f ) ֒→ X be the inclusion. By 3.5 we know that ι ∈ rad n (Ker(f ), X)\rad n+1 (Ker(f ), X). On the other hand, we have f ′ i ι = riι ∈ rad n+2 (Ker(f ), Xi) for every i, that is, f ′ ι ∈ rad n+2 (Ker(f ), Y ). By 3.1 and 3.2 we infer that there exists h ∈ rad n (Ker(f ), X)\rad n+1 (Ker(f ), X) such that f ′ h = 0. Finally, 3.6 implies that Ker(f ) ≃ Ker(f ′ ).

(b) If X is injective, then there exist U ∈ mod A and morphisms u, u ′ : X → U such that both [f, u] and [f ′ , u ′ ] are minimal right almost split morphisms X → Y ⊕ U . The dual version of 3.3 implies that both [f, u] and [f ′ , u ′ ] have infinite right degree and, therefore, so do f and f ′ . Therefore, X is not injective and there are minimal almost split sequences in mod

A Y g ( ( R R R R R R Y g ′ ( ( R R R R R R X f 7 7 o o o o o o h ' ' O O O O O O τ -1 A X and X f ′ 7 7 o o o o o o h ′ ' ' O O O O O O τ -1 A X
Finally, assume that f is epi. Then f is not mono, Ker(f ) ∈ Γ(mod A) and, as above, ker(f ) : Ker(f ) ֒→ X lies in rad n (Ker(f ), X)\rad n+1 (Ker(f ), X). In particular, d l (f ) < ∞. Thus (c) implies (a) and, therefore, the three conditions are equivalent if X is indecomposable.

If Y is indecomposable, then, using dual arguments, one proves that the following conditions are equivalent: d l (f ) = ∞; dr(f ) < ∞; and f is mono. Since an irreducible morphism is either mono or epi, this proves that (a), (b) and (c) are equivalent.

We end this section with another application of 3.1: The description of the irreducible morphisms with indecomposable domain or indecomposable codomain and with (left or right) degree equal to 2. Again, each statement has its dual counterpart which is omitted. We thus restrict our study to irreducible morphisms with indecomposable domain. We start with a characterization of the equality dr(f ) = 2.

Corollary 3.10. Let f : X → Y be an irreducible morphism with X indecomposable. The following conditions are equivalent: (a) dr(f ) = 2.

(b) X is not injective and there exists an almost split sequence 0 → X

[f,f ′ ] t ----→ Y ⊕ Y ′ [g,g ′ ] ---→ τ -1 A X → 0 with Y ′ indecomposable non-injective fitting into an almost split sequence 0 → Y ′ g ′ -→ τ -1 A X δ -→ τ -1 A Y ′ → 0. In other words, there is a configuration of almost split sequences in mod A Y g % % L L L L L L X f 9 9 r r r r r r r f ′ % % J J J J J J J τ -1 A X δ % % J J J J J Y ′ g ′ 9 9 t t t t t t τ -1 A Y ′ .
Proof. Assume that (a) holds true. Then X is not injective ([11, 1.3]) and f is not a minimal left almost split monomorphism ([11, 1.12]). So there is an almost split sequence

0 → X [f,f ′ ] t ----→ Y ⊕ Y ′ [g,g ′ ]
---→ τ -1 A X → 0 with Y ′ ∈ mod A non-zero. On the other hand, there exists M ∈ ind A and h ∈ rad 2 (Y, M )\rad 3 (Y, M ) such that hf = 0, because dr(f ) = 2 and because of the dual version of 3.1. Since [h, 0][f, f ′ ] t = 0, there exists h ′ : τ -1

A X → M such that h ′ g = h and h ′ g ′ = 0. Clearly, h ′ ∈ rad(τ -1

A X, M )\rad 2 (τ -1 A X, M ), because g is irreducible and h = h ′ g ∈ rad 2 (Y, M )\rad 3 (Y, M ). Hence, dr(g ′ ) = 1. Using [11, 1.12], we deduce that Y ′ is indecomposable not injective and g ′ is minimal left almost split. This proves that (b) holds true.

Conversely, assume that (b) holds true. We prove that so does (a). In particular, X is noninjective and f is not minimal left almost split. Using [11, 1.12], we infer that dr(f ) 2. Consider the morphism δg ∈ rad 2 (Y, τ -1 A Y ′ ). Let Z be an indecomposable summand of Y and let Z → τ -1 A X be the composition of g : Y → τ -1 A X with the section Z → Y . Then Z ≃ Y ′ , because the almost split sequence starting at Y ′ has its middle term indecomposable. Therefore,

Z → τ -1 A X δ -→ τ -1 A Y ′ is a sectional path of irreducible morphisms so that its composite lies in rad 2 (Z, τ -1 A Y ′ )\rad 3 (Z, τ -1 A Y ′ ) ([10]). Thus, δg ∈ rad 2 (Y, τ -1 A Y ′ )\rad 3 (Y, τ -1 A Y ′ ) and δgf = -δg ′ f ′ = 0. This proves that dr(f ) = 2. So (b) implies (a).
We now turn the characterisation of the equality d l (f ) = 2. The following corollary was first proved in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] for irreducible morphisms in standard components. Using 3.1, the proof given in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] generalizes to any Auslander-Reiten component. We thus refer the reader to [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF] for a detailed proof. and there exist Z ∈ ind A and a path of irreducible morphisms with composite h lying on rad 2 (Z, X)\rad 3 (Z, X) and such that f h = 0.

(c) Γ(mod A) contains one of the two following configurations of meshes:

τAX ′ $ $ I I I I I X ′ A A A A τAY < < x x x x " " E E E E E Y X f > > ~with Y, X ′ ∈ ind A, or
the degree of the morphisms I ։ I/soc(I) for I injective. The authors thank Juan Cappa for pointing out that this dual statement was unnecessary. Now we can prove the main theorem. We recall its statement for convenience.

Theorem A. Let A be a connected finite dimensional k-algebra over an algebraically closed field. The following conditions are equivalent: (a) A is of finite representation type. (b) For every indecomposable projective A-module P , the inclusion rad(P ) ֒→ P has finite right degree. (c) For every indecomposable injective A-module I, the quotient I → I/soc(I) has finite left degree. (d) For every irreducible epimorphism f : X → Y with X or Y indecomposable, the left degree of f is finite. (e) For every irreducible monomorphism f : X → Y with X or Y indecomposable, the right degree of f is finite.

Proof. If A is of finite representation type, then Γ(mod A) is connected and rad ∞ = 0 (this follows from the Lemma of Harada and Sai, for example) and the conditions (b) and (c) follow from 3.5 and its dual. The implications (b) ⇒ (a) and (c) ⇒ (a) follow from 4.2 and from its dual version, respectively. Thus, the conditions (a), (b) and (c) are equivalent. Note that (d) implies (c), and (e) implies (b). On the other hand, 3.9 and its dual version show that (a) implies both (d) and (e). Therefore, the five conditions (a), (b), (c), (d) and (e) are equivalent.

Remark 4.3. Our arguments allow us to recover the following well-known implication using degrees of irreducible morphisms only: If rad ∞ = 0 then A is of finite representation type and Γ(mod A) is connected. Indeed, if rad ∞ = 0 then both (b) and (c) hold true in Theorem A. So A is of finite representation type and Γ(mod A) is connected.

Composition of morphisms

Let A be a finite dimensional k-algebra and Γ be a component of Γ(mod A). In view of 3.2, (b), there seems to be a connection between the degree of an irreducible morphism and the behavior of the composite of n irreducible morphisms between indecomposable modules (for any n). This motivates the work of the present section, that is, to study when the composite of n irreducible morphisms between indecomposable modules lies in rad n+1 . The following result characterizes such a situation when Γ has trivial valuation (that is, has no multiple arrows). where λ = λ1 . . . λn ∈ k * and the whole sum lies on rad n+1 (X1, Xn+1). In particular, F (αn . . . α1) lies on rad n+1 (X1, Xn+1). By Theorem B, we have αn . . . α1 ∈ R n+1 k( e Γ)(x1, xn+1). Since e Γ is a component with length, we deduce that αn . . . α1 = 0 and therefore F (αn) . . . F (α1) = 0. This and (⋆) imply that there exist t ∈ {1, . . . , n} and i1 < . . . < it such that: F (αn) . . . F (αi t +1)h ′ it F (αi t -1) . . . F (αi 1 +1)h ′ i 1 F (αi 1 -1) . . . F (α1) = 0 .

(⋆⋆)

We thus let: (i) fi = F (αi) for every i ∈ {1, . . . , n}. So fi : Xi → Xi+1 is irreducible because F : k( e Γ) → ind Γ is well-behaved. (ii) εi j = h ′ i j for every j ∈ {1, . . . , t}. So εi j ∈ rad 2 (Xi j , Xi j +1). (iii) εi = fi for every i ∈ {1, . . . , n}\{i1, . . . , it}. In particular, εn . . . ε1 = 0 because of (⋆⋆). The morphisms fi and εi (i ∈ {1, . . . , n}) satisfy the conclusion of (b). This proves (b) when h1, . . . , hn satisfy (a) and represent arrows with trivial valuation.

For the implication (b) implies (a), we refer the reader to the proof of [9, Thm. 2.7] (where the standard hypothesis made therein is not used for that implication).

The equivalence between (a) and (b) when Γ has trivial valuation follows from the above considerations.

Remark 5.2. Let h1, . . . , hn, i = 1, . . . , n, be morphisms satisfying (a) in 5.1. Under additional assumption such as, α(Γ) 2 ( [START_REF] Chaio | On the degree of irreducible morphisms[END_REF]), or n = 2 ([5]), or n = 3 ( [START_REF] Chaio | On the composite of three irreducible morphisms in the fourth power of the radical[END_REF]) or the path h1, . . . , hn is almost sectional ( [START_REF] Chaio | On the composite of irreducible morphisms in almost sectional paths[END_REF]), it is known that the arrows in Γ represented by h1, . . . , hn all have trivial valuation. However, it is still an open question to know whether this is always the case.

Our last result concerns sums of composites of paths in a sectional family (2.2). Note that this result extends the well-known result of Igusa and Todorov ( [START_REF] Igusa | Radical layers of representable functors[END_REF]) and which asserts that if

• f 1 -→ • → • • • → • f l -→ •
is a sectional path of irreducible morphisms between indecomposables, then the composite fn • • • f1 does not lie in rad n+1 and, therefore, is non-zero. Recall that a sectional path of irreducible morphisms between indecomposables is a particular case of a sectional family of paths (2.3). Proposition 5.3. Let X, Y be indecomposable modules in Γ. Let {X and does not lie in rad n+1 (X, Y ). In particular it is non-zero.

f i,1 --→ Xi,1 → • • • → X i,l i-1 f i,l i
Proof. Let π : e Γ → Γ be the generic covering and let x ∈ π -1 (X). We apply 2.4 from which we adopt the notations (xi,j, αi,j). In particular, there exists a well-behaved functor F : k( e Γ) → ind Γ such that F (αi,j) = fi,j for every i, j.

For every y ∈ π -1 (Y ) let Iy be the set of indices such that x i,l i = y. For each i, let ui be the path x

α i,1 ---→ xi,1 → • • • → x i,l i -1
α i,l i ---→ x i,l i . Therefore, there exists some y0 ∈ π -1 (Y ) such that Iy 0 is non-empty and all the paths ui, i ∈ Iy 0 , have length n. Moreover, each path ui, for i ∈ {1, . . . , r} is sectional, because π : e Γ → Γ is a covering of translation quivers and π(ui) is a sectional path X → Xi,1 → • • • → X i,l i -1 → X i,l i (2.3, (1)).

a 1 -

 1 → X1, . . . , X ar -→ Xr are all the arrows in Γ starting in some module X and if the morphism [u1, . . . , ur] t : X → r L i=1 Xi is irreducible, then it is minimal left almost split (and dually). Therefore, a well-behaved functor p : k e Γ → ind Γ induces a well-behaved functor F : k( e Γ) → ind Γ by factoring out by the mesh-ideal.

Lemma 2 . 7 . i=1 F

 27i=1 Let F : k( e Γ) → ind Γ be a well-behaved functor, x, y vertices in e Γ and n 0. Then: (a) F maps a morphism in R n k( e Γ)(x, y) onto a morphism in rad n (F x, F y). (b) Let f ∈ rad n+1 (F x, F y) and α1 : x → x1, . . . , αr : x → xr be the arrows in e Γ starting from x. Then there exist hi ∈ rad n (F xi, F y), for every i, such that f = P i hiF (αi). Proof. (a) follows from the fact that F is well-behaved. (b) We have a decomposition f = P j gjfj where j runs through some index set, fj ∈ rad(F x, Yj), gj ∈ rad n (Yj, F y), Yj ∈ ind A, for every j. The morphism [f (α1), . . . , f (αr)] t : F x → r L xi is minimal left almost split so every fj factors through it: fj = r P i=1 f ′ j,i F (αi) with f ′ i,j ∈ HomA(F xi, Yj). Setting hi = P j gjf ′ j,i does the trick. The following theorem states the main properties of well-behaved functors we shall use. Part (b) of it was first proved in [13, §2] in the case of the stable part of the Auslander-Reiten quiver of a self-injective algebra of finite representation type (see also [2, 3.1 Ex. (b)] for the case of the Auslander-Reiten quiver of an algebra of finite representation type). Theorem B. Let F : k( e Γ) → ind Γ be a well-behaved functor, x, y vertices in e Γ and n 0. Then: (a) The two following maps induced by F are bijective:

Proposition 3 . 1 .

 31 Let f : X → Y be an irreducible morphism with X indecomposable, Γ be the Auslander-Reiten component of A containing X and n ∈ N. (a) If d l (f ) = n, then there exist Z ∈ Γ and h ∈ rad n (Z, X)\rad n+1 (Z, X) such that f h = 0. (b) If dr(f ) = n, then there exist Z ∈ Γ and h ∈ rad n (Y, Z)\rad n+1 (Y, Z) such that hf = 0. Proof. We write Y = X1 ⊕ • • • ⊕ Xr with X1, . . . , Xr ∈ Γ and f = [f1, . . . , fr] t with fi : X → Xi. Let π : e Γ → Γ be the generic covering. Because f is irreducible, e Γ πxi = Xi for every i. Let F : k( e Γ) → ind Γ be a well-behaved functor such that F (αi) = fi for every i (2.6). (a) If d l (f ) = n, then there exists Z ∈ Γ and g

Corollary 3 . 7 .

 37 Let f, f ′ : X → Y be irreducible morphisms in mod A with X indecomposable. Then: (a) If f has finite left degree then d l (f ) = d l (f ′ ) and Ker(f ) ≃ Ker(f ′ ). (b) If f has finite right degree then dr(f ) = dr(f ′ ). Proof. (a) Write Y = X1 ⊕ • • • ⊕ Xr with X1, . . . , Xr indecomposable. Let fi, f ′ i : X → Xi (i ∈ {1, .. . , r}) be the morphisms such that f = ˆf1 . . . fr ˜t and f ′ = ˆf ′ 1

Corollary 3 . 11 .

 311 Let f : X → Y be an irreducible morphism with X indecomposable. The following conditions are equivalent: (a) d l (f ) = 2. (b) Y the direct sum of at most two indecomposables; f is not minimal right almost split;

Proposition 5 . 1 . 1 -: x1 α 1 -F 1 F

 51111 Let n 1 be an integer and X1, . . . , Xn+1 be modules in Γ. Consider the following assertions: (a) There exist irreducible morphisms hi : Xi → Xi+1 for every i such that hn . . . h1 ∈ rad n+1 (X1, Xn+1)\{0}. (b) There exist irreducible morphisms fi : Xi → Xi+1 together with morphisms εi : Xi → Xi+1 such that fn . . . f1 = 0, εn . . . ε1 = 0 and εi = fi or εi ∈ rad 2 (Xi, Xi+1) for every i. Then (b) implies (a). Also, if h1, . . . , hn satisfy (a) and represent arrows with trivial valuation, then (b) holds true. In particular, (a) and (b) are equivalent if Γ has trivial valuation. Proof. Let hi : Xi → Xi+1, i = 1, . . . , n, be irreducible morphisms in ind A such that hn . . . h1 ∈ rad n+1 (X1, Xn+1)\{0} and such that the arrows represented by h1, . . . , hn have trivial valuation. Let F : k( e Γ) → ind e Γ be a well-behaved functor with respect to the generic covering π : e Γ → Γ and let x1 ∈ F -1 (X1). Since π : e Γ → Γ is a covering of quivers and the arrow represented by h1 has trivial valuation, there is exactly one arrow x1 α -→ x2 in e Γ starting from x1 and such that F x2 = X2. By repeating the same argument, we deduce that there is exactly one path in e Γ-→ x2 → . . . → xn αn --→ xn+1starting from x1 of length n and such that F xi = Xi for every i. Let i ∈ {1, . . . , n}, then F (αi) : Xi → Xi+1 is irreducible so that hi = λiF (αi) + h ′ i , where λi ∈ k * and h ′ i ∈ rad 2 (Xi, Xi+1) because π(αi), represented by hi, has trivial valuation. Since hn . . . h1 = 0, we have a non-zero morphism: λF (αn . . . α1) (αn) . . . F (αi t +1)h ′ it F (αi t -1) . . . F (αi 1 +1)h ′ i (αi 1 -1) . . . F (α1) (⋆)

-

  --→ Y }i=1,...,r be a sectional family of paths starting in X, ending in Y and of irreducible morphisms between indecomposables. Let n = min i=1,...,r li. Thenr P i=1 f i,l i • • • fi,1 lies in rad n (X, Y )

  with length, that is, for every x, y ∈ Γ all the paths from x to y have equal length, then the radical satisfies the following result proved in[START_REF] Chaio | The composite of irreducible morphisms in standard components[END_REF] Prop. 2.1]. This result is central in our work. Later we shall use it without further reference.

	Proposition 1.1. Let Γ be a translation quiver with length and x, y ∈ Γ. If there is a path
	of length l from x to y in Γ, then:

  x, z), for every z, because (Hn) holds true. Also, there exists (ψz) ∈ L

		R n+2 k( e Γ)(x, z) such that	P	F (φz) =	P	F (ψz) mod rad n+3 , because Fn+2 is surjective
	F z=F y				z	z
	and	P	F (φz) ∈ rad n+2 (F x, F y). Therefore, there exists hi ∈ rad n+2 (F xi, F y), for every i, such
		z			
	that	P	F (φz -ψz) =	P	hiF (αi), because of 2.7, (b). Since φz, ψz ∈ Rk( e Γ)(x, z), there is a
		z			i	r
	decomposition φz -ψz =	P	θz,iαi with θz,i ∈ k( e Γ)(xi, z) for every i. We deduce that
						i=1
						!
						X	X	F (θz,i) -hi	F (αi) = 0	(⋆)
						i	z
	Now if x is injective, then	P

z F (θz,i) -hi = 0 for every i. Since hi ∈ rad n+2 (F xi, F y), we deduce that P z F (θz,i) ∈ rad n+2 (F xi, F y) ⊆ rad n+1 (F xi, Fy) for every i. Because (Hn) holds true, we get θz,i ∈ R n+1 k( e Γ)(xi, z), for every i, and, therefore φz = ψz + P

then βiαi ∼ βj αj for every i, j ∈ {1, . . . , r}. (iii)If α, β are arrows in Γ with the same source and the same target, then α ∼ β. (iv)If γ1, γ, γ ′ , γ2 are unoriented paths such that γ ∼ γ ′ and the compositions γ1γγ2, γ1γ ′ γ2 are defined, then γ1γγ2 ∼ γ1γ ′ γ2. Note that the usual homotopy relation of a translation quiver (see[2, 1.2]) is defined using conditions (i), (ii) and (iv) above. Also recall that the universal cover of Γ was defined in[2, 1.3] using that homotopy relation. By applying that construction to our equivalence relation ∼ instead of to the homotopy relation, we get the covering π : e Γ → Γ which we call the generic covering of Γ. Note that if Γ has no multiple arrows (for example, if Γ = Γ(mod A) is the Auslander-Reiten quiver of a representation-finite algebra), then the generic covering coincides with the universal covering. The following properties of π are crucial to our work: Proposition 1.2. Let Γ be a translation quiver and π : e Γ → Γ be its generic covering. (a) There is a length function on e Γ. In particular, e Γ is with length. (b) If α : x → y, β : x → z (or α : y → x, β : z → x) are arrows in e Γ such that πy = πz, then y = z. (c) For every vertices x, y ∈ e Γ, the covering π induces a bijection from the set of arrows in e Γ from x to y to the set of arrows in Γ from πx to πy. (d) Let x, y ∈ e Γ be vertices. If u: x = x0 → • • • → x l = y and v : x = x ′ 0 → • • • → x ′ l = y are two paths in e Γ from x to y and if u is sectional, then x1 = x ′ 1 , . . . , x l-1 = x ′ l-1 .In particular, all the paths from x to y are sectional. (e) Let x, y ∈ e Γ be vertices, u1, . . . , ur be pairwise distinct sectional paths of length n 0 in e Γ from x to y and λ1, . . . , λr ∈ k be scalars. Then the following equivalence holds in k( e Γ):λ1u1 + • • • + λrur ∈ R n+1 k( e Γ) ⇔ λ1 = • • • = λr = 0.Proof. Let Γ ′ be the translation quiver with no multiple arrows, with the same vertices and the same translation as those of Γ, and such that there is an arrow (and exactly one) x → y in Γ ′ if and only if there is (at least) one arrow x → y in Γ. Define e Γ ′ starting from e Γ in a similar way. Then e Γ ′ is the universal cover of Γ ′ and it is simply connected (in the sense of[2, 1.3,1.6]). (a) Applying [2, 1.6] to e Γ ′ yields a length function on e Γ ′ and, therefore, on e Γ. The existence of a length function implies that e Γ is with length. (b) follows from the construction of the generic covering. (c) follows from (b) and from the fact that π : e Γ → Γ is a covering of quivers. (d) The paths u and v define two (unique) paths x0 → • • • → x l and x ′ 1 → • • • → x ′ l from x to y in e Γ ′ , the first of which is sectional. The conclusion then follows from [3, Lem. 1.2].

Recall that in the case where A is of finite representation type, it was proved in[2, §3] that there always exists a well-behaved functor k( e Γ) → ind Γ. This result was based on a similar one in[13, §1], where a well-behaved functor k( e Γ) → mod A was constructed when A is self-injective and of finite representation type and Γ is a stable component of Γ(mod A).In this text we use the following more general existence result on well-behaved functors. Given a length function l on e Γ and an integer n ∈ Z, we denote by e Γ n (or e Γ n ) the full subquiver of e Γ with vertices those x ∈ e Γ such that l(x) n (or l(x) n, respectively). These are convex subquivers. Proposition 2.1. Let π : e Γ → Γ be the generic covering and let q : kY → ind Γ be a wellbehaved functor with Y a full convex subquiver of e Γ. Let l be a length function on e Γ and assume that at least one of the following conditions is satisfied: (a) There exist integers m, n ∈ Z such that n m and Y ⊆ e Γ n ∩ e Γ m . (b) There exists an integer n ∈ Z such that Y ⊆ e Γ n and Y is stable under predecessors in e Γ n (that is, every path in e Γ n with endpoint lying in Y lies entirely in Y). (c) There exists an integer n ∈ Z such that e Γ n ⊆ Y and Y is stable under successors in e Γ.

morphism [p ′ (γ1), . . . , p ′ (γs)] : s L i=1 πz → πt is irreducible, because k is an algebraically closed field); using 1.2, (b), we deduce that p ′ is well-behaved. Thus (X ′ , p ′ ) ∈ Σ and (X , p) < (X ′ , p ′ ), a contradiction to the maximality of (X , p). This proves that q : kY → ind Γ extends to a wellbehaved functor p : kX → ind Γ with X a full convex subquiver of e Γ containing Y, contained in e Γ n ∩ e Γ m and stable under predecessors in e Γ n . Therefore, X satisfies (b). Now assume that Y satisfies (b). Let Σ ′ be the set of those pairs (X , p) where X is a full convex subquiver of e Γ containing Y, contained in e Γ n and stable under predecessors in e Γ n , and p : kX → ind Γ is a well-behaved functor extending q. Then Σ ′ is non-empty for it contains (Y, q), and (Σ ′ , ) is totally inductive. Let (X , p) be a maximal element in Σ ′ . We claim that X = e Γ n . By absurd, assume that this is not the case. Let x ∈ e Γ n be a vertex not in X . We may assume that l(x) is minimal for this property. Then x has no successor in e Γ lying in X , because X is stable under predecessors in e Γ n . If there is no arrow y → x in e Γ such that y ∈ X , then x has no predecessor in X , by minimality of l(x). In such a case the full subquiver X ′ of e Γ generated by X and x has the same arrows as those in X and it is convex. Then p trivially extends to a well-behaved functor p ′ : kX ′ → ind Γ so that (X ′ , p ′ ) ∈ Σ ′ and (X , p) < (X ′ , p ′ ), a contradiction to the maximality of (X , p). On the other hand, if there is an arrow y → x in e Γ with y ∈ X , then, using dual arguments to those used on the previous situation (when Y was supposed to satisfy (a)), we similarly extend p to a well-behaved functor p ′ : kX ′ → ind Γ where X ′ is the (convex) full subquiver of e Γ generated by X and x. As in the previous case, (X ′ , p ′ ) ∈ Σ ′ and (X , p) < (X ′ , p ′ ), which contradict the maximality of (X , p). Therefore, p : kX → ind Γ is a well-behaved functor extending q, where X equals e Γ n (and therefore satisfies (c)).Finally, assume that Y satisfies (c). Let Σ ′′ be the set of those pairs (X , p) where X is a full convex subquiver of e Γ containing both e Γ n and Y, and X is stable under successors in e Γ and p : kX → ind Γ is a well-behaved functor extending q. Then Σ ′′ is non-empty for it contains (Y, q), and (Σ ′′ , ) is totally inductive (with as above). Let (X , p) be a maximal element in Σ ′′ . We claim that X = e Γ. By absurd, assume that this is not the case. Let x ∈ e Γ be a vertex not in X and with l(x) maximal for this property. This is possible because e Γ n ⊆ X . Since X is stable under successors in e Γ, there is no arrow z → x with z ∈ X . Since e Γ is connected, there exists an arrow x → y in e Γ. The vertex y then lies in X by maximality of l(x). Let X ′ be the full subquiver of e Γ generated by X and x. Therefore, the arrows in X ′ are those in X together with those in e Γ starting in x (which, by maximality of l(x) have their endpoint in X ) and X ′ is convex.

f i,1 --→ Xi,1 → • • • → X i,l i -1 f i,l i ---→ X i,l i of irreducible morphisms defines a (non-unique) path X → Xi,1 → • • • → X i,l i -1 → X i,l i in Γ. Since π : e Γ → Γ is a covering of quivers, this path in Γ defines a path x → xi,1 → • • • → x i,l i -1 → x i,l i in eΓ such that πxi,j = Xi,j. This defines all the vertices xi,j. Let y, z ∈ e Γ be vertices and let K be the set of couples (i, j), i ∈ {1, . . . , r} and j ∈ {1, . . . , li}, such that y = xi,j-1 and z = xi,j (with the convention xi,0 = x). Note that if both (i, j) and (i ′ , j ′ ) lie in K, then j = j ′ because e Γ is with length and xi,j (or x i ′ ,j ′ ) is the endpoint of a path in e Γ starting in x and of length j (or j ′ , respectively). By definition of a sectional family of paths, the irreducible morphisms fi,j : πy → πz, for (i, j) ∈ K, are linearly independent modulo rad 2 (πy, πz). Since π : e Γ → Γ is a covering of quivers, there is an injective map (i, j) → αi,j from K to the set of arrows from y to z in e Γ. By proceeding this construction for every vertices y, z ∈ e Γ, one defines all the arrows αi,j, for i ∈ {1, . . . , r} and j ∈ {1, . . . , li}, which are pairwise distinct, by construction.Given the vertices xi,j and the arrows αi,j as above, we let Y be the full subquiver of e Γ generated by all the xi,j. We need some properties on Y. Note that if there exists a path in e Γ of the form xi,j → y1 → • • • → ys → x i ′ ,j ′ , for some vertices y1, . . . , ys ∈ e Γ, then we have two
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Proof. The first assertion follows directly from 4.1. In order to prove the second one it suffices to prove that for all I, J indecomposable injectives, I and J lie on the same component of Γ(mod A). Since A is connected there exists a sequence I0 = I, I1, . . . , I l = Q of indecomposable injectives such that, letting Si = soc(Ii), we have that Si is a direct summand of soc(Ii-1/soc(Ii-1)) or Si-1 is a direct summand of soc(Ii/soc(Ii)) for every i = 1, . . . , l. Accordingly, 4.1 implies that there exists a path Ii Ii-1 or Ii-1 Ii, respectively, in Γ(mod A). This proves that I and J lie on the same component of Γ(mod A). Since Γ(mod A) is locally finite, this proves the lemma.

Note that the dual statement of 4.2 holds true using dual arguments and the dual version of 4.1. In a previous version of this text, 4.2 assumed an additional condition, dual to that on

Now, using the same arguments as those used in the first situation (when we assumed that Y satisfied (a)), we extend p to a well-behaved functor p ′ : kX ′ → ind Γ. We thus have (X ′ , p ′ ) ∈ Σ ′′ and (X , p) < (X ′ , p ′ ), a contradiction to the maximality of (X , p). This proves that X = e Γ and finishes the proof of the proposition.

We now present some practical situations where 2.1 may be applied. Definition 2.2. Let X be an indecomposable module in Γ and r 1. A sectional family of paths (starting in X and of irreducible morphisms) is a family

of r paths starting in X and of irreducible morphisms between indecomposables, subject to the following conditions (where X = Xi,0, for convenience): version of (a) applied to i, i ′ : Y ′ → τ -1 A X gives dr(i) = dr(i ′ ). Finally, the dual version of 3.4 applied to the second sequence above yields dr(i ′ ) = dr(f ′ ) -1. Thus dr(f ′ ) = dr(f ).

The following example shows that 3.7 does not necessarily hold if one drops the finiteness condition on the left degree.

Example 3.8. Let A be the path algebra of the following quiver of type e A2:

2

Given a vertex x, we write Ix for the corresponding indecomposable injective A-module. So the canonical quotient f : I3 ։ I1 is an irreducible morphism of infinite left degree (see [START_REF] Chaio | On the degree of irreducible morphisms[END_REF]Cor. 4 The result below follows from 3.5. It was first proved for standard algebras in [START_REF] Chaio | Degrees of irreducible morphisms in standard components[END_REF].

Corollary 3.9. Let A be of finite representation type and f : X → Y an irreducible morphism with X or Y indecomposable. Then the following conditions are equivalent: If dr(f ) < ∞, then f is not epi, because of 3.1. Therefore, (c) implies (b). Conversely, if f is not epi, then Coker(f ) ∈ Γ(mod A) and there exists an integer n 1 such that coker(f) : Y ։ Coker(f ) lies in rad n (Y, Coker(f ))\rad n+1 (Y, Coker(f )) (indeed, rad ∞ = 0 because A is representation-finite). Thus, (b) implies (c) and these two conditions are therefore equivalent. 

Algebras of finite representation type

In this section we prove our main theorem. First we need two lemmas.

Lemma 4.1. Let S be a simple A-module, S ֒→ I its injective hull and X ∈ ind A such that S is a direct summand of soc(X) . Assume that I ։ I/soc(I) has finite left degree equal to n. Then there is a path in Γ(mod A) starting at S, ending at I, of length at most n and going through X. In particular X, S and I lie in the same component of Γ(mod A).

Proof. Let Γ be the component containing I. We denote by π the irreducible monomorphism I ։ I/soc(I) and by ι : S ֒→ I the injective hull. It follows from 3.5 applied to π that S ∈ Γ and ι ∈ rad n (S, I)\rad n+1 (S, I). Since S is a direct summand of soc(X), the injective hull ι factors through X, that is, is equal to some composition S f -→ X g -→ I. Therefore there exist l, m 1 such that f ∈ rad l (S, X)\rad l+1 (S, X), g ∈ rad m (X, I)\rad m+1 (X, I) and l + m n. Therefore f (or g) is a sum of compositions of paths of irreducible morphisms at least one of which has length l (or m, respectively). In particular, P, X and S all lie in Γ.

Of course, 4.1 has a dual statement which holds true using dual arguments: If S is a simple A-module with projective cover P ։ S such that rad P ֒→ P has finite right degree equal to n and if S is a direct summand of top(X) for some X ∈ ind A, then there exists a path in Γ(mod A) starting at P , ending at S, going through X and of length at most n. In particular, P, X and S all lie in the same component of Γ(mod A). Lemma 4.2. Assume A is connected and that for every indecomposable injective I the quotient morphism I ։ I/soc(I) has finite left degree. Let n be the supremum of all these left degrees. Then, for every X ∈ ind A there exists a path in Γ(mod A) starting at X, ending at some injective and of length at most n. In particular, Γ(mod A) is finite and connected.

Clearly, the sum r P i=1 f i,l i • • • fi,1 equals r P i=1 F (ui) and lies in rad n (X, Y ). By absurd, assume that it lies in rad n+1 (X, Y ). Using Theorem B, we deduce that P i∈Iy ui ∈ R n+1 k( e Γ)(x, y), for every y ∈ π -1 (Y ). In particular, P i∈Iy 0 ui ∈ R n+1 k( e Γ)(x, y0). This contradicts 1.2, (e), because the paths ui, for i ∈ Iy 0 , are sectional and of length n.