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Rotational and Parabolic Surfaces in P̃ SL2(R, τ ) and

Applications

By Carlos Espinoza Peñafiel 1

Abstract. We study surfaces of constant mean curvature which are invariant by one-
parameter group of either rotational isometries or parabolic isometries, immersed into the

homogeneous manifold P̃ SL2(R, τ). Also, we give some applications.
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1 Introduction

In this paper we study constant mean curvature surfaces (H surfaces), immersed into

P̃ SL2(R, τ). In the papers Screw Motion Surfaces in H2 × R and S2 × R, Ricardo Sa Earp
and Eric Toubiana (see [3]) studied the geometry of screw motions surfaces of constant mean
curvature, in particular they studied the rotational surfaces, that is, when the pitch is zero. The
study of the behavior of constant mean curvature surfaces invariant by rotational isometries
immersed into H2×R is given in the appendix of the paper Uniqueness of H-surfaces in H2×R,
|H| ≤ 1/2, with boundary one or two parallel horizontal circles (see [8]).

In his Doctoral Thesis, Rami Younes (see [2]) gave several examples of minimal surfaces

invariant by one-parameter group of isometries immersed into P̃ SL2(R), there he explore the
equation of the mean curvature in the divergence form to obtain the integral form for the
function that determine the minimal surfaces.

We follow the ideas of [3], [8], and [2] to obtain explicit formulas for the generating curve
of the rotational and parabolic surfaces, see Lemma 5.1 and Lemma 9.1. We give all rotational

and parabolic H surfaces in P̃ SL2(R, τ). For instance, we give a explicit H = 1/2 rotational

surface which is an entire graph and it is asymptotic to the asymptotic boundary of P̃ SL2(R, τ).
This surface has the following expression, (see Example 5.2)

u(ρ) = 2
√

cosh(ρ) − 2 arctan(
√

cosh(ρ))

We generalize part of the works [3], [8], since in the case τ = 0, we recover the H surfaces
invariant by rotational isometries in H2 × R.
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Also, we focus our attention on H surfaces invariant by parabolic isometries immersed into

P̃ SL2(R, τ). Here we give all such surfaces. Again, we generalize part of the work Parabolic
and Hyperbolic Screw Motion Surfaces in H2 × R (see [4]), that is, if τ ≡ 0 we recover the H
surfaces invariant by parabolic isometries in H2 × R.

The geometry of rotational and parabolic isometries in P̃ SL2(R, τ) is analogous to the
geometry of rotational and parabolic isometries in H2 ×R, see [3], [8], and [4] respectively. For

example, there is also a notion of growth for rotational surface in P̃ SL2(R, τ) as well as H2×R,

see [18]. The growth for rotational surfaces in P̃ SL2(R, τ) is proportional to the growth of
rotational surfaces in H2 × R (see Applications).

We give some applications, for instance, we prove that, there is no entire graph in P̃ SL2(R, τ)
with constant mean curvature H > 1/2 (see Proposition 11.1), which is a step to prove a more
general theorem, see Theorem 11.2. Also, we give a halspace theorem for H = 1/2 surface in

P̃ SL2(R, τ), see Theorem 11.3, this theorem was proved by Barbara Nelly and Ricardo Sa Earp

in [18, Theorem 1], when the ambient space is H2 × R. The proof in the space P̃ SL2(R, τ) is
analogous.

The details of the proof of the above result as well as the study of surfaces of constant mean

curvature invariant by hyperbolic isometries immersed into P̃ SL2(R, τ) and other applications
are given in [7].

2 Notations

There are different models for the Hyperbolic space; in this paper we work with the half-plane
model and the disk model, in both cases the Hyperbolic space will be denote by M2. More
precisely:
Let M2 be the self-plane model of the Hyperbolic space, so

M2 := H2 = {(x, y) ∈ R2, y > 0}

endowed with metric

dσ2 = λ2(dx2 + dy2), λ =
1

y

Let M2 be the disk model of the Hyperbolic space, so

M2 := D2 = {(x, y) ∈ R2, x2 + y2 < 1}

endowed with metric

dσ2 = λ2(dx2 + dy2), λ =
2

1 − (x2 + y2)

The natural orthonormal frame field on M2 is given by {e1, e2}, where,





e1 = λ−1∂x;

e2 = λ−1∂y;

Let {E1, E2, E3} be the orthormal frame of P̃ SL2(R) where {E1, E2} is the horizontal lift of
the frame {e1, e2}, and E3 is the Killing field tangent to the fibers. We say that {E1, E2} are
horizontal field and E3 is a vertical field, see Lemma 3.1.
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3 The Space P̃ SL2(R, τ )

It is natural to study H surfaces invariant by isometries immersed into P̃ SL2(R, τ), since both

H2 × R and P̃ SL2(R, τ) are two of the eight Thurston’s geometries and there exists a natural
projection (see [11])

π : E −→ M2, π(x, y, t) = (x, y)

where either E = P̃ SL2(R, τ) or E = H × R and M2 is the Hyperbolic space, this projection
π is a Riemannian submersion.

The space P̃ SL2(R) is a simply connected homogeneous manifold whose isometry groups
has dimension 4, such a manifold is a Riemannian fibration over the 2-dimensional Hyperbolic
space, the fibers are geodesics and there exists a one-parameter family of translations along the
fibers, generated by a unit Killing field E3, which will be called the vertical vector field.

To construct the space P̃ SL2(R, τ) we follow ideas of the professor Eric Toubiana (see [1]).

The simply connected homogeneous 3-manifolds P̃ SL2(R, τ) is given by,

P̃ SL2(R, τ) = {(x, y, t) ∈ R3; (x, y) ∈ M2, t ∈ R}

endowed with metric,

g := ds2 = λ2(dx2 + dy2) + (2τ(
λy

λ
dx − λx

λ
dy) + dt)2, λ =

2

1 − (x2 + y2)

By considering the Riemannian submersion π : P̃ SL2(R, τ) −→ M2, we obtain the next Lemma.

Lemma 3.1. The fields {E1, E2, E3} in the referential {∂x, ∂y, ∂t} are given by,

E1 =
1

λ
∂x − 2τ

λy

λ2
∂t, E2 =

1

λ
∂y + 2τ

λx

λ2
∂t, E3 = ∂t.

Proof. Use that {E1, E2} is the horizontal lift of {e1, e2} and {E1, E2, E3} is an orthonormal
frame. (See [1])

3.1 Isometries in P̃SL2(R, τ)

Since there exist a Riemannian submersion π : P̃ SL2(R, τ) −→ M2, the isometries of P̃ SL2(R, τ)
are strongly related with the isometries of the Hyperbolic space M2. It is well know the be-
havior of the isometries on M2 (see [9]), so we can know the behavior of the isometries on

P̃ SL2(R, τ), see Proposition 3.1.

From now on we identify the Euclidean space R2 with the set of complex numbers C, more
precisely z = x + iy ≈ (x, y) . So, if we take M2 ≡ D2, we obtain

P̃ SL2(R) = {(z, t) ∈ R3; x2 + y2 < 1, t ∈ R}

endowed with metric,

dσ2 = λ2(z)|dz|2 + (iτλ(zdz − zdz) + dt)2
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If we take M2 ≡ H2, we obtain

P̃ SL2(R) = {(z, t) ∈ R3; y > 0, t ∈ R}

endowed with metric,

dσ2 = λ2(z)|dz|2 + (−τλ(dz + dz) + dt)2

Let F an isometry of P̃ SL2(R, τ), since π : P̃ SL2(R, τ) −→ M2 is a Riemannian submersion,
then the horizontal component π ◦ F is an isometry of M2, so F (z, t) = (f(z), h(z, t)). where
f is an isometry of M2.

Proposition 3.1. The isometries positives of P̃ SL2(R, τ) are given by,

F (z, t) = (f(z), t − 2τ arg f ′ + c)

where f is a positive isometry of M2 and c is a real number.

Proof. This follow after a long computation by considering that F preserve the metric (see
[1]).

3.2 Graph in P̃SL2(R, τ)

Since, π : P̃ SL2(R, τ) −→ M2 is a Riemannian submersion, this is possible to speak of graph

in P̃ SL2(R, τ).

Definition 3.1. A graph in P̃ SL2(R, τ) is the image of a section s0 : Ω ⊂ M2 −→ P̃ SL2(R, τ),
where Ω is a domain of M2.

Given a domain Ω ⊂ M2 we also denote by Ω its lift to M2 × {0}, with this identification
we have that the graph Σ(u) of u ∈ (C0(∂Ω) ∩ C∞(Ω)) is given by,

Σ(u) = {(x, y, u(x, y)) ∈ P̃ SL2(R, τ); (x, y) ∈ Ω}

Lemma 3.2. Let Σ(u) be the graph in P̃ SL2(R, τ) of the function u : Ω ⊂ M2 −→ R with
constant mean curvature H. Then, the function u satisfies the equation

2H = divM2(
α

W
e1 +

β

W
e2),

where W =
√

1 + α2 + β2 and,

• α =
ux

λ
+ 2τ

λy

λ2
,

• β =
uy

λ
− 2τ

λx

λ2
.

Proof. The proof follow since E3 is a Killing field and π : P̃ SL2(R, τ) −→ M2 is a Riemannian
submersion. See [2].
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3.3 The Mean Curvature Equation in P̃SL2(R, τ)

By considering the coefficients of the first and second fundamental form, of a surface immersed

into P̃ SL2(R, τ) we can write the mean curvature equation, for example taking the half plane
model M2 for the hyperbolic space, the mean curvature equation for a vertical graph is given
by:

2Hλ2m3 = uxx(λ
3+λu2

y)+uyyλ(λ2+(ux−2τλ)2)−2uxyλ(ux−2τλ)uy−uxuyλ
2(ux−2τλ)−λ2u3

y

where m =
√

λ2 + (2τλ − ux)2 + uy (see [7]).

3.4 Maximum Principle in P̃SL2(R, τ)

An important criterium in Riemannian Geometry is the maximum principle.

Maximum Principle. Let S1 and S2 be two surfaces with constant mean curvature H
that are tangent at a point p ∈ int(S1) ∩ int(S2). Assume that the mean curvature vectors
of S1 and S2 at p coincide and that, around p, S1 lies on one side of S2. Then s2 ≡ S2.
When the intersection point p belongs to the boundary of the surfaces, the result holds as well,
provided further that the two boundaries are tangent and both are local graphs over a common
neighborhood in TpS1 = TpS2.

4 Screw Motions Surfaces in P̃ SL2(R, τ )

A screw motion surface, is a surface which is invariant by one-parameter group of isometries in

P̃ SL2(R, τ), this group of isometries is the composition of rotational isometries (prevenient of
rotational isometries of D2 ), together with vertical translations in a proportional way.

We focus our attention on rotational surfaces, but for later use, we give the integral form
for a screw motion surface. The idea is simple, we will take a curve in the xt plane and we
will apply one-parameter group of Rotational isometries together vertical translation to obtain

a screw motion surface on P̃ SL2(R, τ). We denote by α(x) = (x, 0, u(x)) the curve in the xt
plane and by S the screw motion surface generate by α.

Since the most simple rotational isometry in D2 is the rotation around the origin, we re-
parameterized the Hyperbolic disk whit coordinates ρ and θ, so that

x = tanh(
ρ

2
) cos(θ)

y = tanh(
ρ

2
) sin(θ)

where ρ is the hyperbolic distance measure from the origin of D2.
So, the surface S is parameterized by,

ϕ(ρ, θ) = (tanh(
ρ

2
) cos(θ), tanh(

ρ

2
) sin(θ), u(ρ) − 2τθ + l̃θ)

The next Lemma is crucial for our study. We follow ideas of Appendix A of [10]. Denoting by

l = l̃ − 2τ , we have the next lemma.
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Lemma 4.1. With the notations above, and denoting by H the mean curvature of S, then the
function u satisfies

u(ρ) =

∫ (2H cosh(ρ) + d)

√
1 +

[
l

sinh(ρ)
− 2τ tanh

(ρ

2

)]2

√
sinh2(ρ) − (2H cosh(ρ) + c)2

where d is a real number, and l is the pitch.

Proof. Since S has mean curvature H , then by lemma 3.2 the function u satisfies the equation

2H = divD2(
α

W
e1 +

β

W
e2), (1)

where W =
√

1 + α2 + β2 and,

• α =
ux

λ
+ 2τy,

• β =
uy

λ
− 2τx.

Set Xu =
α

W
e1 +

β

W
e2. then in coordinates ρ and θ, Xu is given by

Xu =
1

W

[
uρ∂ρ +

[
l

sinh2(ρ)
− 2τ

tanh(ρ/2)

sinh(ρ)

]
∂θ

]

and

W =

√
1 +

[
l

sinh2(ρ)
− 2τ

tanh(ρ/2)

sinh(ρ)

]2

+ u2
ρ

Let θ0, θ1 ∈ (0, 2π) with θ0 < θ1 and ρ0, ρ1 ∈ R with ρ0 < ρ1 and consider the domain
Ω = [θ0, θ1] × [ρ0, ρ1]. By integrating the equation 11.1, we obtain

∫

∂(Ω)

< Xu, η >= 2HArea([θ0, θ1] × [ρ0, ρ1])

where η is the outer co-normal. This gives,

∂ρ

(
uρ sinh(ρ)

W

)
= 2H sinh(ρ)

by integrating this expression we get the lemma.
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5 Rotational Surface in P̃ SL2(R, τ )

From Proposition 3.1, we know that to obtain a rotational motion on P̃ SL2(R, τ) is neces-
sary consider a rotational motion on D2, but by considering only a rotational motion on D2,

the induced isometry on P̃ SL2(R, τ) gives a screw motion, since the vertical translations are

isometries on P̃ SL2(R, τ), we consider our one-parameter group Γ of isometries as being the
composition of rotational motion from D2 together vertical translations in such way that Γ give

exactly a Rotational motion on P̃ SL2(R, τ).
Our idea is simple, we take a curve in the xt plane and we will apply one-parameter group

Γ of Rotational isometries on P̃ SL2(R, τ) to the curve to generate a rotational surface.
An immediate consequence of the Lemma 4.1 is the next corollary.

Corollary 5.1. Consider the graph t = u(ρ) in the plane xt, and denote by S = grap(Γu), so
the function u satisfies the next equation

u(ρ) =

∫ (2H cosh(ρ) + d)

√
1 + 4τ 2 tanh2

(ρ

2

)

√
sinh2(ρ) − (2H cosh(ρ) + c)2

(2)

where d is a real number.

Remark 5.1. There is other form to compute the equation of the mean curvature, by consider-
ing the first and second fundamental form (see section 3.3), a hard computation give the same
result.

Now, we explore the Corollary 5.1, by considering τ = −1/2 we obtain the next conse-
quences:

Lemma 5.1. Setting d = −2H, then the integral

u(ρ) =

∫ (2H cosh(ρ) − 2H)
√

1 + tanh2(ρ

2
)

√
sinh2(ρ) − (2H cosh(ρ) − 2H)2

dρ

has the following solution,

• If 4H2 − 1 > 0 then,

u(ρ) =
4
√

2H√
4H2 − 1

[
arctan

( √
cosh(ρ)

4H2+1
4H2−1

− cosh(ρ)

)]
− 2 arctan




√
8H2

4H2−1

√
cosh(ρ)

√
4H2+1
4H2−1

− cosh(ρ)




• If 1 − 4H2 > 0 then,

u(ρ) =
4
√

2H√
1 − 4H2

ln

(
√

cosh(ρ) +

√
1 + 4H2

1 − 4H2
+ cosh(ρ)

)
+

+ 2 arctan


−

√
8H2

1 − 4H2

√
cosh(ρ)√

1+4H2

1−4H2 + cosh(ρ)



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The proof of the Lemma 5.1 is a straightforward computation.

Example 5.1. Putting H =
√

3/2, we obtain a rotational surface (noncomplete), which is
a graph over a domain in D2, since the rotation by π around the x axis is a isometry of

P̃ SL2(R, τ), the surface is actually a complete embedded rotational surface. By using Maple
the graph is given by,

u(ρ) = 2
√

3 arcsin

(√
cosh(ρ)√

2

)
+ 2 arctan

(
−
√

3
√

cosh(ρ)√
2 − cosh(ρ)

)

0,4

0,2

0,4 0,2 0,0
0,0

1,3

-0,2

1,55

-0,4

1,8

2,05

-0,2

2,3

2,55

-0,4

Rotational surface

Example 5.2. Putting d = −2H and H = 1/2, then by integrating the formula 2, we obtain

H = 1/2 surfaces invariant by rotations in P̃ SL2(R) which is an entire graph, this surface is
asymptotic to asymptotic boundary. More specifically

u(ρ) = 2
√

cosh(ρ) − 2 tan−1(
√

cosh(ρ))

which expressed in Euclidian coordinates gives

u(x, y) = 2

√
cosh(2 tanh−1(

√
x2 + y2)) − 2 tan−1(

√
cosh(2 tanh−1(

√
x2 + y2)))

Maple gives,

1,0

1,0
0,5

0,5
0,0

0,0
0,2

-0,5

1,2

2,2

-1,0
-0,5

3,2

4,2

-1,0

1/2 Revolution surface
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6 Minimal Surfaces Invariant by Rotations in P̃ SL2(R, τ )

In this section we study quickly the behavior of minimal rotational surface, that is H ≡ 0.

Rami Younes give a first integral for minimal rotational surfaces in P̃ SL2(R) (see [2]).
He gives examples of rotational minimal surfaces as well as hyperbolic and parabolic minimal
surfaces.
By considering H ≡ 0 in the Corollary 5.1 we obtain the next proposition.

Proposition 6.1. (Minimal Rotational Surfaces) For each d ≥ 0 there exist a complete minimal
rotational surface Md. The surface M0 is the slice t = 0. For d > 0 the rotational surface Md

(called catenoid) is embedded and homeomorphic to an annulus.

Proof. Observe that, the Corollary 5.1 gives,

u(ρ) =

∫ ρ

arcsinh(d)

d

√
1 + 4τ 2 tanh2(

r

2
)

√
sinh2(r) − d2

dr

A simple computation gives u′ =

d

√
1 + 4τ 2 tanh2(

r

2
)

√
sinh2(r) − d2

> 0 and u′′ < 0

Example 6.1. With Maple’s help, we plot the catenoid M1. Observe that by considering the
rotation by π around the x axis, we obtain a complete embedded surface.

7 Surfaces Invariant by Rotations in P̃ SL2(R, τ ) with Con-

stant Mean Curvature H 6= 0

In this section, we follow the ideas of the paper [8, Proposition 5.2,Proposition 5.3], to describe
the behavior of rotational H-surfaces. For later use we define the functions g(ρ) and f(ρ)
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setting for d ∈ R and H > 0.

g(ρ) = d + 2H cosh(ρ)

f(ρ) = sinh2(ρ) − (d + 2H cosh(ρ))2

= (1 − 4H2) cosh2(ρ) − 1 − d2

Lemma 7.1. Assume 0 < H < 1/2. We have f(ρ) ≥ 0 if and only if cosh ρ ≥ 2dH +
√

1 − 4H2 + d2

1 − 4H2
.

Let ρ1 ≥ 0 such that cosh ρ1 =
2dH +

√
1 − 4H2 + d2

1 − 4H2
, then f(ρ1) = 0 and ρ1 = 0 if and only

if d = −2H.

1. If d > −2H, then
−d

2H
< cosh ρ1. Consequently the function u is nondecreasing for

ρ ≥ ρ1 > 0 and has a nonfinite derivative at ρ1.

2. If d = −2H, then u′(ρ) =
2H

√
cosh ρ − 1

√
1 + 4τ 2 tanh2(ρ/2)

√
(1 − 4H2) cosh ρ + 4H2 + 1

. Therefore the function u

is defined for ρ ≥ 0, it has a zero derivative at 0 and is nondecreasing for ρ > 0.

3. If d < −2H, then there exist ρ0 > ρ1 > 0 such that
−d

2H
= cosh ρ0. Consequently the

function u is defined for ρ ≥ ρ1 > 0 with a nonfinite derivative at ρ1, it is nonincreasing
for ρ1 < ρ < ρ0, has a zero derivative at ρ0 and it is nondecreasing for ρ > ρ0.

4. For any d we have lim
ρ→+∞

u(ρ) = +∞.

Next Lemma, is analogous to Lemma 7.1 in the case H = 1/2. Observe that f(ρ) =
−2d cosh2 ρ − (1 + d2), thus the set {ρ, f(ρ) > 0} is nonempty if and only if d < 0

Lemma 7.2. Assume H = 1/2 and d < 0. Then f(ρ) ≥ 0 if and only if cosh2 ρ ≥ 1+d2

−2d
. Let

ρ1 ≥ 0 such that cosh ρ1 = 1+d2

−2d
, then f(ρ1) = 0 and ρ1 = 0 if and only if d = −1.

1. If d ∈ (−1, 0), then −d
2H

< cosh ρ1. Consequently the function u is nondecreasing for
ρ ≥ ρ1 > 0 and has a nonfinite derivative at ρ1.

2. If d = −1, then u′(ρ) = 1√
2

√
(cosh ρ − 1)(1 + 4τ 2 tanh2(ρ/2)). Therefore the function u

is defined for ρ ≥ 0, it has a zero derivative at 0 and is nondecreasing for ρ > 0.

3. If d < −1 there exist ρ0 > ρ1 > 0 such that −d
2H

= cosh ρ0. Consequently the function
u is defined for ρ ≥ ρ1 > 0 with a nonfinite derivative at ρ1, it is nonincreasing for
ρ1 < ρ < ρ0, has a zero derivative at ρ0 and it is nondecreasing for ρ > ρ0.

4. For any d we have lim
ρ→+∞

u(ρ) = +∞.

The proof of Lemma 7.1 and 7.2 is a straightforward computation. As a consequence of
Lemma (7.1) and Lemma (7.2), we have the next results.

Theorem 7.1. (Rotational H-surface with 0 < H ≤ 1/2). Assume 0 < H ≤ 1/2. there exist
a one-parameter family Hd, d ∈ R for H < 1/2 and d < 0 for H = 1/2, of complete rotational
H-surfaces.
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1. For d > −2H, the surface Hd is a properly embedded annulus, symmetric with respect to
the slice {t = 0}, the distance between the ”neck” and the rotational axis R = {(0, 0)×R}

is arccosh(
2dH +

√
1 − 4H2 + d2

1 − 4H2
) for H < 1/2 and arcosh(

1 + d2

−2d
) for H = 1/2. See

Fig. 1.a

2. For d = −2H, the surface H−2H is an entire vertical graph, denoted by SH . Moreover
SH is contained in the halfspace {t ≥ 0} and it is tangent to slice D2 × {0} at the point
(0, 0, 0). See Fig. 1.b

3. For d < −2H, the surface Hd is a properly immersed (and nonembedded) annulus, it is
symmetric with respect to slice {t = 0}, the distance between the ”neck” and the rotational

axis R is arcosh(
2dH +

√
1 − 4H2 + d2

1 − 4H2
) for H < 1/2 and arcosh(1+d2

−2d
) for H = 1/2.

See Fig. 1.c

4. In each of the previous case the surface is unbounded in the t-coordinate. When d tends
to −2H with either d > −2H or d < −2H, then the surface Hd tends toward the union
of SH and its symmetric with respect to the slice {t = 0}. Furthermore, any rotational
H-surface with 0 < H ≤ 1/2 is up to an ambient isometry, a part of a surface of the
family Hd.

Proof. The result is a straightforward consequence of Lemma 7.1 and Lemma 7.2. For d = −2H ,
H−2H is the rotational surface generated by the graph of the function u.

For d 6= −2H , let γ be the union of the graph of u join with its symmetric with respect to
the slice {t = 0}. Then Hd is the rotational surface generated by the curve γ.

a b c

Schematic Figures

Figure 1.− Generating curve for rotational surfaces with H ≤ 1/2.

.

Observe that, f(ρ) = (1 − 42) cosh2 ρ − 4Hd cosh ρ − (1 + d2), so for H > 1/2, the set

{ρ, f(ρ) > 0} is nonempty if and only if d < 0. Furthermore, f

(
2dH ±

√
1 − 4H2 + d2

1 − 4H2

)
= 0,

this least equality is possible since 1 − 4H2 + d2 > 0, this is d < −
√

4H2 − 1.

11



Lemma 7.3. Let H and d satisfying H > 1/2 and d < −
√

4H2 − 1. Then, there ex-

ist two numbers 0 ≤ ρ1 < ρ2 such that cosh ρ1 =
2dH +

√
1 − 4H2 + d2

1 − 4H2
and cosh ρ2 =

2dH −
√

1 − 4H2 + d2

1 − 4H2
. Therefore, f(ρ) > 0 if and only if ρ1 < ρ < ρ2 and f(ρ1) = f(ρ2) = 0.

1. If d < −2H, then ρ1 > 0 and there exist a unique number ρ0 ∈ (ρ1, ρ2) satisfying g(ρ0) =
0. Furthermore g ≤ 0 on [ρ1, ρ0) and g ≥ 0 on (ρ0, ρ2]. Consequently, the function u is
defined on [ρ1, ρ2], has a nonfinite derivative at ρ1 and ρ2, has a zero derivative at ρ0, is
nonincreasing on (ρ1, ρ0) and nondecreasing on (ρ0, ρ2).

2. If d = −2H, then ρ1 = 0 and u′(ρ) =
2H

√
cosh ρ − 1

√
1 + 4τ 2 tanh2(ρ/2)

√
(1 − 4H2) cosh ρ + 4H2 + 1

. Consequently,

the function u is defined on [0, ρ2], is nondecreasing, has a zero derivative at 0 and a
nonfinite derivative at ρ2.

3. If −2H < d < −
√

4H2 − 1, then ρ1 > 0 and g ≤ 0 on [ρ1, ρ2]. Therefore the function u
is defined on [ρ1, ρ2], is nondecreasing and has nonfinite derivative at ρ1 and ρ2.

An immediate consequence of Lemma 7.3 we obtain the next Theorem.

Theorem 7.2. (Rotational surfaces with H > 1/2) Assume H > 1/2. There exist a one-
parameter family Dd of complete rotational H-surfaces, d ≤ −

√
4H2 − 1.

1. For d < −2H, the surface Dd is an immersed (and nonembedded) annulus, invariant by
a vertical translation and is contained in the closed region bounded by the two vertical
cylinders ρ = ρ1 and ρ = ρ2. Furthermore ρ1 → +∞ and ρ2 → +∞ when d → −∞ and

ρ1 → 0 and ρ2 → arcosh

(
4H2 + 1

4H2 − 1

)
when d → −2H. Such surfaces are analogous to

the nodoids of Delaunay in R3. See Fig. 2.a

2. For d = −2H, the surface D−2H is an embedded sphere and the maximal distance from

the rotational axis is ρ2 = arcosh

(
4H2 + 1

4H2 − 1

)
. See Fig. 2.b

3. For −2H < d < −
√

4H2 − 1; the surface Dd is an embedded annulus, invariant by
a vertical translation and is contained in the closed region bounded by the two vertical

cylinders ρ = ρ1 and ρ = ρ2. Furthermore ρ1 → 0 and ρ2 → arcosh

(
4H2 + 1

4H2 − 1

)
when

d → −2H and both ρ1, ρ2 → arcosh

(
2H√

4H2 − 1

)
when d → −

√
4H2 − 1. Moreover

ρ2 → arcosh

(
2H√

4H2 − 1

)
< ρ2. Such surfaces are analogous to the undoloids of Delau-

nay in R3. See Fig. 2.c

4. For d = −
√

4H2 − 1, the surface D−
√

4H2−1 is the vertical cylinder over the circle with

hyperbolic radius arcosh

(
2H√

4H2 − 1

)
.

Figure 2.− Generating curve for rotational surfaces with H > 1/2

12



a b c

Schematic Figures

8 Parabolic Screw Motions Surfaces in P̃ SL2(R, τ )

A parabolic screw motion surface in P̃ SL2(R, τ) is a surface which is invariant by one-parameter
of isometries, this one-parameter group of isometries is the composition of parabolic isometries
together with vertical translation.

To study this kind of surface we take M2 = H2 the half space for the model of the Hyperbolic
space.
The idea is simple, we take a curve in the xt plane and we will apply one-parameter group of
parabolic isometries together with translation, to study this kind of surface we take the half
plane model, this is M2 ≡ H2. In this model the parabolic isometries are simply the translation
in the x direction.

Let α(y) = (0.y, u(y)) a curve in the xt plane and denote by Γ the one-parameter group such

that the surface S = Γ(α) be a parabolic screw motion in P̃ SL2(R, τ), then S is parameterized
by,

ϕ(x, y) = (x, y, u(y) + lx)

where l ∈ R

Lemma 8.1. With the notations above, and denoting by H the mean curvature of S, then the
function u satisfies

u(y) =

∫
(dy − 2H)

√
1 + (ly − 2τ)2

y
√

1 − (dy − 2H)2

where d is a real number, and l is the pitch.

Proof. The proof is analogous to the proof of Lemma 4.1.

9 Parabolic surfaces in P̃ SL2(R, τ )

We focus our attention in parabolic surfaces, that is surfaces which are invariant by parabolic
isometries, by considering the notation of the screw motion surfaces and making l ≡ 0 we have
the next corollary.

13



Corollary 9.1. Denoting by H the mean curvature of S, then the function u satisfies

u(y) =

∫
(dy − 2H)

√
1 + 4τ 2

y
√

1 − (dy − 2H)2

where d is a real number.

After a straightforward computation we obtain the next lemma.

Lemma 9.1. The solution of the integral is given by

• If H ≡ 0, then
u(y) =

√
1 + 4τ 2 arcsin(dy)

• If H =
1

2
, then

u(y) =
√

1 + 4τ 2 arcsin(dy − 1) +
2
√

1 + 4τ 2

tan(arcsin(cy−1)
2

) + 1

• If H >
1

2
, then

u(y) =
√

1 + 4τ 2 arcsin(dy − 2H) − 4
√

1 + 4τ 2H√
4H2 − 1

arctan

(
2H tan(arcsin(dy−2H)

2
) + 1√

4H2 − 1

)

where d ∈ R.

This Lemma gives an immediate examples:

Example 9.1. Considering H ≡ 0, τ = −1/2 and d = 1, we obtain a parabolic minimal
surfaces which is a vertical graph, by considering the rotation by π around the y axis we obtain

a complete embedded minimal surfaces invariant by parabolic isometries in P̃ SL2(R, τ).

-6,5

1,51,251,0

-4,0

y

0,75
x

0,5
-1,5

0,250,0
0

1,0

1

2

3,5

3

6,0

4

Minimal Surfaces Invariant 
by Parabolic Isometries

Example 9.2. Considering H = 1/2 and d = 1/2, we obtain

u(y) =
√

2 arcsin(dy − 1) +
2
√

2

tan(arcsin(dy−1)
2

) + 1

with Maple’s help:
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Example 9.3. Finally, we plot a H = 2 surfaces invariant by Parabolic isometries. Putting
d = 8, τ = −1/2 and H = 2, we obtain:

u(y) =
√

2 arcsin(8y − 2H) − 4
√

2H√
4H2 − 1

arctan

(
2H tan(arcsin(8y−2H)

2
) + 1√

4H2 − 1

)

-1,0

-0,73

-0,68

-0,5

-0,63

x

-0,58

-0,53
0,10,0 0,35 0,6

y

0,850,5 1,1
1,0

2 Surfaces Invariant 
by Parabolic Isometries

10 Surfaces Invariant by Parabolic Isometries in P̃ SL2(R, τ )

with Constant Mean Curvature H 6= 0

In this section we describe the behavior of surfaces invariant by parabolic isometries, which
have constant mean curvature H 6= 0. For later use we define the function g(y) = dy − 2H .
Taking into account Formula (8.1), we obtain the next Lemma

Lemma 10.1. Let H be the mean curvature of the surface generated by the Formula (8.1).
Then

1. If d > 0, we have

15



• If 1/2 < H, then y1 < y < y2 where y1 =
2H − 1

d
and y2 =

2H + 1

d
and there

exist a unique number y0 =
2H

d
∈ (y1, y2) satisfying g(y0)=0. Furthermore g ≤ 0 on

[y1, y0) and g ≥ 0 on (y0, y1]. Consequently, the function h(y) is defined on [y1, y2],
has a nonfinite derivative at y1 and y2, is strictly decreasing on (y1, y0) and strictly
creasing on (y0, y2).

• If 0 < H < 1/2, then 0 < y < y2 and there exist a unique number y0 =
2H

d
∈

(0, y2) satisfying g(y0)=0. Furthermore g ≤ 0 on (0, y0) and g ≥ 0 on (y0, y1].
Consequently, the function u(y) is defined on (0, y2], and it is asymptotic to the
asymptotic boundary. The function u has a nonfinite derivative at y2, is strictly
decreasing on (0, y0) and strictly creasing on (y0, y2).

2. If d < 0, we have

• Here, necessarily 0 < H < 1/2. Setting d = −c, we have that, 0 < y < y2, where

y2 =
1 − 2H

c
. Consequently, the function u(y) is defined on (0, y2], has a nonfinite

derivative y2, is strictly decreasing on (0, y2), and u is asymptotic to asymptotic
boundary.

As a consequence of Lemma (10.1), we have the next results.

Theorem 10.1. Let S be the H surface invariant by parabolic isometries immersed into

P̃ SL2(R, τ). Then, there exist a one-parameter family Pd, d ∈ R of complete parabolic H-
surfaces such that,

1. For d > 0, and H > 1/2 the surface Pd is immersed (and nonembedded) annulus, invari-
ant by vertical translation, and is contained in the closed region bounded by the vertical
cylinders y = y1 and y = y2. See Fig. 3.a

2. For d > 0, and 0 < H < 1/2 the surface Pd is a properly immersed (and nonembedded)
annulus, it is symmetric with respect to slice t = 0, the maximum value of y is y = y2.
See Fig. 3.b

3. For d = −c < 0 and 0 < H < 1/2 the surface Pd is a properly embedded annulus
symmetric eith respect to the slice t = 0, and the maximum value of y is y = y2. See Fig.
3.c

4. When d tends to 0, then the surface Pd tends toward the surface

F (y) =
−2

√
1 + 4τ 2H ln(y)√

1 − 4H2

Figure 3.− Generating curve for parabolic surfaces with H 6= 1/2

.
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a b c

Schematic Figures

Now, we consider the case H ≡ 1/2, this is the function h in the formula 9.1 become

h(y) =
√

1 + 4τ 2

∫
dy − 1

y

1√
1 − (dy − 1)2

dy (3)

We denote by f(y) = 1 − (dy − 1)2 and g(y) = dy − 1, so we obtain the next lemma.

Lemma 10.2. By considering the parabolic surface S with constant mean curvature H = 1/2,

we obtain that d > 0 and the function h(y) is defined for 0 < y < y1 =
2

d
. Furthermore, there

exist a number y0 =
1

d
with 0 < y0 < y1

2

d
such that g(y) is positive for 0 < y < y0, g(y0) = 0

and g(y) is negative for y0 < y < y1. Consequently the function h(y) is strictly decreasing for
0 < y < y0, has a horizontal tangent at y = y0 and is strictly increasing for y0 < y < y1. The

function h is asymptotic to the asymptotic boundary of P̃ SL2(R, τ)

As a consequence of Lemma 10.2 we have the next result.

Theorem 10.2. Let S be the H = 1/2 surface invariant by parabolic isometries immersed

into P̃ SL2(R, τ). Then, there exist a one-parameter family Jd, d ∈ R+ of complete parabolic
H-surfaces such that the surface Jd is a properly immersed (and nonembedded) annulus, it is
symmetric with respect to slice t = 0, the maximum value of y is y = y2. See Fig. 4

a

Figure 4..- Generating curve for parabolic surfaces with H ≡ 1/2
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11 Applications

In this section we use the study of rotational and parabolic surfaces as well as the examples con-
structed to prove some general result on graph and multi-graph with constant mean curvature,
see Theorem 11.2.

Proposition 11.1. There is no entire graph with constant mean curvature H in P̃ SL2(R, τ)
such that H > 1/2

Proof. Suppose that such entire graph exists, without less generality we can suppose that the
mean curvature vector field point up. consider the rotational sphere S (here H > 1/2), given
by the Lemma 5.1, after a vertical translation we can suppose that the sphere S is above of
the entire graph and the intersection between this two surface is empty, by considering vertical
translation we have a first contact point at the interior of S and the entire graph, by the
maximum principle the entire graph is compact, this contradiction complete the proof

11.1 Graph and Multi-graph

Actually the Proposition 11.1 is part of a general theorem see Theorem 11.1.
The classification of simply connected homogeneous manifolds of dimension 3 is well know.

Such a manifold has an isometry group of dimension 3, 4 or 6. When the dimension of the
isometry group is 6, we have a space form. When the dimension of the isometry group is 3, the
manifold has the geometry of the Lie group Sol3.

We will consider the complete homogeneous manifolds E3(κ, τ) whose
isometry groups have dimension 4: such a manifold is a Riemannian fibration over a 2 −
dimensional space form M2(κ) that is, π : E3(κ, τ) −→ M2(κ) is a Riemannian submersion,
where M2(κ) is the space form of dimension 2 which has Gauss curvature κ. If E3(κ, τ) is not
compact, then it is topologically M2(κ) × R, each fiber is diffeomorphic to R (the real line)
and has curvature τ ; if E3(κ, τ) is compact, with κ > 0 and τ 6= 0, E3(κ, τ) are the compact
Berger spheres, each fiber is diffeomorphic to S1 (the unit circle). the tangent unit vector field
to the fiber is an unit Killing field which we will denote by E3, this vector field will be called
the vertical vector field. These manifolds are classified, up to isometry, by the curvature k of
the base surface of the fibration and the bundle curvature τ , where κ and τ can be any real
numbers satisfying κ 6= 4τ 2. Namely, these manifolds are

• E3(κ, τ) = D2

(
1√
−κ

)
× R, if κ < 0 and τ = 0

• E3(κ, τ) = S2(
√

κ) × R, if κ > 0 and τ = 0

• E3(κ, τ) = Nil3 (Heisenberg space) if κ = 0 and τ 6= 0

• E3(κ, τ) = P̃ SL2(R), if κ < 0 and τ 6= 0

• E3(κ, τ) = S3
τ (Spheres of Berger), if κ > 0 and τ 6= 0

Let Mn be a Riemannian manifold of dimension n, and Ω ⊂ Mn an open domain in Mn,
such that Ω is compact and ∂Ω is of class C∞. The Cheeger constant which is denoted by
C(Mn) is given by

C(Mn) = inf
Ω
{A(∂Ω)

V (Ω)
; Ω ⊂ Mn, Ω = compact}
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where A is the area function and V the volume function on Mn.

Remark 11.1. We only consider κ ∈ {−1, 0, 1}, thus C(D2) ≡ 1.

Theorem 11.1. There is no entire H-graph into π : E3(κ, τ) −→ M2(κ) such that 2H >
C(M2(κ)), where C(M2(κ)) is the Cheeger constant of M2(κ).

This theorem have an important consequence, see Theorem 11.2
We consider an immersed surface Σ with constant mean curvature H in E3(κ, τ). Let N be

the normal unit vector field along Σ, Let ν = g(N, E3) be the angle function on Σ.

Definition 11.1. Σ is said Multi − graph if the function ν satisfy, either ν > 0 or ν < 0 on
Σ.

Theorem 11.2. Let Σ be a complete H surfaces immersed into E3(κ, τ), such that ν does not
change of sign, that is either ν ≥ 0 or ν ≤ 0. Then if 2H > C(M2(κ)), where C(M2(κ)) is the
Cheeger constant of M2(κ), we have that ν ≡ 0, ie. Σ is a vertical cylinder.

In particular, there is no immersed complete H multi − graph Σ in E(κ, τ) such that
2H > C(M2(κ)).

The details of the proof are in [7], other related references are [6], [12], [13] [14], [15], [16],
and [17].

11.2 Asymptotic Behavior of Rotational Surface

In the paper, A halfspace theorem for mean curvature H = 1
2

surfaces in H2 × R (see [18,
Theorem 1]), the authors studied the asymptotic behavior for H = 1/2 rotational surfaces
immersed into H2×R, and prove a halfspace theorem, since the behavior of H = 1/2 rotational

surfaces immersed into P̃ SL2(R, τ) is similar rotational surfaces in H2 × R (see Theorem 7.1),
it is natural ask for a halfspace theorem for mean curvature H = 1/2 surfaces in H2 × R.

Denote by α = −d, then for any α ∈ R+, there exist a rotational surface Hα of constant
mean curvature H = 1

2
. For α 6= 1, the surface Hα has two vertical ends ( where a vertical end

is a topological annulus, with no asymptotic point at finite height) that are vertical graph over
the exterior of a disk Dα.

Up to vertical translation, one can assume that Hα is symmetric with respect to the hori-
zontal plane t = 0. For α = 1, the surface H1 has only one end, it is a graph over D2 and it is
denoted by S.

For any α > 1 the surface Hα is not embedded. The self-intersection set is a horizontal
circle on the plane t = 0. Denote by ρα the radius of the intersection circle. For α < 1 the
surface Hα is embedded.

For any α ∈ R+, let uα : D2 × {0}\Dα −→ R be the function such that the end of
the surface Hα is the vertical graph of uα. The asymptotic behavior has the following form:

uα(ρ) ≃
√

1 + 4τ 2

√
α

exp(ρ

2
), ρ → ∞, where ρ is the hyperbolic distance from the origin. The

positive number

√
1 + 4τ 2

√
α

∈ R+ is called the growth of the end. (see [7]).

Following the ideas of Barbara Nelli e Ricardo Sa Earp, we have the next theorem.
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Theorem 11.3. Let S be a simply connected rotational surface in P̃ SL2(R, τ), with constant
mean curvature H = 1

2
. Let Σ be a complete surface with constant mean curvature H = 1

2
,

different from a rotational simply connected one. Then, Σ cannot be properly immersed in the
mean convex side of S

The proof is analogous to this in H2 × R, for more details see [7].

References

[1] Eric. Toubiana, Note sur les Varietes Homogenes de dimension 3. Preprint.

[2] Rami Younes, Minimal Surfaces in P̃ SL2(R), Doctoral Thesis. Tours, 2008 France.

[3] Ricardo Sa Earp, Eric Toubiana, Screw Motion Surfaces in H2 × R and S2 × R. Illinois
Journal of Mathematics, vol 49, number 4. Winter 2005, pages 1323-1362.

[4] Ricardo Sa Earp, Parabolic and Hyperbolic Screw Motion Surfaces in H2 × R. J. Aust.
Math. Doc. 85 (2008), 113-143.

[5] Ricardo Sa Earp, Eric Toubiana, Laurent Hauswirth, Associate and Conjugate Minimal
Immersions in M × R. Tohoku Math. J. - 2008, pp. 267-286.
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