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Degrees of irreducible morphisms and finite-representation type

Claudia Chaio, Patrick Le Meur, Sonia Trepode

Abstract

We study the degree of irreducible morphisms in any Auslander-Reiten component of a finite
dimensional algebra over an algebraically closed field. We give a characterization for an
irreducible morphism to have finite left (or right) degree. This is used to prove our main theorem:
An algebra is of finite representation type if and only if for every indecomposable projective the
inclusion of the radical in the projective has finite right degree, which is equivalent to require
that for every indecomposable injective the epimorphism from the injective to its quotient by
its socle has finite left degree. We also apply the techniques that we develop: We study when
the non-zero composite of a path of n irreducible morphisms between indecomposable modules
lies in the n+ 1-th power of the radical; and we study the same problem for sums of such paths
when they are sectional, thus proving a generalisation of a pioneer result of Igusa and Todorov
on the composite of a sectional path.

Introduction

Let A be an artin algebra over an artin commutative ring k. The representation theory of
A deals with the study of the category modA of (right) A-modules of finite type. One of the
most powerful tools in this study is the Auslander-Reiten theory, based on irreducible morphisms
and almost split sequences (see [1]). Although irreducible morphisms have permitted important
advances in representation theory, some of their basic properties still remain mysterious to us.
An important example is the composition of two irreducible morphisms: It obviously lies in rad2

(where radl is the l-th power of the radical ideal rad of modA) but it may lie in rad3, rad∞

or even be the zero morphism. Of course, the situation still makes sense with the composite
of arbitrary many irreducible morphisms. A first, but partial, treatment of this situation was

given by Igusa and Todorov ([10]) with the following result: “If X0
f1−→ X1 → · · · → Xn−1

fn−−→
Xn is a sectional path of irreducible morphisms between indecomposable modules, then the
composite fn · · · f1 lies in radn(X0,Xn) and not in radn+1(X0,Xn), in particular, it is non-zero.”
In [11], Liu introduced the left and right degrees of an irreducible morphism f : X → Y as
follows: The left degree dl(f) of f is the least integer m > 1 such that there exists Z ∈ modA
and g ∈ radm(Z,X)\radm+1(Z,X) satisfying fg ∈ radm+2(Z, Y ). If no such an integer m exists,
then dl(f) = ∞. The right degree is defined dually. This notion was introduced to study the
composition of irreducible morphisms. In particular, Liu extended the above study of Igusa
and Todorov to presectional paths. Later it was used to determine the possible shapes of the
Auslander-Reiten components of A (see [11, 12]). More recently, the composite of irreducible
morphisms was studied in [5], [6], [7] and [9]. The work made in the first three of these papers
is based on the notion of degree of irreducible morphisms. The definition of the degree raises the
following problem: Determine when dl(f) = ∞ or dr(f) = ∞. Consider an irreducible morphism
f : X → Y with X indecomposable. Then, the following conditions have been related in the
recent literature:
(1)dl(f) = n <∞,
(2)Ker(f) lies in the Auslander-Reiten component containing X.

Indeed, these two conditions were proved to be equivalent if the Auslander-Reiten component
containing X is convex, generalized standard and with length ([8], actually this equivalence
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still holds true if one removes the convex hypothesis) and when the Auslander-Reiten quiver
is standard ([4]). In this text, we shall see that such results are key-steps to show that the
degree of irreducible morphisms is a useful notion to determine the representation type of A.
Indeed, we recall the following well-known conjecture appeared first in [12] and related to the
Brauer-Thrall conjectures: ”If the Auslander-Reiten quiver of A is connected, then A is of finite
representation type.” This conjecture is related to the degree of irreducible morphisms as follows:
In the above situation of assertions (1) and (2), the existence of f such that dl(f) = ∞ is related
to the existence of at least two Auslander-Reiten components. Actually, it was proved in [8,
Thm. 3.11] that if A is of finite representation type, then every irreducible morphism between
indecomposables either has finite right degree or has finite left degree. Conversely, one can wonder
if the converse holds true. In this text, we prove the following main theorem where we assume
that k is an algebraically closed field.

Theorem A. Let A be a connected finite dimensional k-algebra over an algebraically closed
field. The following conditions are equivalent:
(a) A is of finite representation type.
(b) For every indecomposable projective A-module P , the inclusion rad(P ) →֒ P has finite right

degree.
(c) For every indecomposable injective A-module I , the quotient I → I/soc(I) has finite left

degree.
(d) For every irreducible epimorphism f : X → Y with X or Y indecomposable, the left degree

of f is finite.
(e) For every irreducible monomorphism f : X → Y with X or Y indecomposable, the right

degree of f is finite.

Hence, going back to the above conjecture, if one knows that the Auslander-Reiten quiver
of A is connected, by (b) and (c) it suffices to study the degree of finitely many irreducible
morphisms in order to prove that A is of finite representation type. Our proof of the above
theorem only uses considerations on degrees and their interaction with coverings of translation
quivers. In particular it uses no advanced characterization of finite representation type (such as
the Brauer-Thrall conjectures or multiplicative bases, for example). The theorem shows that the
degrees of irreducible morphisms are somehow related to the representation type of A. Note also
that our characterization is expressed in terms of the knowledge of the degree of finitely many
irreducible morphisms. In order to prove the theorem we investigate the degree of irreducible
morphisms and more particularly assertions (1) and (2) above. Assuming that k is an algebraically
closed field and given f : X → Y an irreducible epimorphism with X indecomposable, we prove
that the assertion (1) is equivalent to (3) below and implies (2), with no assumption on the
Auslander-Reiten component Γ containing X:

(3)There exists Z ∈ Γ and h ∈ radn(Z,X)\radn+1(Z,X) such that fh = 0.
Therefore, the existence of an irreducible monomorphism (or epimorphism) with infinite left (or
right) degree indicates that there are more than one component in the Auslander-Reiten quiver
(at least when Γ is generalized standard). We also prove that (2) implies (1) (and therefore implies
(3)) under the additional assumption that Γ is generalized standard. The equivalence between
(1) and (3) and the fact that it works for any Auslander-Reiten component are the chore facts
in the proof of the theorem. For this purpose we use the covering techniques introduced in [13].
Indeed, these techniques allow one to reduce the study of the degree of irreducible morphisms in
a component to the study of the degree of irreducible morphisms in a suitable covering called the
generic covering. Among other things, the generic covering is a translation quiver with length.
As was proved in [8] such a condition is particularly useful in the study of the degree of an
irreducible morphism.

The text is therefore organized as follows. In the first section we recall some needed definitions.
In the second section we extend to any Auslander-Reiten component the pioneer result [13, 2.2,
2.3] on covering techniques which, in its original form, only works for the Auslander-Reiten quiver
of representation-finite algebras. The results of this section are used in the third one to prove
the various implications between assertions (1), (2) and (3) in 3.1 and 3.5. As explained above,
these results have been studied previously and they were proved under additional assumptions.
In particular, the corresponding corollaries proved at that time can be generalized accordingly.
In the fourth section we prove our main Theorem A using the previous results. The proof of
our main results are based on the covering techniques developed in the second section. In the
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last section, we use these to study when the non-zero composite of n irreducible morphisms lies
in the n+ 1-th power of the radical and we extend the cited-above result ([10]) of Igusa and
Todorov on the composite of a sectional paths to sums of composites of sectional paths.

1. Preliminaries

1.1. Notations on modules

Let A be a finite dimensional k-algebra. We denote by indA a full subcategory of modA
which contains exactly one representative of each isomorphism class of indecomposable modules.
Also, we write rad for the radical of modA. Hence, given indecomposable modules X,Y , the
space rad(X,Y ) is the subspace of HomA(X,Y ) consisting of non-isomorphisms X → Y . For
l > 1, we write radl for the l-th power of the ideal rad, recursively defined by rad1 = rad and
radl+1 = rad.radl (= radl.rad). For short we shall say that some morphisms u1, . . . , ur : X → Y
are linearly independent modulo radn(X,Y ) if their respective classes modulo radn(X,Y ) are
linearly independent in HomA(X,Y )/radn(X,Y ). We recall that the Auslander-Reiten quiver of
A is the translation quiver Γ(modA) with vertices the modules in indA, such that the number of
arrowsX → Y equals the dimension of the quotient space rad(X,Y )/rad2(X,Y ) for every vertices
X,Y ∈ Γ and whose translation is induced by the Auslander-Reiten translation τA = DTr. Hence,
the translation quivers we shall deal with are not valued quivers and may have multiple (parallel)
arrows. If Γ is a component of Γ(modA) (or an Auslander-Reiten component, for short), we write
indΓ for the full subcategory of indA with objects the modules in Γ. Recall that a hook is a path
X → Y → Z of irreducible morphisms between indecomposable modules such that Z is non-
projective and X = τAZ. Also, a path X0 → X1 → · · · → Xl−1 → Xl of irreducible morphisms
is sectional if neither of its subpaths of length 2 is a hook.

We refer the reader to [11] for properties on the degree of irreducible morphisms.

1.2. Radical in mesh-categories

Let Γ be a translation quiver, that is, Γ is a quiver with no loops (but possibly with parallel
arrows); endowed with two distinguished subsets of vertices, the elements of which are called
projectives and injectives, respectively; and endowed with a bijection τ : x 7→ τx (the translation)
from the set of non-projectives to the set of non-injectives; such that for every vertices x, y with
x non-projective, there is a bijection α 7→ σα from the set of arrows y → x to the set of arrows
τx→ y. All translation quivers are assumed to be locally finite, that is, every vertex is the source
or the target of at most finitely many arrows (Auslander-Reiten components are always locally
finite quivers). The subquiver of Γ formed by the arrows starting at τx and the arrows arriving
at x is called the mesh ending at x. We write k(Γ) for the mesh-category of Γ, that is, the factor
category of the path category kΓ by the ideal generated by the morphisms

P

α : ·→x

α σα where α

runs through the arrows arriving at x, for a given non-projective vertex x. If u is a path in Γ, we
write u for the corresponding morphism in k(Γ). We denote by Rk(Γ) the ideal of k(Γ) generated
by {α | α an arrow in Γ}. Note that in general Rk(Γ) is not a radical of the category k(Γ).
The l-th power R

lk(Γ) is defined recursively by R
1k(Γ) = Rk(Γ) and R

l+1k(Γ) = Rk(Γ).Rlk(Γ)
(= R

lk(Γ).Rk(Γ)). If Γ is with length, that is, for every x, y ∈ Γ all the paths from x to y have
equal length, then the radical satisfies the following result proved in [9, Prop. 2.1]. This result
is central in our work. Later we shall use it without further reference.

Proposition 1.1. Let Γ be a translation quiver with length and x, y ∈ Γ. If there is a path
of length l from x to y in Γ, then:
(a) k(Γ)(x, y) = Rk(Γ)(x, y) = R

2k(Γ)(x, y) = . . . = R
lk(Γ)(x, y).

(b) R
ik(Γ)(x, y) = 0 if i > l.

In view of the preceding proposition, we call a length function on Γ a function l which assigns
an integer l(x) ∈ Z to every vertex x ∈ Γ, in such a way that l(y) = l(x) + 1 whenever there is an
arrow x→ y in Γ (see [2, 1.6]). Clearly, if Γ has a length function, then Γ is with length. Finally,
we define hooks and sectional paths in translation quivers as we did for hooks and sectional
paths of irreducible morphisms in module categories.



Page 4 of 20 CLAUDIA CHAIO, PATRICK LE MEUR, SONIA TREPODE

1.3. Coverings of translation quivers

Let Γ be a connected translation quiver. A covering of translation quivers ([2, 1.3]) is a
morphism p : Γ′ → Γ of quivers such that:

(a)Γ′ is a translation quiver.
(b)A vertex x ∈ Γ′ is projective (or injective, respectively) if and only if so is px.
(c)p commutes with the translations in Γ and Γ′ (when these are defined).
(d)For every vertex x ∈ Γ′, the map α 7→ p(α) induces a bijection from the set of arrows in Γ′

starting from x (or ending at x) the set of arrows in Γ starting from p(x) (or ending at p(x),
respectively).

We shall use a particular covering π : eΓ → Γ which we call the generic covering. Following [2,
1.2], we define the equivalence relation ∼ on the set of unoriented paths in Γ as generated by
the following properties

(i)If α : x→ y is an arrow in Γ, then αα−1 ∼ ey and α−1α ∼ ex (where ex denotes the
stationary path at x, of length 0).

(ii)If x is a non-projective vertex and the mesh in Γ ending at x has the form

x1 β1

))SSSSSS

τx

α1 55jjjjjj

αr ))TTTTTT x

xr βr

55kkkkkk

then βiαi ∼ βjαj for every i, j ∈ {1, . . . , r}.
(iii)If α, β are arrows in Γ with the same source and the same target, then α ∼ β.
(iv)If γ1, γ, γ

′, γ2 are unoriented paths such that γ ∼ γ′ and the compositions γ1γγ2, γ1γ
′γ2 are

defined, then γ1γγ2 ∼ γ1γ
′γ2.

Note that the usual homotopy relation of a translation quiver (see [2, 1.2]) is defined using
conditions (i), (ii) and (iv) above. Also recall that the universal cover of Γ was defined in [2, 1.3]
using that homotopy relation. By applying that construction to our equivalence relation ∼ instead
of to the homotopy relation, we get the covering π : eΓ → Γ which we call the generic covering of
Γ. Note that if Γ has no multiple arrows (for example, if Γ = Γ(modA) is the Auslander-Reiten
quiver of a representation-finite algebra), then the generic covering coincides with the universal
covering. The following properties of π are crucial to our work:

Proposition 1.2. Let Γ be a translation quiver and π : eΓ → Γ be its generic covering.
(a) There is a length function on eΓ. In particular, eΓ is with length.
(b) If α : x→ y, β : x→ z (or α : y → x, β : z → x) are arrows in eΓ such that πy = πz, then

y = z.
(c) For every vertices x, y ∈ eΓ, the covering π induces a bijection from the set of arrows in eΓ

from x to y to the set of arrows in Γ from πx to πy.
(d) Let x, y ∈ eΓ be vertices. If u : x = x0 → · · · → xl = y and v : x = x′

0 → · · · → x′
l = y are two

paths in eΓ from x to y and if u is sectional, then x1 = x′
1, . . . , xl−1 = x′

l−1. In particular, all
the paths from x to y are sectional.

(e) Let x, y ∈ eΓ be vertices, u1, . . . , ur be pairwise distinct sectional paths of length n > 0 in eΓ
from x to y and λ1, . . . , λr ∈ k be scalars. Then the following equivalence holds in k(eΓ):

λ1u1 + · · · + λrur ∈ R
n+1k(eΓ) ⇔ λ1 = · · · = λr = 0.

Proof. Let Γ′ be the translation quiver with no multiple arrows, with the same vertices and
the same translation as those of Γ, and such that there is an arrow (and exactly one) x→ y in
Γ′ if and only if there is (at least) one arrow x→ y in Γ. Define eΓ′ starting from eΓ in a similar
way. Then eΓ′ is the universal cover of Γ′ and it is simply connected (in the sense of [2, 1.3,1.6]).

(a) Applying [2, 1.6] to eΓ′ yields a length function on eΓ′ and, therefore, on eΓ. The existence
of a length function implies that eΓ is with length.

(b) follows from the construction of the generic covering.
(c) follows from (b) and from the fact that π : eΓ → Γ is a covering of quivers.
(d) The paths u and v define two (unique) paths x0 → · · · → xl and x′

1 → · · · → x′
l from x to

y in eΓ′, the first of which is sectional. The conclusion then follows from [3, Lem. 1.2].
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(e) Assume that λ1u1 + · · · + λrur ∈ R
n+1k(eΓ). It follows from (a) and from 1.1 that λ1u1 +

· · · + λrur = 0, that is, λ1u1 + · · · + λrur lies in the mesh-ideal. By definition of the mesh-ideal,
this implies that ui contains a hook whenever λi 6= 0. Using (d), we deduce that λ1 = · · · = λr =
0. The converse is obvious.

The second property (b) in 1.2 is not satisfied by the universal cover when Γ has multiple
arrows. This is the reason for using the generic covering instead.

2. Well-behaved functors

Let A be a finite dimensional k-algebra where k is an algebraically closed field, Γ a component
of Γ(modA) and π : eΓ → Γ the generic covering. Following [2, 3.1 Ex. (b)] (see also [13]), a
k-linear functor F : k(eΓ) → indΓ is called well-behaved if it satisfies the following conditions for
every vertex x ∈ eΓ: (a) Fx = πx; (b) If α1 : x→ x1, . . . , αr : x→ xr are the arrows in eΓ starting
from x, then [F (α1), . . . , F (αr)]

t : Fx→ Fx1 ⊕ · · · ⊕ Fxr is minimal left almost split; (c) If
α1 : x1 → x, . . . , αr : xr → x are the arrows in eΓ ending at x, then [F (α1), . . . , F (αr)] : Fx1 ⊕
· · · ⊕ Fxr → Fx is minimal right almost split. Note that these conditions imply that F maps
meshes in eΓ to almost split sequences in modA.

For convenience, we extend this notion to functors p : kX → indΓ where X is a subquiver
of eΓ. The functor p is called well-behaved if and only if (1) px = πx for every vertex x ∈ X ;

(2) given a vertex x ∈ X , if x
α1−−→ x1, . . . , x

αr−−→ xr are the arrows in X starting in x, then the

morphism [p(α1), . . . , p(αr)]
t : πx→

r
L

i=1

πxi is irreducible; (3) given a vertex x ∈ X , if x1
β1−→

x, . . . , xr
βr
−→ x are the arrows in X ending in x, then the morphism [p(β1), . . . , p(βr)] :

r
L

i=1

πxi →

πx is irreducible; (4) if the vertex x is non-projective and if X contains the mesh in eΓ ending in
x

x1 β1

))SSSSSS

τx

α1 55jjjjjj

αr ))TTTTTT x

xr βr

55kkkkkk

then the sequence 0 → τAπx
[p(α1),...,p(αr)]t

−−−−−−−−−−−→
r
L

i=1

πxi
[p(β1),...,p(βr)]
−−−−−−−−−−→ πx→ 0 is exact and almost

split. Recall that if X
a1−→ X1, . . . ,X

ar−→ Xr are all the arrows in Γ starting in some module X

and if the morphism [u1, . . . , ur]
t : X →

r
L

i=1

Xi is irreducible, then it is minimal left almost split

(and dually). Therefore, a well-behaved functor p : keΓ → ind Γ induces a well-behaved functor
F : k(eΓ) → indΓ by factoring out by the mesh-ideal.

Recall that in the case where A is of finite representation type, it was proved in [2, §3] that
there always exists a well-behaved functor k(eΓ) → indΓ. This result was based on a similar one
in [13, §1], where a well-behaved functor k(eΓ) → modA was constructed when A is self-injective
and of finite representation type and Γ is a stable component of Γ(modA).

In this text we use the following more general existence result on well-behaved functors. Given
a length function l on eΓ and an integer n ∈ Z, we denote by eΓ6n (or eΓ>n) the full subquiver
of eΓ with vertices those x ∈ eΓ such that l(x) 6 n (or l(x) > n, respectively). These are convex
subquivers.

Proposition 2.1. Let π : eΓ → Γ be the generic covering and let q : kY → indΓ be a well-
behaved functor with Y a full convex subquiver of eΓ. Let l be a length function on eΓ and assume
that at least one of the following conditions is satisfied:
(a) There exist integers m,n ∈ Z such that n 6 m and Y ⊆ eΓ>n ∩ eΓ6m.
(b) There exists an integer n ∈ Z such that Y ⊆ eΓ>n and Y is stable under predecessors in eΓ>n

(that is, every path in eΓ>n with endpoint lying in Y lies entirely in Y).
(c) There exists an integer n ∈ Z such that eΓ>n ⊆ Y and Y is stable under successors in eΓ.
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Then there exists a well-behaved functor F : k(eΓ) → ind Γ such that F (α) = q(α) for every arrow
α ∈ Y.

Proof. It is sufficient to prove that there exists a well-behaved functor p : keΓ → indΓ. For
that purpose, we shall prove that:

- If Y satisfies (a), then q extends to a well-behaved functor p : kX → indΓ with X a full
convex subquiver of eΓ satisfying (b).

- If Y satisfies (b), then q extends to a well-behaved functor p : kX → indΓ with X a full
convex subquiver of eΓ satisfying (c).

- If Y satisfies (c), then q extends to a well-behaved functor p : keΓ → ind Γ.
We shall consider pairs, (X , p) where X is a full convex subquiver of eΓ containing Y and p : kX →
ind Γ is a well-behaved functor extending q. For any two such pairs (X , p) and (X ′, p′), we shall
write (X , p) 6 (X ′, p′) if and only if X ⊆ X ′ and p′ extends p. This clearly defines a partial order
on the set of such pairs.

Assume that Y satisfies (a). Consider the set Σ of those pairs (X , p) where X is a full convex
subquiver of eΓ containing Y, contained in eΓ>n ∩ eΓ6m, and p : kX → indΓ is a well-behaved
functor extending q. Then Σ is non-empty since it contains (X , p). Moreover, (Σ,6) is totally
inductive. Therefore, it has a maximal element, say (X , p). We claim that X is stable under
predecessors in eΓ>n. By absurd, assume that this is not the case. Then there exists an arrow
x→ y in eΓ>n with x 6∈ X and y ∈ X . We choose such an x with l(x) maximal. This is possible
because X ⊆ eΓ6m. Note that there is no arrow z → x in eΓ with z ∈ X , because, otherwise, the
path z → x→ y would contradict the convexity of X . Therefore, the full subquiver X ′ of eΓ
generated by X and x has, as arrows, those in X together with the arrows in eΓ starting in x and
ending at some vertex in X , say

x1 = y

x

α1 44iiiiii

αr **UUUUUUU

xr.

In particular, the convexity of X and the maximality of l(x) imply that X ′ is convex. Assume
that x is injective, or else x is non-injective and τ−1x 6∈ X . The arrows π(α1), . . . , π(αr)
in Γ are pairwise distinct and start in πx. Therefore, there exists an irreducible morphism

[u1, . . . , ur]
t : πx→

r
L

i=1

πxi. We thus extend p : kX → indΓ to a functor p′ : kX ′ → indΓ by

setting p′(αi) = ui, for every i. Note that a mesh in eΓ is contained in X if and only if it is
contained in X ′, by assumption on x and because there is no arrow in eΓ ending at x and starting
in some vertex in X . Assume now that x is non-injective and τ−1x ∈ X . By maximality of l(x),
every arrow in eΓ ending at τ−1x lies in X . Therefore, α1, . . . , αr are all the arrows in eΓ starting
in x and the mesh in eΓ starting in x is as follows

x1 β1

))TTTTTT

x

α1 66mmmmmm

αr ((QQQQQQ τ−1x .

xr
βr

55jjjjjj

Since p is well-behaved, the morphism [p(β1), . . . , p(βr)] :
r
L

i=1

πxi → τ−1
A πx is irreducible and,

therefore, minimal right almost split, because π(β1), . . . , π(βr) are all the arrows in Γ ending in
τ−1

A πx. Hence, there is an almost split sequence in modA

0 → πx
[u1,...,ur]t

−−−−−−−→

r
M

i=1

πxi
[p(β1),...,p(βr)]
−−−−−−−−−−→ τ−1

A πx→ 0

and we extend p : kX → ind Γ to a functor p′ : kX ′ → indΓ by setting p(αi) = ui, for every i.
In any case, p′ is well-behaved. Indeed, by construction of p′ and because p is well-behaved,
we have: p′ transforms every mesh in eΓ contained in X ′ into an almost split sequence in
modA; moreover, given vertices z, t ∈ X ′, if γ1, . . . , γs : z → t are all the arrows in X ′ from

z to t, then the morphism [p′(γ1), . . . , p
′(γs)]

t : πz →
s
L

i=1

πt is irreducible (or, equivalently, the
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morphism [p′(γ1), . . . , p
′(γs)] :

s
L

i=1

πz → πt is irreducible, because k is an algebraically closed

field); using 1.2, (b), we deduce that p′ is well-behaved. Thus (X ′, p′) ∈ Σ and (X , p) < (X ′, p′),
a contradiction to the maximality of (X , p). This proves that q : kY → indΓ extends to a well-
behaved functor p : kX → ind Γ with X a full convex subquiver of eΓ containing Y, contained in
eΓ>n ∩ eΓ6m and stable under predecessors in eΓ>n. Therefore, X satisfies (b).

Now assume that Y satisfies (b). Let Σ′ be the set of those pairs (X , p) where X is a full
convex subquiver of eΓ containing Y, contained in eΓ>n and stable under predecessors in eΓ>n,
and p : kX → indΓ is a well-behaved functor extending q. Then Σ′ is non-empty for it contains
(Y, q), and (Σ′,6) is totally inductive. Let (X , p) be a maximal element in Σ′. We claim that
X = eΓ>n. By absurd, assume that this is not the case. Let x ∈ eΓ>n be a vertex not in X . We
may assume that l(x) is minimal for this property. Then x has no successor in eΓ lying in X ,
because X is stable under predecessors in eΓ>n. If there is no arrow y → x in eΓ such that y ∈ X ,
then x has no predecessor in X , by minimality of l(x). In such a case the full subquiver X ′ of
eΓ generated by X and x has the same arrows as those in X and it is convex. Then p trivially
extends to a well-behaved functor p′ : kX ′ → ind Γ so that (X ′, p′) ∈ Σ′ and (X , p) < (X ′, p′), a
contradiction to the maximality of (X , p). On the other hand, if there is an arrow y → x in eΓ
with y ∈ X , then, using dual arguments to those used on the previous situation (when Y was
supposed to satisfy (a)), we similarly extend p to a well-behaved functor p′ : kX ′ → indΓ where
X ′ is the (convex) full subquiver of eΓ generated by X and x. As in the previous case, (X ′, p′) ∈ Σ′

and (X , p) < (X ′, p′), which contradict the maximality of (X , p). Therefore, p : kX → ind Γ is a
well-behaved functor extending q, where X equals eΓ>n (and therefore satisfies (c)).

Finally, assume that Y satisfies (c). Let Σ′′ be the set of those pairs (X , p) where X is a
full convex subquiver of eΓ containing both eΓ>n and Y, and X is stable under successors in eΓ
and p : kX → indΓ is a well-behaved functor extending q. Then Σ′′ is non-empty for it contains
(Y, q), and (Σ′′,6) is totally inductive (with 6 as above). Let (X , p) be a maximal element in
Σ′′. We claim that X = eΓ. By absurd, assume that this is not the case. Let x ∈ eΓ be a vertex
not in X and with l(x) maximal for this property. This is possible because eΓ>n ⊆ X . Since X
is stable under successors in eΓ, there is no arrow z → x with z ∈ X . Since eΓ is connected, there
exists an arrow x→ y in eΓ. The vertex y then lies in X by maximality of l(x). Let X ′ be the full
subquiver of eΓ generated by X and x. Therefore, the arrows in X ′ are those in X together with
those in eΓ starting in x (which, by maximality of l(x) have their endpoint in X ) and X ′ is convex.
Now, using the same arguments as those used in the first situation (when we assumed that Y
satisfied (a)), we extend p to a well-behaved functor p′ : kX ′ → indΓ. We thus have (X ′, p′) ∈ Σ′′

and (X , p) < (X ′, p′), a contradiction to the maximality of (X , p). This proves that X = eΓ and
finishes the proof of the proposition.

We now present some practical situations where 2.1 may be applied.

Definition 2.2. Let X be an indecomposable module in Γ and r > 1. A sectional family of
paths (starting in X and of irreducible morphisms) is a family

X1,1
// · · · // X1,l1−1

f1,l1 // X1,l1

X

f1,1

==|||||||| f2,1
//

fr,1 !!B
BB

BB
BB

B
X2,1 // · · · // X2,l2−1

f2,l2 // X2,l2

Xr,1
// · · · // Xr,lr−1

fr,lr

// Xr,lr

of r paths starting in X and of irreducible morphisms between indecomposables, subject to the
following conditions (where X = Xi,0, for convenience):
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(a) For every M ∈ Γ and l > 1, let I be the set of those indices i ∈ {1, . . . , r} such that li > l
and fi,l has domain M . Then the morphism [fi,l ; i ∈ I ] : M →

L

i∈I

Xi,l is irreducible.

(b) For every M ∈ Γ and l > 1, let J be the set of those indices i ∈ {1, . . . , r} such that li > l
and fi,l has codomain M . Then the morphism [fi,l ; i ∈ I ]t :

L

i∈I

Xi,l−1 →M is irreducible.

(c) There is no hook of the form ·
fi,j
−−→ ·

fi′,j+1

−−−−→ ·.

Remark 2.3.

(1) The definition implies that each of the paths in the given family is sectional.
(2) If r = 1 the definition coincides with that of a sectional path.
(3) If li = 1 for every i, then the definition is equivalent to say that the morphism

[f1,1, . . . , fr,1]
t : X →

r
L

i=1

Xi,1 is irreducible.

(4) Since k is an algebraically closed field, the fist two conditions together are equivalent to
the following single condition: For every M,N ∈ Γ and l > 1, let K be the set of indices
i ∈ {1, . . . , r} such that li > l and fi,l is a morphism from M to N , then the morphisms
fi,l : M → N , i ∈ K, are linearly independent modulo rad2(M,N).

Proposition 2.4. Let X be in Γ and x ∈ π−1(X). Let {X
fi,1
−−→ Xi,1 → · · · → Xi,li−1

fi,li−−−→
Xi,li}i=1,...,r be a sectional family of paths starting in X and of irreducible morphisms. Then
there exist r paths in eΓ

x1,1 // · · · // x1,l1−1

α1,l1 // x1,l1

x

α1,1

==|||||||| α2,1
//

αr,1
!!B

BB
BB

BB
B

x2,1 // · · · // x2,l2−1

α2,l2 // x2,l2

xr,1 // · · · // xr,lr−1
αr,lr

// xr,lr

starting in x, such that πxi,j = Xi,j , for every i, j, and the arrows αi,j are pairwise distinct.
Moreover, for any such data, there exists a well-behaved functor F : k(eΓ) → indΓ such that
F (αi,j) = fi,j , for every i, j.

Proof. We first construct the vertices xi,j and the arrows αi,j . For every i ∈ {1, . . . , r}, the

path X
fi,1
−−→ Xi,1 → · · · → Xi,li−1

fi,li−−−→ Xi,li of irreducible morphisms defines a (non-unique)
path X → Xi,1 → · · · → Xi,li−1 → Xi,li in Γ. Since π : eΓ → Γ is a covering of quivers, this path
in Γ defines a path x→ xi,1 → · · · → xi,li−1 → xi,li in eΓ such that πxi,j = Xi,j . This defines all
the vertices xi,j . Let y, z ∈ eΓ be vertices and let K be the set of couples (i, j), i ∈ {1, . . . , r}
and j ∈ {1, . . . , li}, such that y = xi,j−1 and z = xi,j (with the convention xi,0 = x). Note that
if both (i, j) and (i′, j′) lie in K, then j = j′ because eΓ is with length and xi,j (or xi′,j′) is the

endpoint of a path in eΓ starting in x and of length j (or j′, respectively). By definition of a
sectional family of paths, the irreducible morphisms fi,j : πy → πz, for (i, j) ∈ K, are linearly
independent modulo rad2(πy, πz). Since π : eΓ → Γ is a covering of quivers, there is an injective
map (i, j) 7→ αi,j from K to the set of arrows from y to z in eΓ. By proceeding this construction
for every vertices y, z ∈ eΓ, one defines all the arrows αi,j , for i ∈ {1, . . . , r} and j ∈ {1, . . . , li},
which are pairwise distinct, by construction.

Given the vertices xi,j and the arrows αi,j as above, we let Y be the full subquiver of eΓ
generated by all the xi,j . We need some properties on Y. Note that if there exists a path in
eΓ of the form xi,j → y1 → · · · → ys → xi′,j′ , for some vertices y1, . . . , ys ∈ eΓ, then we have two
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parallel paths in eΓ

x
αi,1
−−−→ xi,1 → · · · → xi,j−1

αi,j
−−→ xi,j → y1 → · · · → ys → xi′,j′ , and

x
αi′,1
−−−→ xi′,1 → · · · → xi′,j′−1

αi′,j′

−−−−→ xi′,j′ .

Note that the image under π of the second path is a path X → Xi′,1 → · · · → Xi′,j′−1 → Xi′,j′

in Γ which is sectional (2.3, (1)). Since π : eΓ → Γ is a covering of translation quivers, this

implies that the path x
αi′,1
−−−→ xi′,1 → · · · → xi′,j′−1

αi′,j′

−−−−→ xi′,j′ is sectional. Applying 1.2 then
shows that j′ = j + s+ 1 and the sequence of vertices (x, xi,1, . . . , xi,j , y1, . . . , ys, xi′,j′) and
(x, xi′,1, . . . , xi′,j′) coincide. From this, we deduce the following facts:

(1) Y is convex in eΓ.
(2) Y contains no path y → · → z with z non-projective and y = τz.
(3) If there is an arrow y → z in Y, then there exist i, j such that y = xi,j−1 and z = xi,j .

Moreover, given i′, j′, we have y = xi′,j′−1 if and only if z = xi′,j′ .
We now define a well-behaved functor q : kY → ind Γ such that q(αi,j) = fi,j for every i, j. Let
y, z ∈ Y be vertices such that there exists at least one arrow from y to z. Then there is a path in
eΓ from x to z, say of length n. Since eΓ is with length and because of (3) above, we deduce that
if z = xi,j for some i, j, then j = n and y = xi,j−1. We thus define Iy,z to be the set of indices
i ∈ {1, . . . , r} such that n > li and y = xi,n−1, z = xi,n. The set of arrows in eΓ from y to z is
therefore equal to {αi,n | i ∈ Iy,z} ∪ {γ1, . . . , γs} where γ1, . . . , γs are pairwise distinct arrows,
none of which is equal to either of the arrows αi′,j′ , i

′ ∈ {1, . . . , r} and j′ ∈ {1, . . . , li′}. Recall
that the irreducible morphisms fi,n : πy → πz, for i ∈ Iy,z, are linearly independent modulo
rad2(πy, πz) (2.2 and 2.3). Since π induces a bijection from the set of arrows in eΓ from y to
z to the set of arrows in Γ from πy to πz, we deduce that there exist irreducible morphisms
g1, . . . , gs : πy → πz such that g1, . . . , gs together with fi,n, for i ∈ Iy,z, are linearly independent
modulo rad2(πy, πz). We then set q(αi,n) = fi,n, for every i ∈ Iy,z, and q(γj) = gj , for every
j = 1, . . . , s. This defines q on every arrow from y to z, for every vertices y, z ∈ Y. Hence the
functor q : kY → ind Γ. The construction of q and the above property (2) of Y show that q is
well-behaved and q(αi,j) = fi,j , for every i, j.

Finally, let l be a length function on eΓ. Then Y is a convex full subquiver of eΓ such that
l(y) ∈ {l(x), l(x) + 1, . . . , l(x) + max

i=1,...,r
li}, for every vertex y ∈ Y. Therefore, 2.1, (a), implies

that there exists a well-behaved functor F : k(eΓ) → indΓ such that F (αi,j) = q(αi,j) = fi,j , for
every i, j.

Remark 2.5. The proofs we gave for 2.1 and 2.4 strongly rely on the fact that the generic
covering π induces a bijection from the set of arrows in eΓ from x to y to the set of arrows in Γ
from πx to πy, for every vertices x, y ∈ eΓ. In particular, these proofs are not likely to be adapted
to the situation where one replaces the generic covering eΓ of Γ by the universal covering.

The following result follows from 2.4. It will be particularly useful to us.

Proposition 2.6. Let X,X1, . . . , Xr lie on Γ and f =
ˆ

f1, . . . , fr

˜t
: X → X1 ⊕ . . .⊕Xr

be an irreducible morphism in modA. Let x ∈ π−1(X) and x
αi−→ xi be an arrow in eΓ such that

πxi = Xi for every i ∈ {1, . . . , r}. Then there exists a well-behaved functor F : k(eΓ) → indΓ such
that F (αi) = fi for every i.

Proof. It follows from 2.3, (3), that the family of morphisms {f1, . . . , fr} is a sectional family
of paths starting in X. The conclusion thus follows from 2.4.

We now study some properties of well-behaved functors which are essential to our work. We
begin with the following basic lemma.

Lemma 2.7. Let F : k(eΓ) → indΓ be a well-behaved functor, x, y vertices in eΓ and n > 0.
Then:
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(a) F maps a morphism in R
nk(eΓ)(x, y) onto a morphism in radn(Fx,Fy).

(b) Let f ∈ radn+1(Fx, Fy) and α1 : x→ x1, . . . , αr : x→ xr be the arrows in eΓ starting from
x. Then there exist hi ∈ radn(Fxi, F y), for every i, such that f =

P

i

hiF (αi).

Proof. (a) follows from the fact that F is well-behaved.
(b) We have a decomposition f =

P

j

gjfj where j runs through some index set, fj ∈

rad(Fx,Yj), gj ∈ radn(Yj , F y), Yj ∈ indA, for every j. The morphism [f(α1), . . . , f(αr)]
t : Fx→

r
L

i=1

Fxi is minimal left almost split so every fj factors through it: fj =
r
P

i=1

f ′
j,iF (αi) with

f ′
i,j ∈ HomA(Fxi, Yj). Setting hi =

P

j

gjf
′
j,i does the trick.

The following theorem states the main properties of well-behaved functors we shall use. Part
(b) of it was first proved in [13, §2] in the case of the stable part of the Auslander-Reiten quiver
of a self-injective algebra of finite representation type (see also [2, 3.1 Ex. (b)] for the case of
the Auslander-Reiten quiver of an algebra of finite representation type).

Theorem B. Let F : k(eΓ) → ind Γ be a well-behaved functor, x, y vertices in eΓ and n > 0.
Then:
(a) The two following maps induced by F are bijective:

L

F z=F y

R
nk(eΓ)(x, z)/Rn+1k(eΓ)(x, z) → radn(Fx, Fy)/radn+1(Fx, Fy)

L

F z=F y

R
nk(eΓ)(z, x)/Rn+1k(eΓ)(z, x) → radn(Fy, Fx)/radn+1(Fy, Fx) .

(b) The two following maps induced by F are injective:
M

F z=F y

k(eΓ)(x, z) → HomA(Fx,Fy) and
M

F z=F y

k(eΓ)(z, x) → HomA(Fy,Fx).

(c) Γ is generalized standard if and only if F is a covering functor, that is, the two maps of (b)
are bijective (see [2, 3.1]).

Proof. We prove the assertions concerning morphisms Fx→ Fy. Those concerning Fy → Fx
are proved using similar arguments. Let αi : x→ xi, i = 1, . . . , r, be the arrows in eΓ starting from
x. So we have a minimal left almost split morphism in modA:

Fx
[F (α1),...,F (αr)]t

−−−−−−−−−−−→

r
M

i=1

Fxi .

(a) We denote by Fn the map
L

F z=F y

R
nk(eΓ)(x, z)/Rn+1k(eΓ)(x, z) → radn(Fx, Fy)/radn+1(Fx, Fy).

We prove that Fn is surjective by induction on n > 0. So given a morphism f ∈ radn(Fx, Fy)
we prove that there exists (φz)z ∈

L

F z=F y

R
nk(eΓ)(x, z) such that f =

P

z

F (φz) mod radn+1.

We start with n = 0. Let f ∈ HomA(Fx,Fy). If Fx 6= Fy then f ∈ rad(Fx,Fy). Otherwise,
f = λ1F x mod rad with λ ∈ k, that is, f = F (λ1x) mod rad for some λ ∈ k. So F0 is
surjective. Now let n > 0 and assume that Fn is surjective. Let f ∈ radn+1(Fx,Fy). Because
of 2.7, (b), there is a decomposition f =

P

i

hiF (αi) with hi ∈ radn(Fxi, F y). Moreover, hi =
P

z

F (φi,z) mod radn+1 with (φi,z)z ∈
L

F z=F y

R
nk(eΓ)(xi, z), for every i, because Fn is surjective.

Therefore, f =
P

z

F

„

P

i

φi,zαi

«

mod radn+2 and
P

i

φi,zαi ∈ R
n+1k(eΓ)(x, z), for every z ∈ eΓ

such that Fz = Fy. So Fn+1 is surjective. This proves that Fn is surjective for every n > 0.

Now we prove that Fn is injective for every n > 0. Actually, we prove that the following
assertion (Hn) holds true: “Let (φz)z ∈

L

F z=F y

k(eΓ)(x, z) be such that
P

z

F (φz) ∈ radn, then
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φz ∈ R
nk(eΓ)(x, z) for every z”. Clearly, this will prove the injectivity of all the Fn. We proceed

by induction on n > 0. Assume that n = 0 and that
P

z

F (φz) ∈ rad(Fx,Fy). If Fx 6= Fy

then x 6= z for every z such that Fz = Fy and, therefore, φz ∈ Rk(eΓ)(x, z). If Fx = Fy then
φz ∈ Rk(eΓ)(x, z) if x 6= z and there exists λ ∈ k such that φx = λ1x. So λ1F x ∈ rad(Fx, Fy),
that is, λ = 0. Thus, φz ∈ Rk(eΓ)(x, z) for every z. This proves that (H0) holds true. Now let
n > 0, assume that (Hn) holds true and let (φz)z ∈

L

F z=F y

k(eΓ)(x, z) be such that
P

z

F (φz) ∈

radn+2. So, φz ∈ R
n+1k(eΓ)(x, z), for every z, because (Hn) holds true. Also, there exists (ψz) ∈

L

F z=F y

R
n+2k(eΓ)(x, z) such that

P

z

F (φz) =
P

z

F (ψz) mod radn+3, because Fn+2 is surjective

and
P

z

F (φz) ∈ radn+2(Fx, Fy). Therefore, there exists hi ∈ radn+2(Fxi, F y), for every i, such

that
P

z

F (φz − ψz) =
P

i

hiF (αi), because of 2.7, (b). Since φz, ψz ∈ Rk(eΓ)(x, z), there is a

decomposition φz − ψz =
r
P

i=1

θz,iαi with θz,i ∈ k(eΓ)(xi, z) for every i. We deduce that

X

i

 

X

z

F (θz,i) − hi

!

F (αi) = 0 (⋆)

Now if x is injective, then
P

z

F (θz,i) − hi = 0 for every i. Since hi ∈ radn+2(Fxi, F y), we deduce

that
P

z

F (θz,i) ∈ radn+2(Fxi, F y) ⊆ radn+1(Fxi, Fy) for every i. Because (Hn) holds true, we get

θz,i ∈ R
n+1k(eΓ)(xi, z), for every i, and, therefore φz = ψz +

P

i

θz,iαi ∈ R
n+2k(eΓ). This proves

that (Hn) holds true if x is injective. Now assume that x is not injective. The mesh in eΓ starting
at x is as follows:

x1
β1

((QQQQQQ

x

α1
77pppppp

αr ''NNNNNN ... τ−1x

xr
βr

66mmmmmm .

Since F is well-behaved, there is an almost split sequence in modA:

0 → Fx
[F (α1),...,F (αr)]t

−−−−−−−−−−−→
r
M

i=1

Fxi
[F (β1),...,F (βr)]
−−−−−−−−−−−→ τ−1

A Fx→ 0 .

From (⋆), we deduce that there exists h ∈ HomA(τ−1
A Fx,Fy) such that

P

z

F (θz,i) − hi = hF (βi),

for every i. Since F0, . . . , Fn−1 are surjective, there exists (χz)z ∈
L

F z=F y

k(eΓ)(τ−1x, z) such that

h =
P

z

F (χz) mod radn. Therefore, the following equality holds true for every i:

X

z

F (θz,i) =
X

z

F (χzβi) + hi mod radn+1 .

Therefore,
P

z

F (θz,i − χzβi) ∈ radn+1(Fxi, F z), for every i, because hi ∈ radn+2(Fxi, F y).

Hence, θz,i − χzβi ∈ R
n+1k(eΓ)(xi, z), for every i, z, because (Hn) holds true. This gives, for

every z:

φz = ψz +
X

i

(θz,i − χzβi)αi ∈ R
n+2k(eΓ)(x, z) .

This proves that (Hn+1) holds true. Therefore, for every n > 0 the map Fn is injective and,
therefore, bijective.

(b) Let (φz)z ∈
L

F z=F y

k(eΓ)(x, z) be such that
P

z

F (φz) = 0. In particular
P

z

F (φz) ∈

radn(Fx,Fy) for every n > 0. Since Fn is injective for every n, we deduce that φz ∈ R
nk(eΓ)(x, z)

for every z and n. On the other hand, given z such that Fz = Fy, there exists l > 0 such that all
the paths from x to z in eΓ are of length l, so that R

nk(eΓ)(x, z) = 0 for n > l. Therefore φz = 0
for every z. This proves the injectivity of the first given map. The second map is dealt with using
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dual arguments.

(c) Assume that Γ is generalized standard and let f ∈ HomA(Fx,Fy). So there exists n > 0
such that radn(Fx,Fy) = 0. On the other hand, the surjectivity of the maps Fm (m > 0) shows
that f =

P

z

F (φz) mod radn for some (φz)z ∈
L

F z=F y

k(eΓ)(x, z). Therefore f =
P

z

F (φz). So the

first given map in (c) is surjective and so is the second one thanks to dual arguments. This and
(b) prove that F is a covering functor.

Conversely, assume that F is a covering functor and let x, y ∈ eΓ be vertices. Therefore,
there are only finitely many vertices z ∈ eΓ such that Fz = Fy and k(eΓ)(x, z) 6= 0 because
HomA(Fx,Fy) is finite dimensional. This and the fact that eΓ is with length imply that there
exists n > 0 such that R

nk(eΓ)(x, z) = 0 for every z such that Fz = Fy. The injectivity of Fn

then implies that radn(Fx,Fy) = 0. So Γ is generalized standard.

Remark 2.8. It is not difficult to check that the proofs of 2.6 and Theorem B still work if Γ is
an Auslander-Reiten component of T (instead of modA) where T is a triangulated Krull-Schmidt
category over k with finite dimensional Hom spaces and Auslander-Reiten triangles.

3. Degrees of irreducible morphisms

In this section we prove some characterizations for the left (or right) degree of an irreducible
morphism to be finite. These shall be used later for the proof of our main result. Each statement
has its dual counterpart which will be omitted. The following proposition was first proved in [8]
for generalized standard convex Auslander-Reiten components of an artin algebra. In a weaker
form it was also proved in [4] for standard Auslander-Reiten components. We thank Shiping Liu
for pointing out that the arguments used to prove the first statement can be adapted to prove
the second statement. Note that the two statements are not dual to each other.

Proposition 3.1. Let f : X → Y be an irreducible morphism with X indecomposable, Γ be
the Auslander-Reiten component of A containing X and n ∈ N.
(a) If dl(f) = n, then there exist Z ∈ Γ and h ∈ radn(Z,X)\radn+1(Z,X) such that fh = 0.
(b) If dr(f) = n, then there exist Z ∈ Γ and h ∈ radn(Y,Z)\radn+1(Y,Z) such that hf = 0.

Proof. We write Y = X1 ⊕ · · · ⊕Xr with X1, . . . ,Xr ∈ Γ and f = [f1, . . . , fr]
t with fi : X →

Xi. Let π : eΓ → Γ be the generic covering. Because f is irreducible, eΓ contains a subquiver of
the form

x1

x

α1
77pppppp

αr ''NNNNNN ...

xr

such that πxi = Xi for every i. Let F : k(eΓ) → ind Γ be a well-behaved functor such that F (αi) =
fi for every i (2.6).

(a) If dl(f) = n, then there exists Z ∈ Γ and g ∈ radn(Z,X)\radn+1(Z,X) such that fg ∈
radn+2(Z, Y ), that is fig ∈ radn+2(Z,Xi) for every i. Because of Theorem B, there exists
(φz)z ∈

L

F z=Z

R
nk(eΓ)(z, x) such that g =

P

z

F (φz) mod radn+1(Z,X) and φz0
6∈ R

n+1k(eΓ)(z0, x)

for some z0. Therefore fig =
P

z

F (αiφz) mod radn+2(Z,Xi) for every i. Since fig ∈ radn+2(Z,Xi)

we infer, using Theorem B, that αiφz ∈ R
n+2k(eΓ)(z, x) for every z and every i. On the other

hand, φz0
6∈ R

n+1k(eΓ)(z0, x) implies that any path in eΓ from z0 to x has length at most n.
Hence, any path from z0 to xi has length at most n+ 1 for every i. Thus αiφz0

= 0 for every i.
We then set h = F (φz0

). Then fh =
P

i

F (αiφz0
) = 0 and h ∈ radn(Z,X)\radn+1(Z,X), because

φz0
∈ R

n\Rn+1 and because of Theorem B.
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(b) Now assume that dr(f) = n. There exists Z ∈ Γ and g ∈ radn(Y,Z)\radn+1(Y,Z) such
that gf ∈ radn+2(X,Z). We write g = [g1, . . . , gr] with gi : Xi → Z. Hence, gi ∈ radn(Xi, Z);
there exists i0 ∈ {1, . . . , r} such that gi0 6∈ radn+1(Xi0 , Z); and

P

i

gifi ∈ radn+2(X,Z).

For every i, there exists (φi,z)z ∈
L

F z=Z

R
nk(eΓ)(xi, z) such that gi =

P

z

F (φi,z) mod radn+1;

and, also, there exists z0 such that Fz0 = Z and φi0,z0
6∈ R

n+1k(eΓ)(xi0 , z0), because of Theo-
rem B and the above properties of the gi. In particular, the paths in eΓ from xi0 to z0 all have
length at most n, and, therefore, the paths from x to z0 all have length at most n+ 1.

On the other hand,
P

i

gifi =
P

z

F

„

P

i

φi,zαi

«

mod radn+2 lies in radn+2(X,Z). Hence,
P

i

φi,zαi ∈ R
n+2k(eΓ)(x, z) for every z, because of Theorem B. This and the above prop-

erty on the length of the paths in eΓ from x to z0 imply that
P

i

φi,z0
αi = 0 We then

set hi = F (φi,z0
) : Xi → Z and h = [h1, . . . , hr] : Y → Z. Then hf = F

„

P

i

φi,z0
αi

«

= 0, h ∈

radn(Y,Z) because φi,z0
∈ R

nk(eΓ)(xi, z0) for every i, and h 6∈ radn+1(Y,Z) because φi0,z0
6∈

R
n+1k(eΓ)(xi0 , z0) (see Theorem B).

Remark 3.2. Keep the notations of 3.1.
(a) If dl(f) = n, then, by definition, there exist Z ∈ Γ and g ∈ radn(Z,X)\radn+1(Z,X)

such that fg ∈ radn+2(Z,X1 ⊕ · · · ⊕Xr). The proof of 3.1 shows that there exists h ∈
radn(Z,X)\radn+1(Z,X) such that fh = 0 (that is, the domain of h is equal to the domain
of g). Of course, the same remark holds true if dr(f) = n.

(b) It is still an open question to know whether the morphism h in 3.1 can be chosen to be
a composition of irreducible morphisms (instead of a sum of compositions of such). Recall
that this is indeed the case if α(Γ) 6 2 ([8]).

Now we derive some consequences of 3.1. The following corollary follows directly from 3.1. We
omit its proof. Note that it was proved in [4] for irreducible morphisms between indecomposable
modules lying in a standard component.

Corollary 3.3. Let f : X → Y be an irreducible morphism in modA with X indecompos-
able. If dl(f) is finite, then f is not mono and dr(f) = ∞. In particular, every minimal left almost
split morphism in modA has infinite left degree.

The following proposition compares dl(f) and dl(g) when there is an almost split sequence

of the form 0 → τAY
[g,g′]t

−−−−→ X ′ ⊕X
[f ′,f ]
−−−→ Y → 0. Recall that it was proved in [11, 1.2] that

dl(f) <∞ implies dl(g) 6 dl(f) − 1 (in the more general setting of artin algebras). Note that
the following result was proved in [4] in the case where the indecomposable module Y lies in a
standard component.

Proposition 3.4. Let f : X → Y be an irreducible morphism with Y indecomposable and
non-projective. Assume that the almost split sequence in modA:

X ′
f ′

((QQQQQQ

0 // τAY

g 55kkkkkk

g′ ))SSSSSS Y // 0

X f

66llllll

is such that X ′ 6= 0. Then dl(f) <∞ if and only if dl(g) <∞. In such a case, dl(f) = n if and
only if dl(g) = n− 1.

Proof. It was proved in [11, 1.2] that if dl(f) <∞, then dl(g) 6 dl(f) − 1. Converly, assume
that dl(g) = m <∞. Then there exists Z ∈ indA and h ∈ radm(Z, τAY )\radm+1(Z, τAY ) such
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that gh = 0, because of 3.1. Consider the morphism g′h ∈ radm+1(Z,X). The morphism [g, g′]t

is minimal left almost split so it has infinite left degree, because of 3.3. Since [g, g′]th = [0, g′h]
we deduce that g′h 6∈ radm+2(Z,X). On the other hand, fg′h = (fg′ + f ′g)h = 0. This proves
that dl(f) 6 m+ 1 = dl(g) + 1.

The following proposition is a key-step towards Theorem A.

Proposition 3.5. Let f : X → Y be an irreducible morphism in modA with X indecom-
posable, Γ be the Auslander-Reiten component of A containing X and n > 1 be an integer. The
two following conditions are equivalent:
(a) dl(f) = n.
(b) f is not mono and the morphism ker(f) : Ker(f) →֒ X lies in radn(Ker(f), X)\radn+1(Ker(f),X).
These conditions imply the following one:
(c) f is not mono and Ker(f) ∈ Γ.
If Γ is generalized standard, then the three conditions are equivalent.

Proof. If dl(f) = n < ∞, then 3.1 implies that there exists n > 0, Z ∈ Γ and h ∈
radn(Z,X)\radn+1(Z,X) such that fh = 0. In particular, f is not mono (and, therefore, Ker(f)
is indecomposable, because f is irreducible). Therefore, we have a factorization

Z
h��

∃

vvmmmmmm

Ker(f)
�

�

// X
f

// Y

which implies that ker(f) 6∈ radn+1(Ker(f), X) and, therefore, Ker(f) ∈ Γ. Let i be such that
ker(f) ∈ radi(Ker(f),X). So i 6 n and, since fker(f) = 0, we have dl(f) 6 i. Thus, i = n and
ker(f) ∈ radn(Ker(f),X)\radn+1(Ker(f),X). This proves that (a) implies (b) and (c).

If f is not mono and ker(f) ∈ radn(Ker(f),X)\radn+1(Ker(f), X) then Ker(f) ∈ Γ. From the
equality fker(f) = 0 we deduce that dl(f) 6 n <∞. Since (a) implies (b) we deduce that dl(f) =
n. This proves that (b) implies (a) and (c).

Finally, if Γ is generalized standard and Ker(f) ∈ Γ, then the inclusion Ker(f) →֒ X lies on
radn(Ker(f), X)\radn+1(Ker(f),X) for some n > 1 because rad∞(Ker(f),X) = 0. Thus, (b) and,
therefore, (a) holds true.

Keep the notations of 3.5 and of its proof and assume that dl(f) = n. Let g : Z → Ker(f)
a morphism such that ker(f)g = h. Both morphisms ker(f) and h lie in radn\radn+1 so that
g 6∈ rad(Z,Ker(f)). Since both Z and Ker(f) are indecomposable, we deduce that g : Z → Ker(f)
is an isomorphism. In other words, we have the following

Corollary 3.6. Let f : X → Y be an irreducible morphism with X indecomposable. If
dl(f) = n and if there exists Z ∈ indA and h ∈ radn(Z,X)\radn+1(Z,X) such that fh = 0, then
h = ker(f).

Proof. This follows from the arguments given before the lemma.

Using 3.5 we can prove the following result.

Corollary 3.7. Let f, f ′ : X → Y be irreducible morphisms in modA with X indecompos-
able. Then:
(a) If f has finite left degree then dl(f) = dl(f

′) and Ker(f) ≃ Ker(f ′).
(b) If f has finite right degree then dr(f) = dr(f

′).

Proof. (a) Write Y = X1 ⊕ · · · ⊕Xr with X1, . . . ,Xr indecomposable. Let fi, f
′
i : X → Xi

(i ∈ {1, . . . , r}) be the morphisms such that f =
ˆ

f1 . . . fr

˜t
and f ′ =

ˆ

f ′
1 . . . f ′

r

˜t
. By

[12, Lem. 1.3], the irreducible morphisms f1, . . . , fr all have finite left degree. By [11, Lem. 1.7]
we deduce that for every i there exist a scalar λi ∈ k∗ and a morphism ri ∈ rad2(X,Xi) such that
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f ′
i = λifi + ri. This clearly implies that dl(f) = dl(f

′). Let n = dl(f) and ι : Ker(f) →֒ X be the
inclusion. By 3.5 we know that ι ∈ radn(Ker(f),X)\radn+1(Ker(f), X). On the other hand, we
have f ′

i ι = riι ∈ radn+2(Ker(f), Xi) for every i, that is, f ′ι ∈ radn+2(Ker(f), Y ). By 3.1 and 3.2
we infer that there exists h ∈ radn(Ker(f),X)\radn+1(Ker(f),X) such that f ′h = 0. Finally, 3.6
implies that Ker(f) ≃ Ker(f ′).

(b) If X is injective, then there exist U ∈ modA and morphisms u, u′ : X → U such that both
[f, u] and [f ′, u′] are minimal right almost split morphisms X → Y ⊕ U . The dual version of
3.3 implies that both [f, u] and [f ′, u′] have infinite right degree and, therefore, so do f and f ′.
Therefore, X is not injective and there are minimal almost split sequences in modA

Y g

((RRRRRR Y g′

((RRRRRR

X

f 77oooooo

h ''OOOOOO τ−1
A X and X

f ′ 77oooooo

h′ ''OOOOOO τ−1
A X

Y ′
i

66mmmmmm
Y ′ i′

66mmmmmm .

The dual version of 3.4 applied to the first sequence yields dr(i) = dr(f) − 1. Then, the dual
version of (a) applied to i, i′ : Y ′ → τ−1

A X gives dr(i) = dr(i
′). Finally, the dual version of 3.4

applied to the second sequence above yields dr(i
′) = dr(f

′) − 1. Thus dr(f
′) = dr(f).

The following example shows that 3.7 does not necessarily hold if one drops the finiteness
condition on the left degree.

Example 3.8. Let A be the path algebra of the following quiver of type eA2:

2
((QQQQQQ

1

66nnnnnn // 3 .

Given a vertex x, we write Ix for the corresponding indecomposable injective A-module. So the
canonical quotient f : I3 ։ I1 is an irreducible morphism of infinite left degree (see [8, Cor. 4.10]
for instance). Then Ker(f) is as follows:

k Id

((PPPPPP

k

Id
66nnnnnn

0
// k .

On the other hand, let µ ∈ rad2(I3, I1) be the composition I3 ։ I2 ։ I1 of the two canonical
quotients. Then f ′ = f + µ : I3 ։ I1 is also irreducible and its kernel is as follows:

k Id

((PPPPPP

k

Id
66nnnnnn

Id

// k .

Clearly, Ker(f) and Ker(f ′) lie in distinct homogeneous tubes and are therefore non-isomorphic.

The result below follows from 3.5. It was first proved for standard algebras in [4].

Corollary 3.9. Let A be of finite representation type and f : X → Y an irreducible
morphism with X or Y indecomposable. Then the following conditions are equivalent:
(a) dl(f) <∞.
(b) dr(f) = ∞.
(c) f is an epimorphism.

Proof. Assume first that X is indecomposable. If dl(f) <∞, then f is not mono (and,
therefore, it is epi, because it is irreducible) and dr(f) = ∞, because of the dual version of 3.3.
So (a) implies (b) and (c).

If dr(f) <∞, then f is not epi, because of 3.1. Therefore, (c) implies (b). Conversely,
if f is not epi, then Coker(f) ∈ Γ(modA) and there exists an integer n > 1 such that
coker(f) : Y ։ Coker(f) lies in radn(Y,Coker(f))\radn+1(Y,Coker(f)) (indeed, rad∞ = 0 because
A is representation-finite). Thus, (b) implies (c) and these two conditions are therefore equivalent.
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Finally, assume that f is epi. Then f is not mono, Ker(f) ∈ Γ(modA) and, as above,
ker(f) : Ker(f) →֒ X lies in radn(Ker(f),X)\radn+1(Ker(f),X). In particular, dl(f) <∞. Thus
(c) implies (a) and, therefore, the three conditions are equivalent if X is indecomposable.

If Y is indecomposable, then, using dual arguments, one proves that the following conditions
are equivalent: dl(f) = ∞; dr(f) <∞; and f is mono. Since an irreducible morphism is either
mono or epi, this proves that (a), (b) and (c) are equivalent.

We end this section with another application of 3.1: The description of the irreducible
morphisms with indecomposable domain or indecomposable codomain and with (left or right)
degree equal to 2. Again, each statement has its dual counterpart which is omitted. We thus
restrict our study to irreducible morphisms with indecomposable domain. We start with a
characterization of the equality dr(f) = 2.

Corollary 3.10. Let f : X → Y be an irreducible morphism with X indecomposable. The
following conditions are equivalent:
(a) dr(f) = 2.

(b) X is not injective and there exists an almost split sequence 0 → X
[f,f ′]t

−−−−→ Y ⊕ Y ′ [g,g′]
−−−→

τ−1
A X → 0 with Y ′ indecomposable non-injective fitting into an almost split sequence 0 →

Y ′ g′

−→ τ−1
A X

δ
−→ τ−1

A Y ′ → 0. In other words, there is a configuration of almost split sequences
in modA

Y
g

%%LL
LL

LL

X

f
99rrrrrrr

f ′ %%J
JJJJJJ τ−1

A X
δ

%%JJ
JJ

J

Y ′
g′

99tttttt
τ−1

A Y ′ .

Proof. Assume that (a) holds true. Then X is not injective ([11, 1.3]) and f is not a
minimal left almost split monomorphism ([11, 1.12]). So there is an almost split sequence

0 → X
[f,f ′]t

−−−−→ Y ⊕ Y ′ [g,g′]
−−−→ τ−1

A X → 0 with Y ′ ∈ modA non-zero. On the other hand, there
exists M ∈ indA and h ∈ rad2(Y,M)\rad3(Y,M) such that hf = 0, because dr(f) = 2 and
because of the dual version of 3.1. Since [h, 0][f, f ′]t = 0, there exists h′ : τ−1

A X →M such
that h′g = h and h′g′ = 0. Clearly, h′ ∈ rad(τ−1

A X,M)\rad2(τ−1
A X,M), because g is irreducible

and h = h′g ∈ rad2(Y,M)\rad3(Y,M). Hence, dr(g
′) = 1. Using [11, 1.12], we deduce that Y ′ is

indecomposable not injective and g′ is minimal left almost split. This proves that (b) holds true.
Conversely, assume that (b) holds true. We prove that so does (a). In particular, X is non-

injective and f is not minimal left almost split. Using [11, 1.12], we infer that dr(f) > 2.
Consider the morphism δg ∈ rad2(Y, τ−1

A Y ′). Let Z be an indecomposable summand of Y and
let Z → τ−1

A X be the composition of g : Y → τ−1
A X with the section Z → Y . Then Z 6≃ Y ′,

because the almost split sequence starting at Y ′ has its middle term indecomposable. Therefore,

Z → τ−1
A X

δ
−→ τ−1

A Y ′ is a sectional path of irreducible morphisms so that its composite lies
in rad2(Z, τ−1

A Y ′)\rad3(Z, τ−1
A Y ′) ([10]). Thus, δg ∈ rad2(Y, τ−1

A Y ′)\rad3(Y, τ−1
A Y ′) and δgf =

−δg′f ′ = 0. This proves that dr(f) = 2. So (b) implies (a).

We now turn the characterisation of the equality dl(f) = 2. The following corollary was first
proved in [4] for irreducible morphisms in standard components. Using 3.1, the proof given in
[4] generalizes to any Auslander-Reiten component. We thus refer the reader to [4] for a detailed
proof.

Corollary 3.11. Let f : X → Y be an irreducible morphism with X indecomposable. The
following conditions are equivalent:
(a) dl(f) = 2.
(b) Y the direct sum of at most two indecomposables; f is not minimal right almost split;

and there exist Z ∈ indA and a path of irreducible morphisms with composite h lying on
rad2(Z,X)\rad3(Z,X) and such that fh = 0.
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(c) Γ(modA) contains one of the two following configurations of meshes:

τAX
′

$$II
II

I X ′

  A
AA

A

τAY

<<xxxx

""E
EE

EE
Y

X
f

>>~~~~
with Y,X ′ ∈ indA, or

τAY2

""F
FF

FF
Y2

τAX

::uuuuu

$$H
HH

HH
X

f2

>>}}}}

f1

��@
@@

@

τAY1

<<yyyyy
Y1 with Y1, Y2 ∈ indA, Y = Y1 ⊕ Y2 and f = [f1, f2]

t.

4. Algebras of finite representation type

In this section we prove our main theorem. First we need two lemmas.

Lemma 4.1. Let S be a simple A-module, S →֒ I its injective hull and X ∈ indA such that
S is a direct summand of soc(X) . Assume that I ։ I/soc(I) has finite left degree equal to n.
Then there is a path in Γ(modA) starting at S, ending at I , of length at most n and going
through X. In particular X, S and I lie in the same component of Γ(modA).

Proof. Let Γ be the component containing I . We denote by π the irreducible monomorphism
I ։ I/soc(I) and by ι : S →֒ I the injective hull. It follows from 3.5 applied to π that S ∈ Γ and
ι ∈ radn(S, I)\radn+1(S, I). Since S is a direct summand of soc(X), the injective hull ι factors

through X, that is, is equal to some composition S
f
−→ X

g
−→ I . Therefore there exist l, m > 1

such that f ∈ radl(S,X)\radl+1(S,X), g ∈ radm(X, I)\radm+1(X, I) and l +m 6 n. Therefore
f (or g) is a sum of compositions of paths of irreducible morphisms at least one of which has
length l (or m, respectively). In particular, P,X and S all lie in Γ.

Of course, 4.1 has a dual statement which holds true using dual arguments: If S is a simple
A-module with projective cover P ։ S such that radP →֒ P has finite right degree equal to n
and if S is a direct summand of top(X) for some X ∈ indA, then there exists a path in Γ(modA)
starting at P , ending at S, going through X and of length at most n. In particular, P,X and S
all lie in the same component of Γ(modA).

Lemma 4.2. Assume A is connected and that for every indecomposable injective I the
quotient morphism I ։ I/soc(I) has finite left degree. Let n be the supremum of all these
left degrees. Then, for every X ∈ indA there exists a path in Γ(modA) starting at X, ending at
some injective and of length at most n. In particular, Γ(modA) is finite and connected.

Proof. The first assertion follows directly from 4.1. In order to prove the second one
it suffices to prove that for all I, J indecomposable injectives, I and J lie on the same
component of Γ(modA). Since A is connected there exists a sequence I0 = I, I1, . . . , Il = Q of
indecomposable injectives such that, letting Si = soc(Ii), we have that Si is a direct summand
of soc(Ii−1/soc(Ii−1)) or Si−1 is a direct summand of soc(Ii/soc(Ii)) for every i = 1, . . . , l.
Accordingly, 4.1 implies that there exists a path Ii  Ii−1 or Ii−1  Ii, respectively, in Γ(modA).
This proves that I and J lie on the same component of Γ(modA). Since Γ(modA) is locally finite,
this proves the lemma.

Note that the dual statement of 4.2 holds true using dual arguments and the dual version
of 4.1. In a previous version of this text, 4.2 assumed an additional condition, dual to that on
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the degree of the morphisms I ։ I/soc(I) for I injective. The authors thank Juan Cappa for
pointing out that this dual statement was unnecessary.

Now we can prove the main theorem. We recall its statement for convenience.

Theorem A. Let A be a connected finite dimensional k-algebra over an algebraically closed
field. The following conditions are equivalent:
(a) A is of finite representation type.
(b) For every indecomposable projective A-module P , the inclusion rad(P ) →֒ P has finite right

degree.
(c) For every indecomposable injective A-module I , the quotient I → I/soc(I) has finite left

degree.
(d) For every irreducible epimorphism f : X → Y with X or Y indecomposable, the left degree

of f is finite.
(e) For every irreducible monomorphism f : X → Y with X or Y indecomposable, the right

degree of f is finite.

Proof. If A is of finite representation type, then Γ(modA) is connected and rad∞ = 0 (this
follows from the Lemma of Harada and Sai, for example) and the conditions (b) and (c) follow
from 3.5 and its dual. The implications (b) ⇒ (a) and (c) ⇒ (a) follow from 4.2 and from its dual
version, respectively. Thus, the conditions (a), (b) and (c) are equivalent. Note that (d) implies
(c), and (e) implies (b). On the other hand, 3.9 and its dual version show that (a) implies both
(d) and (e). Therefore, the five conditions (a), (b), (c), (d) and (e) are equivalent.

Remark 4.3. Our arguments allow us to recover the following well-known implication using
degrees of irreducible morphisms only: If rad∞ = 0 then A is of finite representation type and
Γ(modA) is connected. Indeed, if rad∞ = 0 then both (b) and (c) hold true in Theorem A. So
A is of finite representation type and Γ(modA) is connected.

5. Composition of morphisms

Let A be a finite dimensional k-algebra and Γ be a component of Γ(modA). In view of 3.2, (b),
there seems to be a connection between the degree of an irreducible morphism and the behavior
of the composite of n irreducible morphisms between indecomposable modules (for any n). This
motivates the work of the present section, that is, to study when the composite of n irreducible
morphisms between indecomposable modules lies in radn+1. The following result characterizes
such a situation when Γ has trivial valuation (that is, has no multiple arrows).

Proposition 5.1. Let n > 1 be an integer and X1, . . . ,Xn+1 be modules in Γ. Consider the
following assertions:
(a) There exist irreducible morphisms hi : Xi → Xi+1 for every i such that hn . . . h1 ∈

radn+1(X1,Xn+1)\{0}.
(b) There exist irreducible morphisms fi : Xi → Xi+1 together with morphisms εi : Xi → Xi+1

such that fn . . . f1 = 0, εn . . . ε1 6= 0 and εi = fi or εi ∈ rad2(Xi,Xi+1) for every i.
Then (b) implies (a). Also, if h1, . . . , hn satisfy (a) and represent arrows with trivial valuation,
then (b) holds true. In particular, (a) and (b) are equivalent if Γ has trivial valuation.

Proof. Let hi : Xi → Xi+1, i = 1, . . . , n, be irreducible morphisms in indA such that
hn . . . h1 ∈ radn+1(X1,Xn+1)\{0} and such that the arrows represented by h1, . . . , hn have
trivial valuation. Let F : k(eΓ) → ind eΓ be a well-behaved functor with respect to the generic
covering π : eΓ → Γ and let x1 ∈ F−1(X1). Since π : eΓ → Γ is a covering of quivers and the arrow

represented by h1 has trivial valuation, there is exactly one arrow x1
α1−−→ x2 in eΓ starting from

x1 and such that Fx2 = X2. By repeating the same argument, we deduce that there is exactly
one path in eΓ:

x1
α1−−→ x2 → . . .→ xn

αn−−→ xn+1
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starting from x1 of length n and such that Fxi = Xi for every i. Let i ∈ {1, . . . , n},
then F (αi) : Xi → Xi+1 is irreducible so that hi = λiF (αi) + h′

i, where λi ∈ k∗ and h′
i ∈

rad2(Xi,Xi+1) because π(αi), represented by hi, has trivial valuation. Since hn . . . h1 6= 0, we
have a non-zero morphism:

λF (αn . . . α1)

+
n
P

t=1

P

i1<...<it

F (αn) . . . F (αit+1)h
′
it
F (αit−1) . . . F (αi1+1)h

′
i1
F (αi1−1) . . . F (α1)

(⋆)

where λ = λ1 . . . λn ∈ k∗ and the whole sum lies on radn+1(X1,Xn+1). In particular, F (αn . . . α1)
lies on radn+1(X1,Xn+1). By Theorem B, we have αn . . . α1 ∈ R

n+1k(eΓ)(x1, xn+1). Since eΓ is a
component with length, we deduce that αn . . . α1 = 0 and therefore F (αn) . . . F (α1) = 0. This
and (⋆) imply that there exist t ∈ {1, . . . , n} and i1 < . . . < it such that:

F (αn) . . . F (αit+1)h
′

it
F (αit−1) . . . F (αi1+1)h

′

i1
F (αi1−1) . . . F (α1) 6= 0 . (⋆⋆)

We thus let:
(i) fi = F (αi) for every i ∈ {1, . . . , n}. So fi : Xi → Xi+1 is irreducible because F : k(eΓ) → indΓ

is well-behaved.
(ii) εij

= h′
ij

for every j ∈ {1, . . . , t}. So εij
∈ rad2(Xij

,Xij+1).
(iii) εi = fi for every i ∈ {1, . . . , n}\{i1, . . . , it}.
In particular, εn . . . ε1 6= 0 because of (⋆⋆). The morphisms fi and εi (i ∈ {1, . . . , n}) satisfy the
conclusion of (b). This proves (b) when h1, . . . , hn satisfy (a) and represent arrows with trivial
valuation.

For the implication (b) implies (a), we refer the reader to the proof of [9, Thm. 2.7] (where
the standard hypothesis made therein is not used for that implication).

The equivalence between (a) and (b) when Γ has trivial valuation follows from the above
considerations.

Remark 5.2. Let h1, . . . , hn, i = 1, . . . , n, be morphisms satisfying (a) in 5.1. Under
additional assumption such as, α(Γ) 6 2 ([8]), or n = 2 ([5]), or n = 3 ([7]) or the path h1, . . . , hn

is almost sectional ([6]), it is known that the arrows in Γ represented by h1, . . . , hn all have trivial
valuation. However, it is still an open question to know whether this is always the case.

Our last result concerns sums of composites of paths in a sectional family (2.2). Note that
this result extends the well-known result of Igusa and Todorov ([10]) and which asserts that if

·
f1−→ · → · · · → ·

fl−→ · is a sectional path of irreducible morphisms between indecomposables, then
the composite fn · · · f1 does not lie in radn+1 and, therefore, is non-zero. Recall that a sectional
path of irreducible morphisms between indecomposables is a particular case of a sectional family
of paths (2.3).

Proposition 5.3. Let X,Y be indecomposable modules in Γ. Let {X
fi,1
−−→ Xi,1 → · · · →

Xi,li−1

fi,li−−−→ Y }i=1,...,r be a sectional family of paths starting inX, ending in Y and of irreducible

morphisms between indecomposables. Let n = min
i=1,...,r

li. Then
r
P

i=1

fi,li · · · fi,1 lies in radn(X,Y )

and does not lie in radn+1(X,Y ). In particular it is non-zero.

Proof. Let π : eΓ → Γ be the generic covering and let x ∈ π−1(X). We apply 2.4 from which we
adopt the notations (xi,j , αi,j). In particular, there exists a well-behaved functor F : k(eΓ) → indΓ
such that F (αi,j) = fi,j for every i, j.

For every y ∈ π−1(Y ) let Iy be the set of indices such that xi,li = y. For each i, let ui be

the path x
αi,1
−−−→ xi,1 → · · · → xi,li−1

αi,li−−−→ xi,li . Therefore, there exists some y0 ∈ π−1(Y ) such
that Iy0

is non-empty and all the paths ui, i ∈ Iy0
, have length n. Moreover, each path ui, for

i ∈ {1, . . . , r} is sectional, because π : eΓ → Γ is a covering of translation quivers and π(ui) is a
sectional path X → Xi,1 → · · · → Xi,li−1 → Xi,li (2.3, (1)).
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Clearly, the sum
r
P

i=1

fi,li · · · fi,1 equals
r
P

i=1

F (ui) and lies in radn(X,Y ). By absurd, assume

that it lies in radn+1(X,Y ). Using Theorem B, we deduce that
P

i∈Iy

ui ∈ R
n+1k(eΓ)(x, y), for

every y ∈ π−1(Y ). In particular,
P

i∈Iy0

ui ∈ R
n+1k(eΓ)(x, y0). This contradicts 1.2, (e), because

the paths ui, for i ∈ Iy0
, are sectional and of length n.
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Universidad Nacional de Mar del Plata,
Funes 3350, 7600 Mar del Plata,
Argentina

algonzal@mdp.edu.ar
strepode@mdp.edu.ar

Patrick Le Meur
CMLA, ENS Cachan, CNRS, UniverSud,

61 Avenue du President Wilson, F-94230
Cachan

Patrick.LeMeur@cmla.ens-cachan.fr


