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Gyrokinetic Vlasov equation in three dimensional

setting. Second order approximation

Mihai Bostan ∗

(November 10, 2009)

Abstract

One of the main applications in plasma physics concerns the energy produc-

tion through thermo-nuclear fusion. The controlled fusion requires the confine-

ment of the plasma into a bounded domain and for this we appeal to the mag-

netic confinement. Several models exist for describing the evolution of strongly

magnetized plasmas. The subject matter of this paper is to provide a rigorous

derivation of the guiding-center approximation in the general three dimensional

setting under the action of large stationary inhomogeneous magnetic fields. The

first order corrections are computed as well : electric cross field drift, magnetic

gradient drift, magnetic curvature drift, etc. The mathematical analysis relies

on average techniques and ergodicity.

Keywords: Vlasov equation, Guiding-center approximation, Average operator.

AMS classification: 35Q75, 78A35, 82D10.

1 Introduction

Motivated by the confinement fusion, many research programs in plasma physics

focus on strongly magnetized plasmas. It concerns the evolution of a population of
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charged particles under the action of strong magnetic fields Bε depending on some

parameter ε > 0. Using the kinetic description and neglecting the collisions we are led

to the Vlasov equation

∂tf
ε +

p

m
· ∇xf

ε + q
(

E(t, x) +
p

m
∧ Bε(x)

)

· ∇pf
ε = 0, (t, x, p) ∈ R+ × R

3 × R
3 (1)

with the initial condition

f ε(0, x, p) = f in(x, p), (x, p) ∈ R
3 × R

3 (2)

where f ε = f ε(t, x, p) ≥ 0 is the distribution function of the particles in the phase

space (x, p) ∈ R
3 × R

3, m is the particle mass and q is the particle charge. Generally

we close the Vlasov equation by adding equations for the electro-magnetic field (E,Bε)

(i.e., the Maxwell equations or the Poisson equation). Here we consider only the linear

problem (1), (2) assuming that the magnetic field is stationary, divergence free and

that the electric field derives from a given electric potential E(t) = −∇xφ(t). We

investigate the asymptotic behaviour of (1) when the magnetic field becomes large

Bε(x) =
B(x)

ε
, B(x) = B(x)b(x), divx(Bb) = 0, 0 < ε << 1

for some scalar positive function B(x) and some field of unitary vectors b(x). We

assume that B, b are smooth. Clearly the dynamics of the particles is dominated by

the transport operator parallel to qB(x)
(

p
m
∧ b(x)

)

· ∇p. Assuming that ε is small

enough we may expect that expansion like f ε = f + εf 1 + ε2f 2 + ... holds true and

letting ε ց 0 it is easily seen that the leading order term belongs to the kernel of

T = qB(x)
(

p
m
∧ b(x)

)

· ∇p. Notice that a family of independent invariants for T is

given by x, |p ∧ b(x)|, p · b(x) and therefore the constraint T f = 0 is equivalent to

f(t, x, p) = g(t, x, r = |p ∧ b(x)|, z = p · b(x)).

Actually, plugging the above ansatz in (1) gives at the lowest order the divergence

constraint T f = 0 and to the next order the evolution equation

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf + T f 1 = 0. (3)

The key point is how to close (3) with respect to the first order fluctuation density f 1.

The idea is to project on the kernel of T by observing that the range of T is orthogonal
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to its kernel. Indeed, this will give a well-posed mathematical model, since we already

know that f belongs to the kernel of T . The computations considerably simplify if we

observe that the orthogonal projection on kerT is equivalent to averaging along the

characteristic flow associated to T . The rigorous construction of the average operator

(sometimes called by physicists the gyro-average operator in the context of gyrokinetic

models) essentially relies on ergodic theory i.e., von Neumann’s ergodic theorem [19]

pp. 57. Employing this method we derive rigorously the guiding-center approximation

in the three dimensional setting and we obtain the following Vlasov equation for the

leading order particle density

∂tf + b(x) ⊗ b(x)
p

m
· ∇xf +

(

qb(x) ⊗ b(x)E + ω(x, p) ⊥p
)

· ∇pf = 0 (4)

where b(x) is the unitary vector field parallel to the magnetic field, the frequency ω(x, p)

is given by

ω(x, p) =
|p ∧ b(x)|

2m
divxb−

(p · b(x))

m

(

∂b

∂x
b(x) ·

p

|p ∧ b(x)|

)

, p ∧ b(x) 6= 0

and for any (x, p) such that p ∧ b(x) 6= 0 the symbol ⊥p stands for the orthogonal

momentum to p in the plan determined by b(x) and p such that its coordinate along

b(x) is positive

⊥p = |p ∧ b(x)| b(x) − (p · b(x))
p− (p · b(x))b(x)

|p ∧ b(x)|
.

At the lowest order the particles are advected along the magnetic lines and only the

parallel (with respect to b) electric field accelerates the particles. The plasma is confined

along the magnetic lines and the transport operator in (1) becomes, in the limit εց 0

Ax · ∇x + Ap · ∇p = b(x) ⊗ b(x)
p

m
· ∇x + (qb(x) ⊗ b(x) E + ω(x, p) ⊥p) · ∇p.

But orthogonal drifts are expected at the next order. More general we investigate

higher order approximations for (1), leading to a transport operator which takes into

account the first order corrections

(Ax + εA1
x) · ∇x + (Ap + εA1

p) · ∇p.

Among these corrections we recover the electric cross field drift, the magnetic gradient

drift and the magnetic curvature drift (cf. Theorem 5.2)

A1
x = v∧ + vGD + vCD + ...
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with

v∧ =
E ∧ b

B
, vGD =

|p ∧ b|2

2m2ωc

b ∧∇xB

B
, vCD =

(p · b)2

m2ωc
b ∧ ∂xb b, ωc =

qB

m
.

The main point is that the particle dynamics evolves on two time scales t and s = t/ε,

the fast motion being associated to the large cyclotronic frequency 1
ε
qB
m

. Accordingly

the motion equations of the particles in (1) can be written

dXε

dt
=
P ε(t)

m
,

dP ε

dt
= qE(t,Xε(t)) +

1

ε
ωc(X

ε(t))P ε(t) ∧ b(Xε(t)) (5)

where

Xε(t) = X(t, t/ε) + εX1(t, t/ε) + ..., P ε(t) = P (t, t/ε) + εP 1(t, t/ε) + ... . (6)

Plugging the above ansatz in (5) one gets at the lowest order ε−1

∂sX = 0, ∂sP = ωc(X)P ∧ b(X) (7)

and at the next order ε0

∂tX + ∂sX
1 =

P

m
(8)

∂tP+∂sP
1 = qE(t,X)+(∇xωc(X) ·X1)P∧b(X)+ωc(X)

(

P ∧ ∂xb (X)X1 + P 1 ∧ b(X)
)

.

(9)

From equation (7) we deduce that X, |P ∧b(X)|, P ·b(X) depend only on the slow time

scale

X = X(t), |P (t, s) ∧ b(X(t))| = R(t), P (t, s) · b(X(t)) = Z(t).

Moreover for any fixed t we have, by the second equation in (7)

P (t, s) = cos(ωc(X(t)) s) b(X(t)) ∧ ( P (t, 0) ∧ b(X(t)) )

+ sin(ωc(X(t)) s) P (t, 0) ∧ b(X(t))

+ Z(t) b(X(t)) (10)

and therefore, at any fixed time t the momentum P is Tc(X(t)) = 2π/|ωc(X(t))|

periodic with respect to the fast variable s. Averaging the equation (8) with respect

to s over one cyclotronic period Tc(X(t)) one gets

dX

dt
=
Z(t)

m
b(X(t)). (11)
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At the leading order the particles are advected along the magnetic lines. Notice that

∂s(P ∧ b(X)) = ∂sP ∧ b(X) = ωc(X)(P ∧ b(X)) ∧ b(X) = ωc(X)( (P · b)b− P )

implying that

∂sX
1 =

P

m
− ∂tX = −

∂s(P ∧ b(X))

ωc(X)m
.

Therefore X1 + P∧b(X)
mωc(X)

is another invariant with respect to the fast motion. We can

write

X(t) + εX1(t, s) = X(t) + ε

(

X1 +
P ∧ b(X)

mωc(X)

)

− ε
P ∧ b(X)

mωc(X)

saying that during a cyclotronic period X(t)+ εX1(t, t/ε) ≈ Xε(t) describes a circle of

radius ε R(t)
m|ωc(X(t))|

into the plan orthogonal to b(X(t)). We compute now the acceleration

along the magnetic lines by multiplying the equation (9) by b(X(t)) and averaging over

one cyclotronic period (here 〈·〉 stands for the average with respect to s over one period).

For doing this observe that 〈∂sP
1 · b(X(t))〉 = 0 and

〈∂tP · b(X)〉 = 〈∂t(P · b(X)) − P · ∂t b(X)〉

=
dZ

dt
−
Z(t)

m
〈P · ∂xb b(X)〉

=
dZ

dt
−
Z2(t)

m
(b(X) · ∂xb b(X))

=
dZ

dt
. (12)

The average contribution of the electric force during a cyclotronic period is clearly

qE(t,X(t)) · b(X(t)). It remains to compute the average contribution of the Laplace

force. Notice that only the variation of the magnetic field direction accelerates the

particles along the magnetic lines. Since X1 + (P ∧ b(X))/(mωc(X)) is invariant with

respect to the fast motion and divx(Bb) = b · ∇xB +B divxb = 0 we can write

〈

ωc(X)(P ∧ ∂xb(X)X1) · b(X)
〉

=
1

m
〈∂xb(X) : (P ∧ b(X)) ⊗ (P ∧ b(X))〉

=
|P ∧ b(X)|2

2m
(∂xb : (I − b(X) ⊗ b(X)))

=
R2(t)

2m
divxb

= −
R2(t)

2mB(X)
∇xB · b(X).
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We have obtained the diamagnetic force −µ(∇xB · b) where µ(x, p) = |p∧b(x)|2

2mB(x)
is the

magnetic moment. Combining the above computations yields

dZ

dt
= qE(t,X(t)) · b(X(t)) +

R2(t)

2m
divxb. (13)

Multiplying now the equation (9) by P/m and averaging over one cyclotronic period

we deduce

d

dt

R2 + Z2

2m
+

〈

∂sP
1 ·
P

m

〉

= q( E(t,X(t)) · b(X(t)) )
Z(t)

m
+ ωc(X)

〈

(P 1 ∧ b(X)) ·
P

m

〉

.

Integrating by parts with respect to s one gets

〈

∂sP
1 · P

〉

= ωc(X)

〈

(P 1 ∧ b(X)) ·
P

m

〉

.

Therefore the time variation of the cyclotronic momentum R(t) is given by

R(t)

m

dR

dt
+
Z(t)

m

dZ

dt
= q(E(t,X(t)) · b(X(t)))

Z(t)

m
.

Combining with (13) we obtain

dR

dt
= −

Z(t)R(t)

2m
divxb. (14)

The dynamics of the particles with respect to the slow time scale in the phase space

(x, r, z) is given by (11), (14), (13) leading to the limit model

∂tg +
z

m
b(x) · ∇xg −

zr

2m
divxb ∂rg +

(

qE(t, x) · b(x) +
r2

2m
divxb

)

∂zg = 0

which is equivalent to (4) through the density change f(t, x, p) = g(t, x, |p ∧ b(x)|, p ·

b(x)). The derivation of the second order approximation for (1) follows by employing

similar techniques. Nevertheless it is a much difficult task, which requires complex

computations, eventually the choice of appropriate coordinate system.

The nonlinear gyrokinetic theory of the Vlasov-Maxwell equations can be carried

out by appealing to Lagrangian and Hamiltonian methods [9], [16], [17]. It is also

possible to follow the general method of multiple time scale or averaging perturbation

developped in [1]. For a unified treatment of the main physical ideas and theoretical

methods that have emerged on magnetic plasma confinement we refer to [15].

The guiding-center approximation for the Vlasov-Maxwell system was studied in

[3] by the modulated energy method, see also [5], [7] for other results obtained by this
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method. The analysis of the Vlasov or Vlasov-Poisson equations with large external

magnetic field have been carried out in [10], [12], [6], [11], [13]. The numerical approx-

imation of the gyrokinetic models has been performed in [14] using semi-Lagrangian

schemes. Other methods are based on the water bag representation of the distribu-

tion function: the full kinetic Vlasov equation is reduced to a set of hydrodynamic

equations. This technique has been successefully applied to gyrokinetic models [18].

Our paper is organized as follows. In Section 2 we introduce the average operator

and list its mathematical properties : orthogonal decomposition of L2 functions into

zero average functions and invariant functions along the characteristic flow, Poincaré

inequality, etc. Section 3 is devoted to the derivation of the guiding-center approxi-

mation. This model is still a Vlasov equation. We investigare its conservative form

and the geometry of its trajectories. We clearly identify invariants (magnetic moment,

total energy) which allow us to reduce the dimension of the phase space. The asymp-

totic behaviour is studied in Section 4. We obtain both weak and strong convergence

results. Section 5 is devoted to the second order approximation. One of the key points

is to analyze the commutation properties between the average operator and first order

differential operators.

2 Average operator

The main tool of our study is the average operator, which corresponds to the

advection field dominating the transport operator in (1). For simplicity we work in the

L2(R3 × R
3) framework but similar analysis can be carried out in any Lebesgue space

T u = divp (ωc(x) u p ∧ b(x)) , ωc(x) =
qB(x)

m

D(T ) = {u(x, p) ∈ L2(R3 × R
3) : divp (ωc(x) u p ∧ b(x)) ∈ L2(R3 × R

3)}.

We denote by ‖ · ‖ the standard norm of L2(R3 × R
3). Notice that the above operator

is local in x i.e., if u ∈ D(T ) then for a.a. x ∈ R
3 we have

u(x, ·) ∈ L2(R3) : divp (ωc(x) u(x, ·) p ∧ b(x)) ∈ L2(R3).

We denote by (X,P )(s;x, p) the characteristics associated to ωc(x)(p ∧ b(x)) · ∇p

dX

ds
= 0,

dP

ds
= ωc(X(s)) P (s) ∧ b(X(s)), (X,P )(0) = (x, p). (15)
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Obviously X(s) = x for any s and by taking the scalar product of the second equation

in (15) with P (s) and b(x) we deduce that |P (s)|2 = |p|2 and b(x) · P (s) = b(x) · p

implying also that |b(x)∧P (s)| = |b(x)∧p|. If the initial conditions satisfy b(x)∧p = 0

then clearly P (s;x, p) = (b(x) ·p) b(x). If b(x)∧p 6= 0 we consider the positive oriented

basis of R
3

B̃(x) =

{

ẽ1(x) =
b(x) ∧ (p ∧ b(x))

|b(x) ∧ p|
, ẽ2(x) =

b(x) ∧ p

|b(x) ∧ p|
, ẽ3(x) = b(x)

}

.

Denoting (P̃1, P̃2, P̃3)(s) the coordinates of P (s) in the basis B̃(x) we obtain the equa-

tions
dP̃1

ds
= ωc(x)P̃2(s),

dP̃2

ds
= −ωc(x)P̃1(s),

dP̃3

ds
= 0

and therefore P̃3(s) = P̃3(0)

P̃1(s) = cos(ωc(x)s) P̃1(0)+sin(ωc(x)s) P̃2(0), P̃2(s) = − sin(ωc(x)s) P̃1(0)+cos(ωc(x)s) P̃2(0).

Taking into account the formula p = b(x) ∧ (p ∧ b(x)) + (b(x) · p) b(x) we deduce that

P̃1(0) = |p ∧ b(x)|, P̃2(0) = 0, P̃3(0) = (p · b(x)) and finally

P (s;x, p) = cos(ωc(x)s) b(x) ∧ (p ∧ b(x)) + sin(ωc(x)s) p ∧ b(x) + (b(x) · p) b(x).

Notice that the above formula holds also true in the case p ∧ b(x) = 0. The motions

(X,P )(s;x, p) are Tc(x) = 2π
|ωc(x)|

periodic for any initial condition (x, p) ∈ R
3×R

3. We

introduce the average operator cf. [4]

〈u〉 (x, p) =
1

Tc(x)

∫ Tc(x)

0

u(X(s;x, p), P (s;x, p)) ds

=
1

2π

∫

S(x)

u(x, |p ∧ b(x)| ω + (p · b(x)) b(x)) dω

for any function u ∈ L2(R3 × R
3), where S(x) = {ω ∈ S2 : b(x) · ω = 0}.

Proposition 2.1 The average operator is linear continuous. Moreover it coincides

with the orthogonal projection on the kernel of T i.e.,

〈u〉 ∈ ker T :

∫

R3

∫

R3

(u− 〈u〉)ϕ dpdx = 0, ∀ ϕ ∈ ker T .

Proof. For any function u ∈ L2(R3 × R
3) we have for a.a. x ∈ R

3

| 〈u〉 |2(x, p) ≤
1

Tc(x)

∫ Tc(x)

0

u2(x, P (s;x, p)) ds.
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Taking into account that for any x ∈ R
3 the map p→ P (s;x, p) is measure preserving

one gets
∫

R3

∫

R3

〈u〉2 (x, p) dpdx ≤

∫

R3

∫

R3

u2(x, p) dpdx

saying that 〈·〉 ∈ L(L2(R3 × R
3), L2(R3 × R

3)) and ‖ 〈·〉 ‖L(L2(R3×R3),L2(R3×R3)) ≤ 1. It

is well known that the kernel of T is given by the functions in L2 invariant along the

characteristics (15). Therefore we have

ker T = {u ∈ L2(R3 × R
3) : ∃ v such that u(x, p) = v(x, |p ∧ b(x)|, (p · b(x)))}

Notice that for any u ∈ L2(R3×R
3) its average 〈u〉 depends only on x, |p∧b(x)|, (p·b(x)).

Therefore 〈u〉 ∈ ker T . Pick a function ϕ ∈ ker T i.e.,

∃ ψ : ϕ(x, p) = ψ(x, |p ∧ b(x)|, (p · b(x))) ∈ L2(R3 × R
3)

and let us compute I =
∫

R3

∫

R3 (u − 〈u〉)ϕ dpdx. Using cylindrical coordinates along

b(x) axis yields

I =

∫

R3

∫

R

∫

R+

ψ(x, r, z)

(∫

S(x)

u(x, r ω + z b(x)) dω − 2π 〈u〉

)

rdrdzdx = 0

and therefore 〈u〉 = Projker T u for any u ∈ L2(R3 × R
3). In particular 〈u〉 = u for any

u ∈ ker T and ‖ 〈·〉 ‖L(L2(R3×R3),L2(R3×R3)) = 1.

For further use we inquire now about the solvability of T u = v. It is easily seen that

if T u = v is solvable (i.e., v ∈ Range T ) then 〈v〉 = 0. Indeed, using the variational

characterization of the average operator, we have for any function ϕ ∈ ker T
∫

R3

∫

R3

(v − 0)ϕ dpdx =

∫

R3

∫

R3

T u ϕ dpdx = −

∫

R3

∫

R3

u T ϕ dpdx = 0

saying that 〈v〉 = 0. Generally we can prove that ker 〈·〉 = Range T . Indeed, since

〈·〉 = Projker T and T ⋆ = −T we have

ker 〈·〉 = (ker T )⊥ = (ker T ⋆)⊥ = Range T .

Moreover we have the orthogonal decomposition of L2(R3×R
3) into invariant functions

along the characteristics (15) and zero average functions

L2(R3 × R
3) = ker T ⋆ ⊕ (ker T ⋆)⊥ = ker T ⊕ Range T = ker T ⊕ ker 〈·〉 . (16)

It happens that under additional hypotheses the range of T is closed, leading to the

equality Range T = ker 〈·〉. The key point here is the Poincaré inequality
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Proposition 2.2 We assume that infx∈R3 B(x) > 0. Then T restricted to ker 〈·〉 is

one to one map onto ker 〈·〉. Its inverse belongs to L(ker 〈·〉 , ker 〈·〉) and we have the

Poincaré inequality

‖u‖ ≤
2π

|ω0|
‖T u‖, ω0 =

q

m
inf
x∈R3

B(x) 6= 0 (17)

for any u ∈ D(T ) ∩ ker 〈·〉.

Proof. By the previous computations we know that Range T ⊂ ker 〈·〉. Assume now

that u ∈ D(T ) ∩ ker 〈·〉 such that T u = 0. Since 〈·〉 = Projker T we have u = 〈u〉 = 0

saying that T |ker〈·〉 is injective. Consider now v ∈ ker 〈·〉 and let us prove that there is

u ∈ ker 〈·〉 ∩D(T ) such that T u = v. For any α > 0 there is a unique uα ∈ D(T ) such

that

α uα + T uα = v. (18)

Indeed it is easily seen that the solutions (uα)α>0 are given by

uα(x, p) =

∫

R−

eαsv(x, P (s;x, p)) ds, (x, p) ∈ R
3 × R

3.

Applying the average operator to (18) yields 〈uα〉 = 0 for any α > 0. We are looking

now for a bound of (‖uα‖)α>0. We introduce the function V (s;x, p) =
∫ 0

s
v(x, P (τ ;x, p)) dτ .

Notice that for any fixed (x, p) the function s → V (s;x, p) is Tc(x) periodic, because

〈v〉 = 0 and thus ‖V (s;x, ·)‖L2(R3) ≤ Tc(x)‖v(x, ·)‖L2(R3) for any s ∈ R. Integrating by

parts we obtain

uα(x, p) = −

∫

R−

eαs∂sV ds =

∫

R−

αeαsV (s;x, p) ds

implying that

‖uα(x, ·)‖L2(R3) ≤

∫

R−

αeαs‖V (s;x, ·)‖L2(R3) ≤ Tc(x)‖v(x, ·)‖L2(R3) ≤ T0‖v(x, ·)‖L2(R3),

where T0 = 2π
|ω0|

. After integration with respect to x we obtain the uniform estimate

‖uα‖ ≤ T0‖v‖ for any α > 0. Extracting a sequence (αn)n such that limn→+∞ αn = 0,

limn→+∞ uαn
= u weakly in L2(R3 × R

3) we deduce easily that

u ∈ D(T ), T u = v, 〈u〉 = 0, ‖u‖ ≤ T0‖v‖

saying that
(

T |ker〈·〉
)−1

is bounded linear operator and ‖
(

T |ker〈·〉
)−1

‖L(ker〈·〉,ker〈·〉) ≤ T0.
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Remark 2.1 For any function v ∈ ker 〈·〉 with compact support, the unique function

u ∈ ker 〈·〉 ∩ D(T ) such that T u = v has compact support. Indeed, assume that

supp v ⊂ {(x, p) ∈ R
3 × R

3 : |x| ≤ Lx, |p| ≤ Lp}.

Since |P (s;x, p)| = |p| it is easily seen that

supp uα ⊂ {(x, p) ∈ R
3 × R

3 : |x| ≤ Lx, |p| ≤ Lp}, α > 0

and therefore the weak limit u = limn→+∞ uαn
in L2(R3×R

3) satisfies u ∈ ker 〈·〉∩D(T ),

T u = v and

supp u ⊂ {(x, p) ∈ R
3 × R

3 : |x| ≤ Lx, |p| ≤ Lp}.

Corollary 2.1 Under the hypotheses of Proposition 2.2 assume that the function v

belongs to W 1,∞([0, T ];L2(R3×R
3)) such that 〈v(t)〉 = 0 for any t ∈ [0, T ]. Then T −1v

belongs to W 1,∞([0, T ];L2(R3 × R
3)) and we have

‖T −1v‖W 1,∞([0,T ];L2(R3×R3)) ≤ T0 ‖v‖W 1,∞([0,T ];L2(R3×R3)).

Proof. For any t ∈ [0, T ] we denote by u(t) the unique function of ker 〈·〉 ∩D(T ) such

that T u(t) = v(t). By Proposition 2.2 we deduce that

‖u‖L∞([0,T ];L2(R3×R3)) ≤ T0 ‖v‖L∞([0,T ];L2(R3×R3)).

For any t ∈]0, T [ and h > 0 small enough we have

‖u(t+ h) − u(t)‖ ≤ T0 ‖v(t+ h) − v(t)‖ ≤ T0h ‖v ′‖L∞([0,T ];L2(R3×R3))

implying that u ∈ W 1,∞([0, T ];L2(R3 × R
3)) and

‖u ′‖L∞([0,T ];L2(R3×R3)) ≤ T0 ‖v
′‖L∞([0,T ];L2(R3×R3)).

One of the crucial points when studying the asymptotic behaviour of (1) is how to

propagate the regularity through the map T −1. At the first sight this seems easily

achieved by taking space/momentum derivatives in the equality T u = v and combining

with the Poincaré inequality (17). Actually this arguments do not really work because

the space/momentum derivatives may not commute with T and the average operator.

11



Indeed, notice that the Poincaré inequality provides an estimate for some derivative

of u, let say ∂u, only if 〈∂u〉 = 0. Therefore, if ∂ and 〈·〉 are not commuting, we

may expect that 〈∂u〉 6= ∂ 〈u〉 = ∂0 = 0 and thus the Poincaré inequality can not be

used. The above considerations lead naturally to derivatives along fields in involution

with (0, ωc(x) p ∧ b(x)) ∈ R
6 i.e., fields c = c(x, p) ∈ R

6 such that the first order

operator c(x, p) · ∇x,p commutes with T . It was shown in [4] that the average operator

is commuting with derivatives along any such field in involution and finally we show

that u inherits the regularity of v. It is also possible to appeal to a slightly different

approach based on invariants [4]. We recall that a complete family of invariants for

T is given by {x, |p ∧ b(x)|, p · b(x)}. We will come back with more details about the

propagation of regularity under the action of T −1 on zero average smooth functions,

see Proposition 5.10.

3 Limit model

Using the properties of the average operator we investigate now the limit model of

(1) when ε ց 0 by appealing to the method introduced in [4] for general transport

problems. We perform our computations by assuming high enough smoothness. We

will see that the limit model is still a Vlasov equation, whose well posedness follows

by standard arguments. We emphasize that the method we employ here has been

studied in detail in [4] (see also [2]) for linear transport problems with even more

general dominant advection field, with characteristic flow not necessarily periodic. The

starting point consists in using a Hilbert expansion

f ε = f + εf 1 + ε2f 2 + ... (19)

Plugging the above ansatz into (1) yields

T f(t) = 0 (20)

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf + T f 1(t) = 0 (21)

∂tf
1 +

p

m
· ∇xf

1 + qE(t, x) · ∇pf
1 + T f 2(t) = 0 (22)

...

12



From the constraint T f(t) = 0 we deduce that there is a function g = g(t, x, r, z) such

that

f(t, x, p) = g(t, x, |p ∧ b(x)|, (p · b(x))). (23)

The time evolution of the dominant term f is described by (21) but we need to close

this equation with respect to the first order correction f 1. The key point here is to

eliminate T f 1 by using the equality ker 〈·〉 = Range T . In this manner one gets the

model
〈

∂tf +
p

m
· ∇xf + qE(t) · ∇pf

〉

= 0. (24)

Certainly we need to transform (24) into a more readable form taking into account the

symmetries in (23). Notice that, by construction, the time derivative and the average

operator are commuting. Therefore, since 〈f〉 = f ∈ ker T we obtain

〈∂tf〉 = ∂t 〈f〉 = ∂tf.

We compute now the averages of the derivatives with respect to space and momentum.

These computations become more complex due to the general geometry of the magnetic

field. For the sake of the presentation we split them into separate lemmas.

Lemma 3.1 For any a, b ∈ R
3, ω ∈ S2 we have

(ω · a) (ω · b) + (ω ∧ a) · (ω ∧ b) = a · b.

In particular if a · b = 0 then (ω ∧ a) · (ω ∧ b) = −(ω · a) (ω · b).

Proof. For any c ∈ R
3 we have |c|2 = (ω · c)2 + |ω ∧ c|2. The conclusion follows

immediately by applying the previous formula with c ∈ {a, b, a+ b}.

Lemma 3.2 Assume that f(x, p) = g(x, |p ∧ b(x)|, (p · b(x))). Then we have

〈 p

m
· ∇xf

〉

= b(x)⊗b(x)
p

m
·∇xg−

(p · b(x)) |p ∧ b(x)|

2m
divxb ∂rg+

|p ∧ b(x)|2

2m
divxb ∂zg.

Proof. For any i ∈ {1, 2, 3} we have

∂xi
f = ∂xi

g + ∂rg
p ∧ b(x)

|p ∧ b(x)|
· (p ∧ ∂xi

b) + ∂zg (p · ∂xi
b).

Since |b(x)| = 1 we have ∂xi
b · b(x) = 0 and therefore by Lemma 3.1 one gets

(b(x) ∧ p) · (∂xi
b ∧ p) = −(b(x) · p) (∂xi

b · p)

13



implying that

∂xi
f = ∂xi

g − ∂rg
(p · b(x))

|p ∧ b(x)|
(p · ∂xi

b) + ∂zg (p · ∂xi
b).

We obtain the formula

p · ∇xf = p · ∇xg − ∂rg
(p · b(x))

|p ∧ b(x)|

(

∂b

∂x
: p⊗ p

)

+ ∂zg

(

∂b

∂x
: p⊗ p

)

.

Notice that (∇xg)(x, |p ∧ b(x)|, (p · b(x))) ∈ ker T and therefore

〈p · ∇xg〉 = 〈p〉 · ∇xg = (b(x) · p) (b(x) · ∇xg).

By direct computation we obtain that

〈p⊗ p〉 (x, p) =
1

2
|p ∧ b(x)|2 (I − b(x) ⊗ b(x)) + (p · b(x))2 b(x) ⊗ b(x). (25)

Taking into account that ∂b
∂x

: b(x) ⊗ b(x) = b(x) · ∇x
|b(x)|2

2
= 0 we deduce

〈

∂b

∂x
: p⊗ p

〉

=
1

2
|p ∧ b(x)|2 divxb

and finally one gets

〈 p

m
· ∇xf

〉

= b(x)⊗b(x)
p

m
·∇xg−

(p · b(x)) |p ∧ b(x)|

2m
divxb ∂rg+

|p ∧ b(x)|2

2m
divxb ∂zg.

Lemma 3.3 Assume that f = g(x, |p ∧ b(x)|, (p · b(x))) and E = E(x). Then we have

〈qE · ∇pf〉 = q(b(x) · E(x)) ∂zg.

Proof. For any i ∈ {1, 2, 3} we have

∂pi
f = ∂rg

p ∧ b(x)

|p ∧ b(x)|
· (ei ∧ b(x)) + ∂zg bi(x)

where B = {e1, e2, e3} is the canonical basis of R
3. By Lemma 3.1 we know that

(b(x) · p) (b(x) · ei) + |b(x) ∧ p| · (b(x) ∧ ei) = pi

and therefore |b(x) ∧ p| · (b(x) ∧ ei) = (p− (b(x) · p) b(x))i. We obtain the formula

∇pf =
∂rg

|p ∧ b(x)|
(I − b(x) ⊗ b(x))p+ ∂zg b(x)

and finally, since (∂rg, ∂zg)(x, |p∧ b(x)|, (p · b(x))), E(x) ∈ ker T , one gets 〈qE · ∇pf〉 =

q(b(x) · E(x)) ∂zg.

14



Combining the computations in Lemmas 3.2, 3.3 yields the following Vlasov equation

in the phase space (x, r, z) ∈ R
3 × R+ × R

∂tg +
z

m
b(x) · ∇xg −

zr

2m
divxb ∂rg +

(

r2

2m
divxb+ q(b(x) · E(t, x))

)

∂zg = 0 (26)

whose characteristics (X,R,Z)(s; t, x, r, z) are given by

dX

ds
=
Z(s)

m
b(X(s)) (27)

dR

ds
= −

Z(s)R(s)

2m
divxb (X(s)) (28)

dZ

ds
=
R(s)2

2m
divxb (X(s)) + q(b(X(s)) · E(s,X(s))) (29)

(X,R,Z)(t) = (x, r, z). (30)

Certainly it is possible to write a Vlasov equation for the dominant distribution f . For

this it is sufficient to express the derivatives of g with respect to the derivatives of f .

Recall that we have already obtained the formula ∂tf = ∂tg

∇xf = ∇xg−∂rg
(p · b(x))

|p ∧ b(x)|
t∂xb p+∂zg

t∂xb p, ∇pf = ∂rg
b(x) ∧ (p ∧ b(x))

|p ∧ b(x)|
+∂zg b(x).

Accordingly the derivatives of g write

∂tg = ∂tf, ∂zg = b(x) · ∇pf, ∂rg =
b(x) ∧ (p ∧ b(x))

|p ∧ b(x)|
· ∇pf

∇xg = ∇xf +

(

b(x) ∧ (p ∧ b(x))

|p ∧ b(x)|
· ∇pf

)

(p · b(x))

|p ∧ b(x)|
t∂xb p− (b(x) · ∇pf) t∂xb p

leading to the following Vlasov equation

∂tf + b(x) ⊗ b(x)
p

m
· ∇xf + (F⊥ + F‖) · ∇pf = 0 (31)

where

F⊥ = −ω(x, p) (p ·b(x))
b(x) ∧ (p ∧ b(x))

|p ∧ b(x)|
, F‖ = (ω(x, p) |p∧b(x)|+qE(t, x) ·b(x))b(x)

and

ω(x, p) =
|p ∧ b(x)|

2m
divxb−

(p · b(x))

m

(

∂xb b(x) ·
p

|p ∧ b(x)|

)

.

Observe that F⊥+F‖ = qb(x)⊗b(x)E+ω(x, p) ⊥p and thus (31) reduces to (4). Notice

that the forces F⊥, F‖ may become singular when the momentum p is parallel to the
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magnetic field. Nevertheless the forces remain bounded around these singularities.

Indeed, since t∂xb b(x) = 0 we can write

(

∂xb b(x) ·
p

|p ∧ b(x)|

)

=

(

∂xb b(x) ·
b(x) ∧ (p ∧ b(x))

|p ∧ b(x)|

)

implying that the frequency ω(x, p) remains bounded (and therefore the forces F⊥, F‖

as well)

|ω(x, p)| ≤
|p ∧ b(x)|

2m
|divxb| +

|(p · b(x))|

m
|∂xb b(x)| .

It remains to determine the initial condition for (31). For this we multiply (1) with

η(t)ϕ(x, p) where η ∈ C1
c (R+) and ϕ ∈ C1

c (R
3 × R

3) ∩ ker T . We deduce the weak

formulation

−

∫

R+

η ′(t)

∫

R3

∫

R3

f ε(t, x, p)ϕ(x, p) dpdxdt− η(0)

∫

R3

∫

R3

f ε(0, x, p)ϕ(x, p) dpdx

−

∫

R+

η(t)

∫

R3

∫

R3

f ε(t, x, p)
( p

m
· ∇xϕ+ qE(t, x) · ∇pϕ

)

dpdxdt = 0. (32)

Passing to the limit as εց 0 one gets

d

dt

∫

R3

∫

R3

f(t, x, p)ϕ(x, p) dpdx =

∫

R3

∫

R3

f(t, x, p)
( p

m
· ∇xϕ+ qE(t, x) · ∇pϕ

)

dpdx

and

∫

R3

∫

R3

f(0, x, p)ϕ(x, p) dpdx = lim
tց0

∫

R3

∫

R3

f(t, x, p)ϕ(x, p) dpdx =

∫

R3

∫

R3

f in(x, p)ϕ(x, p) dpdx

implying that

∫

R3

∫

R3

(f in(x, p) − f(0, x, p))ϕ(x, p) dpdx = 0, ∀ ϕ ∈ ker T .

Since we already know that f(0, ·, ·) ∈ ker T we deduce by Proposition 2.1 that

f(0, x, p) =
〈

f in
〉

(x, p) =: gin(x, |p ∧ b(x)|, (p · b(x))), (x, p) ∈ R
3 × R

3 (33)

At this stage let us make some comments about the limit model (31), (33). The

particles are advected only along the magnetic field lines and consequently there is no

current in the orthogonal directions to the magnetic lines

j(t, x) = q

∫

R3

f(t, x, p)
p

m
dp = q

∫

R3

f(t, x, p)
〈p〉

m
dp = q

∫

R3

f(t, x, p)
(p · b(x))

m
dp b(x).
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Notice also that the electric field accelerates the particles only along the magnetic field

lines. It can be shown that the constraint T f(t) = 0 is propagated by the Vlasov

equation (31), i.e., T f(t) = 0 ∀ t > 0 provided that T f(0) = 0. For checking this let

us introduce the characteristics (X,P )(s; t, x, p) associated to (31)

dX

ds
= b(X(s)) ⊗ b(X(s))

P (s)

m
,

dP

ds
= (F⊥ + F‖)(s,X(s), P (s)), (X,P )(t) = (x, p).

(34)

A straightforward computation shows that the quantities X(s), |P (s)∧b(X(s))|, (P (s) ·

b(X(s))) satisfy the characteristic equations (27), (28), (29) implying that

(X, |P ∧ b(X)|, (P · b(X)) )(0; t, x, p) = (X,R,Z)(0; t, x, |p ∧ b(x)|, (p · b(x))).

Therefore one gets

f(t, x, p) = f(0, X(0; t, x, p), P (0; t, x, p))

= gin(X(0; t, x, p), |P (0; t, x, p) ∧ b(X(0; t, x, p))|, (P (0; t, x, p) · b(X(0; t, x, p))))

= gin((X,R,Z)(0; t, x, |p ∧ b(x)|, (p · b(x)))) ∈ ker T .

By the above considerations we know that the problems (26), (31) are equivalent.

Nevertheless, for the numerical point of view it is preferable to consider the problem

(26) since its phase space (x, r, z) ∈ (R3×R+×R) has only 5 dimensions, whereas (31)

is posed in a 6 dimensional phase space. At the first sight the resolution of (26) may

require some conditions on the boundary r = 0 at any time t > 0. Actually this is not

the case, as emphasized in the following proposition.

Proposition 3.1 We denote by µ = µ(x, p) the magnetic moment

µ(x, p) =
|p ∧ b(x)|2

2mB(x)
=

r2

2mB(x)
.

If the magnetic field is divergence free, then the magnetic moment is an invariant for

(31), resp. (26). In particular the solution of (26) is given by

g(t, x, r, z) =







gin((X,R,Z)(0; t, x, r, z)), if (t, x, r, z) ∈ R+ × R
3 × R

⋆
+ × R

gin(X̃(0; t, x, z), 0, Z̃(0; t, x, z)), if (t, x, r, z) ∈ R+ × R
3 × {0} × R

(35)

where (X̃, Z̃) solve

dX̃

ds
=
Z̃(s)

m
b(X̃(s)),

dZ̃

ds
= qE(s, X̃(s)) · b(X̃(s)), (X̃, Z̃)(t) = (x, z).
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Proof. We perform the computations with respect to the coordinates (x, r, z). We

have
(

∂t +
z

m
b(x) · ∇x −

zr

2m
divxb ∂r +

(

r2

2m
divxb+ qE(t, x) · b(x)

)

∂z

)

µ =

= −
r2z

2m2B2(x)
(b(x) · ∇xB +B(x) divxb)

= −
r2z

2m2B2(x)
divx(Bb) = 0.

The invariance of the magnetic moment ensures that R2(s; t, x, r, z) > 0 for any s ≥ 0,

r > 0 and by the continuity of the application s → R(s; t, x, r, z) we deduce that

R(s; t, x, r, z) > 0 for any s ≥ 0, r > 0. In the case r = 0 the same invariance

guarantees that R(s; t, x, r, z) = 0 for any s ≥ 0 and thus the characteristic equations

for (X,R,Z) reduce to that of (X̃, Z̃). Therefore the solution of (26) is given by the

formula (35).

Remark 3.1 If a charged particle situated at the point x has momentum parallel to

the magnetic field, i.e., p ∧ b(x) = 0, then at any time s the particle remains to the

same magnetic line and its coordinates in the phase space satisfy

dX

ds
=
b(X(s)) · P (s)

m
b(X(s)),

d

ds
(b(X(s))·P (s)) = q E(s,X(s))·b(X(s)), P (s)∧b(X(s)) = 0.

Remark 3.2 We recognize the expression of the diamagnetic force acting in the parallel

direction to the magnetic field. The parallel component of the force ω(x, p) ⊥p is

|p ∧ b(x)|2

2m
divxb b(x) = µ(x, p)B(x) divxb b(x) = −µ(x, p)(∇xB · b(x)) b(x).

For further computations it is useful to write the equation (31) in conservative form.

By direct calculus we obtain

divx

(

b(x) ⊗ b(x)
p

m

)

+divp(F⊥+F‖) =
(p · b(x))2

|p ∧ b(x)|2

(

∂xb b(x) ·
b(x) ∧ (p ∧ b(x))

m

)

(36)

and therefore (31) is equivalent to

∂tf+divx

(

fb(x) ⊗ b(x)
p

m

)

+divp(f(F⊥+F‖)) = f
(p · b(x))2

|p ∧ b(x)|2

(

∂xb b(x) ·
b(x) ∧ (p ∧ b(x))

m

)

.

(37)

A direct consequence of the above conservative form (with zero average source term)

is the balance of the total energy.
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Proposition 3.2 We have the kinetic energy balance

d

dt

∫

R3

∫

R3

f(t, x, p)
|p|2

2m
dpdx =

∫

R3

E(t, x) ·

∫

R3

q f(t, x, p)
p

m
dp dx, t ∈ R+.

In particular si E = −∇xφ satisfies the Poisson equation −∆xφ = q
ε0

∫

R3f dp then the

total energy (kinetic and electrostatic) is conserved

d

dt

∫

R3

∫

R3

f(t, x, p)

(

|p|2

2m
+
qφ(t, x)

2

)

dpdx = 0.

Proof. Notice that the functions f, (p · b(x))2, |p ∧ b(x)|2, |p|2 belong to ker T and

〈p ∧ b(x)〉 = 0 implying that

∫

R3

∫

R3

f(t, x, p)
|p|2

2m

(p · b(x))2

|p ∧ b(x)|2

(

∂xb b(x) ·
b(x) ∧ (p ∧ b(x))

m

)

dpdx = 0.

Therefore multiplying (37) by |p|2

2m
yields after integration over R

3 × R
3

d

dt

∫

R3

∫

R3

f(t, x, p)
|p|2

2m
dpdx =

∫

R3

∫

R3

f(t, x, p)
p

m
· (F⊥ + F‖) dpdx

=

∫

R3

E(t, x) ·

∫

R3

qf(t, x, p) b(x) ⊗ b(x)
p

m
dp dx

=

∫

R3

E(t, x) ·

∫

R3

qf(t, x, p)
p

m
dp dx.

The conservation of the total energy follows in standard manner by using the continuity

and Poisson equations.

Remark 3.3 The Vlasov equation (31) can be written in conservative form. Indeed,

by (36) we have

divx

(

b(x) ⊗ b(x)
p

m

)

+ divp(F⊥ + F‖) = T λ, λ = −
(p · b(x))2

|p ∧ b(x)|2

(

∂xb b ·
p ∧ b(x)

mωc

)

and since T f = 0, the equation (31) is equivalent to

∂tf + divx

(

fb(x) ⊗ b(x)
p

m

)

+ divp(f(F⊥ + F‖ − λ ωc(x) p ∧ b(x) )) = 0.

In Proposition 3.1 it was shown that the magnetic moment µ is an invariant for (26). As

usual this allows us to reduce (26) to a transport problem depending on one parameter,

posed in a 4 dimensional phase space. Indeed, the change of variable

g(t, x, r, z) = k(t, x, µ, z), µ =
r2

2mB(x)
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leads to the problem

∂tk+
z

m
b(x) ·∇xk+(qE(t, x)−µ∇xB) ·b(x) ∂zk = 0, (t, x, z) ∈ R+×R

3×R, µ ∈ R+.

Motivated by such reductions, it is worth searching for other invariants. By direct

computation we check the invariance of the energy function.

Proposition 3.3 Assume that the electric potential is stationary i.e., ∂tφ = 0. Then

the energy e = |p|2

2m
+ qφ(x) = r2+z2

2m
+ qφ(x) is an invariant for (31), resp. (26).

4 Asymptotic behaviour

Our goal thereafter will be to give some details about the convergence as ε ց 0

of the solutions (f ε)ε>0 for (1), (2) towards the solution of (31), (33). First we focus

on weak convergence results. Secondly we derive strong convergence results for well

prepared initial data.

Theorem 4.1 Assume that (f in
ε )ε>0 converges weakly in L2(R3×R

3) as εց 0 to some

function f in ∈ L2(R3 ×R
3) and let us denote by (f ε)ε>0 the sequence of weak solutions

of (1) with the initial conditions (f in
ε )ε>0. We suppose that E ∈ L∞

loc(R+;L∞(R3))3, b ∈

W 1,∞(R3)3 and divx(Bb) = 0. Then (f ε)ε>0 converges weakly ⋆ in L∞(R+;L2(R3×R
3))

as εց 0 to the weak solution of (31), (33).

Proof. It is a straightforward consequence of the computations in Lemmas 3.2, 3.3.

We only sketch the main steps. Since the characteristic flow associated to the transport

operator p
m
· ∇x + q(E(t, x) + p

m
∧ Bε) · ∇p is measure preserving we deduce that

∫

R3

∫

R3

|f ε(t, x, p)|2 dpdx =

∫

R3

∫

R3

|f in
ε (x, p)|2 dpdx, t ∈ R+, ε > 0

and therefore, after extraction eventually, we can assume that (f ε)ε>0 converges weakly

⋆ in L∞(R+;L2(R3 × R
3)) to some function f . Multiplying by ε the weak formulation

of (1) written with the test function η(t)ϕ(x, p), η ∈ C1
c (R+), ϕ ∈ C1

c (R
3 × R

3) and

passing to the limit for ε ց 0 imply that f(t) ∈ ker T , t ∈ R+. Therefore there is a

function g = g(t, x, r, z) such that

f(t, x, p) = g(t, x, |p ∧ b(x)|, (p · b(x))), (t, x, p) ∈ R+ × R
3 × R

3. (38)
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Choosing now smooth test functions ϕ which belong to the kernel of T yields by letting

εց 0 (see (32))

−

∫

R+

η ′(t)

∫

R3

∫

R3

f(t, x, p)ϕ(x, p) dpdxdt− η(0)

∫

R3

∫

R3

f in(x, p)ϕ(x, p) dpdx

−

∫

R+

η(t)

∫

R3

∫

R3

f(t, x, p)
( p

m
· ∇xϕ+ qE(t, x) · ∇pϕ

)

dpdxdt = 0. (39)

We are done if we prove that the formulation (39) is equivalent to the transport problem

(31), (33). For doing this we transform all the integrals in (39) by using the symmetries

of f cf. (38) and the properties of the average operator. Since ϕ belongs to the kernel

of T , there is a function ψ such that ϕ(x, p) = ψ(x, |p∧b(x)|, (p·b(x))), (x, p) ∈ R
3×R

3.

It is easily seen, by using cylindrical coordinates along the magnetic axis, that

−

∫

R+

η ′(t)

∫

R3

∫

R3

fϕ dpdxdt = −

∫

R+

∫

R3

∫

R+

∫

R

g(t, x, r, z)∂t(ηψ2πr) dzdrdxdt (40)

and

−η(0)

∫

R3

∫

R3

f inϕ dpdx = −η(0)

∫

R3

∫

R3

〈

f in
〉

ϕ dpdx

= −

∫

R3

∫

R+

∫

R

gin(x, r, z)(η(0)ψ2πr) dzdrdx. (41)

For the last integral in (39) we appeal to Lemmas 3.2, 3.3.

−

∫

R+

η(t)

∫

R3

∫

R3

f(t, x, p)
( p

m
· ∇xϕ+ qE(t, x) · ∇pϕ

)

dpdxdt =

−

∫

R+

η(t)

∫

R3

∫

R3

f(t, x, p)
〈 p

m
· ∇xϕ+ qE(t, x) · ∇pϕ

〉

dpdxdt =

−

∫

R+

η(t)

∫

R3

∫

R3

f

{

b(x) ⊗ b(x)
p

m
· ∇xψ −

(p · b(x))|p ∧ b(x)|

2m
divxb ∂rψ

+
|p ∧ b(x)|2

2m
divxb ∂zψ + q(E(t, x) · b(x))∂zψ

}

dpdxdt =

−

∫

R+

∫

R3

∫

R+

∫

R

g(t, x, r, z)
{

divx

(

ηψ2πr
z

m
b(x)

)

− ∂r

(

ηψ2πr
zr

2m
divxb

)

+∂z

(

ηψ2πr

(

r2

2m
divxb+ qE(t, x) · b(x)

))}

dzdrdxdt. (42)

Gathering together (40), (41), (42) in (39) yields exactly the weak formulation of (26),

(33) and therefore f solves (31), (33). By the uniqueness of the solution of (31), (33) we

deduce that all the family (f ε)ε>0 converges weakly ⋆ in L∞(R+;L2(R3 ×R
3)) towards

f .
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We inquire now about the strong convergence of the family (f ε)ε>0 when the initial

conditions are well prepared

lim
εց0

f in
ε = f in ∈ ker T strongly in L2(R3 × R

3).

These results are definitely much difficult to establish and require smoothness for the

solution of the limit model. The key point is the characterization for the solvability of

T u = v (see Proposition 2.2): v ∈ Range T iff 〈v〉 = 0.

Theorem 4.2 Assume that (f in
ε )ε>0 are smooth and converge strongly in L2(R3 ×R

3)

as εց 0 towards some function f in ∈ ker T ∩ C2
c (R

3 × R
3) verifying

f in(x, p) = 0, (x, p) ∈ R
3 × R

3, |p ∧ b(x)| ≤ rin

for some rin > 0. We suppose that E ∈ L∞
loc(R+;W 1,∞(R3))3, ∂tE ∈ L∞

loc(R+;L∞(R3))3,

b ∈ W 2,∞(R3)3, B ∈ W 1,∞(R3), divx(Bb) = 0 and infx∈R3 B(x) > 0. Then (f ε)ε>0 con-

verges strongly in L∞
loc(R+;L2(R3×R

3)) as εց 0 to f . In particular if ((f in
ε −f in)/ε)ε>0

is bounded in L2(R3 × R
3), then ((f ε − f)/ε)ε>0 is bounded in L∞

loc(R+;L2(R3 × R
3)).

Proof. Notice that the characteristics (X,P ) in (34) satisfies

|X(t) −X(0)| ≤

∫ t

0

|P (s)|

m
ds

| |P (t)| − |P (0)| | ≤ |q|

∫ t

0

‖E(s)‖L∞(R3) ds

and therefore it is easily seen that at any time t ∈ R+ the solution f of (31), (33) has

compact support. Indeed, if

supp f in ⊂ {(x, p) ∈ R
3 × R

3 : |x| ≤ Lx, |p| ≤ Lp}

then for any t ∈ [0, T ], T ∈ R+ we have

supp f(t, ·, ·) ⊂ {(x, p) ∈ R
3 × R

3 : |x| ≤ LTx , |p| ≤ LTp }

where

LTp = Lp + |q|

∫ T

0

‖E(s)‖L∞(R3) ds, LTx = Lx +
T

m
LTp .

Moreover, the regularity of the electro-magnetic field guarantees that for any T ∈ R+

∇2
t,x,p(X,P )(s; t, ·, ·) ∈ L∞(R3 × R

3)
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uniformly with respect to s, t ∈ [0, T ] and therefore the strong solution f of (31), (33),

which is given by

f(t, x, p) = f in((X,P )(0; t, x, p))

belongs to W 2,∞([0, T ]×R
3×R

3). In particular, the compactness of the support yields

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf ∈ L∞([0, T ];W 1,1 ∩W 1,∞(R3 × R

3))

∂t

(

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf

)

∈ L∞([0, T ];L2(R3 × R
3)).

The solution f of the limit model (31), (33) satisfies

f(0) = f in,
〈

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf

〉

= 0, T f(t) = 0, t ∈ R+.

By Proposition 2.2 there is a unique function h such that

h(t) ∈ D(T ), ∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf + T h(t) = 0, 〈h(t)〉 = 0, t ∈ R+. (43)

By Remark 2.1, Corollary 2.1 and Proposition 5.10 the corrector function h(t, ·, ·) has

compact support in R
3 × R

3, uniformly with respect to t ∈ [0, T ], and the regularity

h ∈ L∞([0, T ];W 1,1 ∩W 1,∞(R3 × R
3)), ∂th ∈ L∞([0, T ];L2(R3 × R

3)).

We deduce that

∂th+
p

m
· ∇xh+ qE(t, x) · ∇ph ∈ L∞([0, T ];L2(R3 × R

3))

and thus combining (1), (43) and T f = 0 yields

∂t(f
ε − f − εh) +

p

m
· ∇x(f

ε − f − εh) + qE(t) · ∇p(f
ε − f − εh) +

1

ε
T (f ε − f − εh) =

− ε
(

∂th+
p

m
· ∇xh+ qE(t) · ∇ph

)

.

Multiplying by f ε − f − εh and integrating over R
3 × R

3 one gets

1

2

d

dt
‖f ε − f − εh‖2 ≤ ε

∥

∥

∥
∂th+

p

m
· ∇xh+ qE(t) · ∇ph

∥

∥

∥
‖f ε − f − εh‖

implying that

‖(f ε−f−εh)(t)‖ ≤ ‖f in
ε −f

in−εh(0)‖+ε

∫ t

0

∥

∥

∥
∂th+

p

m
· ∇xh+ qE(s) · ∇ph

∥

∥

∥
ds, t ∈ R+.

Therefore for any T > 0 there is a constant CT not depending on ε > 0 such that

‖f ε(t) − f(t)‖ ≤ ‖f in
ε − f in‖ + CT ε, t ∈ [0, T ], ε > 0

and our conclusions follow immediately.
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5 Second order gyrokinetic Vlasov equation

In the previous section it was shown that up to O(ε) terms, the particle distributions

(f ε)ε>0 solving (1), (2) behave like the solution of the limit model (31) (or equivalently

(26)) (33).

The main motivation of the guiding-center approximation relies on the confinement

properties. We have seen that at the lowest order the particles are advected along the

magnetic lines and therefore the plasma remains confined provided that the magnetic

field shape is such that the magnetic lines are closed into a bounded domain. Never-

theless, in order to approximate the confinement time we need to compute the drift

velocities in the orthogonal directions to the magnetic lines corresponding to the first

order correction (X1, P 1) of the particle dynamics (Xε, P ε) in (6). We inquire about

higher order approximation for the Vlasov equation with large magnetic field. Certainly

we may expect that the second order approximation follows by similar arguments. Ac-

tually this analysis requires much more computations. In this case is convenient to

establish first some general results on abstract average operators. It mainly concerns

their commutation properties with respect to first order differential operators. Next

we will appeal to these results and we will obtain the second order approximation for

the Vlasov equation (1).

5.1 Average operator revisited

In this section the notation b0 stands for a given field b0 : R
m → R

m satisfying

b0 ∈ W 1,∞
loc (Rm) (44)

divyb
0 = 0 (45)

and the growth condition

∃ C > 0 : |b0(y)| ≤ C(1 + |y|), y ∈ R
m. (46)

Under the above hypotheses the characteristic flow Y = Y (s; y) is well defined

dY

ds
= b0(Y (s; y)), (s, y) ∈ R × R

m (47)

Y (0; y) = y, y ∈ R
m, (48)
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and has the regularity Y ∈ W 1,∞
loc (R×R

m). By (45) we deduce that for any s ∈ R, the

map y → Y (s; y) is measure preserving

∫

Rm

θ(Y (s; y)) dy =

∫

Rm

θ(y) dy, ∀ θ ∈ L1(Rm).

We have the following standard result concerning the kernel of u→ T u = divy(b
0(y)u(y)).

Proposition 5.1 Let u ∈ L1
loc(R

m). Then divy(b
0(y)u(y)) = 0 in D ′(Rm) iff for any

s ∈ R we have u(Y (s; y)) = u(y) for a.a. y ∈ R
m.

We denote by T the linear operator defined by Tu = divy(b
0(y)u(y)) for any u in

the domain

D(T ) = {u ∈ L2(Rm) : divy(b
0(y)u(y)) ∈ L2(Rm)}.

Thanks to Proposition 5.1 we have

kerT = {u ∈ L2(Rm) : u(Y (s; y)) = u(y), s ∈ R, a.e. y ∈ R
m}.

Following the ideas in [4] we introduce the average operator along the measure pre-

serving flow Y .

Proposition 5.2 For any function u ∈ L2(Rm) the averages (T−1
∫ T

0
u(Y (s; ·)) ds)T>0,

(T−1
∫ 0

−T
u(Y (s; ·)) ds)T>0 converge strongly in L2(Rm) as T → +∞ towards some

function denoted 〈u〉 ∈ kerT . The average operator u → 〈u〉 is linear continuous on

L2(Rm). Moreover it coincides with the orthogonal projection on the kernel of T i.e.,

〈u〉 ∈ kerT :

∫

Rm

(u− 〈u〉)ϕ(y) dy = 0, ϕ ∈ kerT.

As in Section 2 we have

ker 〈·〉 = ker ProjkerT = ⊥(kerT ) = ⊥(kerT ⋆) = Range T

and for any u ∈ L2(Rm) we have the orthogonal decomposition

u = (u− 〈u〉) + 〈u〉 ,

∫

Rm

(u− 〈u〉) 〈u〉 dy = 0.

We will assume that the range of T is closed. This is the case for strongly magnetized

plasmas, cf. Proposition 2.2 i.e.,

Range T = ker 〈·〉 . (49)
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We are looking now for first order differential operators commuting with the average

operator. Consider a smooth field c with bounded divergence

c ∈ W 1,∞
loc (Rm), divyc ∈ L∞(Rm)

and let us denote by Z the flow associated to c (we assume that Z is well defined for

any (s, y) ∈ R × R
m). We consider the operator c · ∇y

D(c·∇y) = {u ∈ L2(Rm) : divy(cu) ∈ L2(Rm)}, c·∇yu = divy(cu)−(divyc)u, u ∈ D(c·∇y)

where the divergence is understood in distribution sense i.e., there is a function v ∈

L2(Rm) such that
∫

Rm

vϕ dy +

∫

Rm

u(c · ∇yϕ) dy = 0

for any function ϕ ∈ C1
c (R

m) or equivalently

sup
ϕ 6=0,ϕ∈C1

c (Rm)

∣

∣

∫

Rmu(c · ∇yϕ) dy
∣

∣

‖ϕ‖L2(Rm)

< +∞.

We want to determine the fields c such that c · ∇y is commuting with 〈·〉 i.e., for any

u ∈ D(c · ∇y) the average 〈u〉 belongs to D(c · ∇y) and

c · ∇y 〈u〉 = 〈c · ∇yu〉 .

Notice that the differential operator associated to such a field c leaves invariant the

kernel of T

∀ u ∈ D(c · ∇y) ∩ kerT, c · ∇yu ∈ kerT. (50)

Indeed, for any u ∈ D(c · ∇y) ∩ kerT we have u = 〈u〉 and

c · ∇yu = c · ∇y 〈u〉 = 〈c · ∇yu〉 ∈ kerT.

Actually the condition (50) can be written in a simpler form. For any function u ∈

L2(Rm) the notation uh stands for the translation u(Z(h; ·)). Since divyc is bounded,

notice that uh ∈ L2(Rm) for any h ∈ R. We appeal to the standard result (see [8],

Proposition IX.3, pp. 153 for similar results).

Lemma 5.1 Let u be a function in L2(Rm). Then the following statements are equiv-

alent

26



a) u ∈ D(c · ∇y).

b) (h−1(uh − u))h is bounded in L2(Rm).

Moreover, for any u ∈ D(c · ∇y) we have the convergence

lim
h→0

uh − u

h
= c · ∇yu, strongly in L2(Rm).

We have the following formula of integration by parts.

Lemma 5.2 For any function u, ϕ ∈ D(c · ∇y) we have

∫

Rm

(c · ∇yϕ)u dy +

∫

Rm

(c · ∇yu)ϕ dy +

∫

Rm

(divyc)uϕ dy = 0.

Based on the characterization in Lemma 5.1 we prove that (50) is equivalent to the

invariance of kerT by the translations u→ uh.

Proposition 5.3 A smooth field c with bounded divergence satisfies (50) iff the trans-

lations parallel to c leave invariant the kernel of T i.e.,

∀ h ∈ R, ∀ u ∈ kerT then uh ∈ kerT. (51)

Proof. Assume that (51) holds true and let us consider u ∈ D(c · ∇y) ∩ kerT . By

Lemma 5.1 we know that

c · ∇yu = lim
h→0

uh − u

h
strongly in L2(Rm).

But for any h 6= 0 we have (uh − u)/h ∈ kerT and since kerT is closed (because T is

closed) we deduce that c · ∇yu ∈ kerT .

Assume now that (50) holds true and let us establish (51). For the sake of simplicity

we assume that the field b0 possesses a complete family of smooth independent prime

integrals denoted ψ1, ..., ψm−1 i.e.,

b0 · ∇yψi = 0, i ∈ {1, 2, ...,m− 1}, rank ∂yψ(y) = m− 1, y ∈ R
m

where ψ = t(ψ1, ..., ψm−1). Actually this is enough for our purpose since the above

hypotheses hold true for strongly magnetized plasmas. Notice that it is sufficient to

consider u = ψi, i ∈ {1, 2, ...,m− 1}. We can write

d

dh
ψi(Z(h; y)) = (c · ∇yψi)(Z(h; y)).
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But c · ∇yψi ∈ kerT and therefore

c · ∇yψi = vi(ψ1(y), ..., ψm−1(y)), y ∈ R
m

for some smooth function vi implying that

d

dh
ψi(Z(h; y)) = vi(ψ1(Z(h; y)), ..., ψm−1(Z(h; y))), y ∈ R

m.

Similarly we have

d

dh
ψi(Z(h;Y (s; y))) = vi(ψ1(Z(h;Y (s; y))), ..., ψm−1(Z(h;Y (s; y)))), y ∈ R

m.

The functions h → ψ(Z(h; y)) and h → ψ(Z(h;Y (s; y))) satisfy the same system of

differential equations and the same initial conditions

ψ(Z(0; y)) = ψ(y) = ψ(Y (s; y)) = ψ(Z(0;Y (s; y))).

By the uniqueness of the solution we deduce that

ψ(Z(h;Y (s; y))) = ψ(Z(h; y)), h, s ∈ R

saying that ψh is constant along the flow Y .

Remark 5.1 In the sequel we will need to pick test functions ϕ ∈ D(c · ∇y) ∩ kerT .

When the field b0 possesses a complete family of smooth independent prime integrals

ψ1, ..., ψm−1 verifying

lim
|y|→+∞

(|ψ1(y)| + ...+ |ψm−1(y)|) = +∞ (52)

it is easily seen that for any function v ∈ C1
c (R

m−1) the function y → v(ψ1(y), ..., ψm−1(y))

belongs to C1
c (R

m) ∩ kerT which is contained in D(c · ∇y) ∩ kerT .

Adapting the arguments in the proof of Lemma 5.1 yields a similar characterization

for the elements of D(c · ∇y) ∩ kerT .

Proposition 5.4 Consider a smooth field c = c(y) with bounded divergence such that

c · ∇y leaves invariant the kernel of T and a function u ∈ kerT . Then u belongs to

D(c · ∇y) iff

sup
ϕ 6=0,ϕ∈C1

c (Rm)∩kerT

∣

∣

∫

Rm(c · ∇yϕ)u dy
∣

∣

‖ϕ‖L2(Rm)

< +∞. (53)
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Proof. We only indicate the main lines. The key point is that for functions u ∈ kerT

the uniform bound in (53) (when ϕ spans only the constant functions along the flow

Y ) ensures the boundedness of
(

uh−u
h

)

h
in L2(Rm), which implies, by Lemma 5.1,

that u ∈ D(c · ∇y). Indeed, since by Proposition 5.3 we know that the translation

parallel to c leaves invariant kerT , when estimating the L2(Rm) norm of uh−u
h

it is

sufficient to integrate against smooth test functions ϕ ∈ C1
c (R

m)∩kerT . After standard

computations we obtain a uniform bound for the L2 norms of
(

uh−u
h

)

h
provided that

(53) holds true.

We are ready now to establish the following result for differential operators leaving

invariant the kernel of T .

Proposition 5.5 Consider a smooth field c = c(y) with bounded divergence such that

the operator c ·∇y leaves invariant the kernel of T . Then for any function u ∈ D(c ·∇y)

the average 〈u〉 belongs to D(c · ∇y) and

c · ∇y 〈u〉 − 〈c · ∇yu〉 = 〈(u− 〈u〉) divyc〉 .

Proof. Let us consider u ∈ D(c · ∇y). Using the variational charaterization of the

average operator and the integration by parts formula in Lemma 5.2 we can write for

any test function ϕ ∈ C1
c (R

m) ∩ kerT

∫

Rm

〈c · ∇yu〉ϕ dy =

∫

Rm

(c · ∇yu) ϕ dy

= −

∫

Rm

uϕ divyc dy −

∫

Rm

(c · ∇yϕ) u dy. (54)

Since c · ∇y leaves invariant the kernel of T , the function c · ∇yϕ belongs to kerT . We

have
∫

Rm

(c · ∇yϕ)u dy =

∫

Rm

(c · ∇yϕ) 〈u〉 dy

and therefore
∫

Rm

(c · ∇yϕ) 〈u〉 dy = −

∫

Rm

(u divyc+ c · ∇yu)ϕ dy

implying that

sup
ϕ 6=0,ϕ∈C1

c (Rm)∩kerT

∣

∣

∫

Rm(c · ∇yϕ) 〈u〉 dy
∣

∣

‖ϕ‖L2(Rm)

≤ ‖divyc‖L∞(Rm)‖u‖L2(Rm) + ‖c · ∇yu‖L2(Rm).
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By Proposition 5.4 we deduce that 〈u〉 ∈ D(c · ∇y) and coming back in (54) yields

∫

Rm

〈c · ∇yu〉ϕ dy = −

∫

Rm

uϕ divyc dy −

∫

Rm

(c · ∇yϕ) 〈u〉 dy

=

∫

Rm

(c · ∇y 〈u〉)ϕ dy +

∫

Rm

(〈u〉 − u)ϕ divyc dy

=

∫

Rm

(c · ∇y 〈u〉)ϕ dy +

∫

Rm

〈(〈u〉 − u)divyc〉ϕ dy.

Finally one gets for any ϕ ∈ kerT

∫

Rm

{c · ∇y 〈u〉 − 〈c · ∇yu〉 − 〈(u− 〈u〉)divyc〉}ϕ dy = 0

and since c · ∇y 〈u〉 ∈ kerT (because c · ∇y leaves invariant the kernel of T ) we deduce

that

c · ∇y 〈u〉 − 〈c · ∇yu〉 = 〈(u− 〈u〉) divyc〉 .

Remark 5.2 We may expect a simpler justification for Proposition 5.4 by extending

the uniform bound in (53) to any smooth function in L2(Rm), not necessarily in kerT .

Indeed for any ϕ ∈ C1
c (R

m) we can use the orthogonal decomposition in L2(Rm)

ϕ = 〈ϕ〉 + (ϕ− 〈ϕ〉)

then try to write for some constant C

∣

∣

∣

∣

∫

Rm

(c · ∇y 〈ϕ〉)u dy

∣

∣

∣

∣

≤ C‖ 〈ϕ〉 ‖L2(Rm) ≤ C‖ϕ‖L2(Rm) (55)

(since 〈ϕ〉 ∈ kerT ) by expecting that

〈c · ∇y(ϕ− 〈ϕ〉)〉 = 0, which can be motivated by the fact that 〈ϕ− 〈ϕ〉〉 = 0. (56)

Actually (56) is not valid because it is not of all clear that c · ∇y leaves invariant the

kernel of the average operator. Indeed, by Proposition 5.5 we have for any zero average

function θ

〈c · ∇yθ〉 = −〈θ divyc〉

which clearly says that the last assertion is false at least when divyc is not constant

along the flow Y .
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We formulate now necessary and sufficient conditions for fields to be commuting with

the average operator.

Theorem 5.1 Consider a smooth field c = c(y) with bounded divergence and assume

that the field b0 possesses a complete family of smooth independent prime integrals

ψ1, ..., ψm−1 verifying (52). Then the following statements are equivalent

i) the operators c · ∇y and 〈·〉 are commuting;

ii) the operator c · ∇y leaves invariant the kernel of T = b0 · ∇y and divyc is constant

along the flow of b0.

Proof. Assume that c · ∇y and 〈·〉 are commuting. For any u ∈ D(c · ∇y) ∩ kerT the

average 〈u〉 = u belongs to D(c · ∇y) and we have

c · ∇yu = c · ∇y 〈u〉 = 〈c · ∇yu〉 ∈ kerT

saying that c · ∇y leaves invariant the kernel of T . For any function u ∈ D(c · ∇y) we

know that 〈u〉 ∈ D(c · ∇y) and by Proposition 5.5 we deduce that

0 = c · ∇y 〈u〉 − 〈c · ∇yu〉 = 〈(u− 〈u〉) divyc〉 .

Therefore for any ϕ ∈ kerT we have

∫

Rm

(u− 〈u〉)ϕ divyc dy = 0.

Let us consider v ∈ C2
c (R

m) and take u = Tv ∈ C1
c (R

m) ⊂ D(c · ∇y) implying that

∫

Rm

Tv ϕ divyc dy = 0, ϕ ∈ kerT.

We deduce that ϕ divyc is constant along the flow of b0 for any function ϕ ∈ kerT . We

are done if we are able to construct functions ϕ ∈ kerT with support including balls

in R
m with radii as large as we want. For example, consider w ∈ C1

c (R
m−1) such that

B(0, 1) ⊂ supp w and

ϕR(y) = w

(

ψ1(y)

M
, ...,

ψm−1(y)

M

)

, M = sup
|y|≤R

(|ψ1(y)|
2 + ...+ |ψm−1(y)|

2)1/2.

Clearly the condition (52) implies that for any R > 0, ϕR ∈ C1
c (R

m) ∩ kerT and for

any y ∈ B(0, R) we have ϕR(y) 6= 0 saying that B(0, R) ⊂ supp ϕR.

31



Conversely, assume that c · ∇y leaves invariant the kernel of T and that divyc is

constant along the flow of b0. By Proposition 5.5, for any u ∈ D(c · ∇y) the average

〈u〉 belongs to D(c · ∇y) and

c · ∇y 〈u〉 − 〈c · ∇yu〉 = 〈(u− 〈u〉) divyc〉 = 〈u− 〈u〉〉 divyc = 0.

For any i ∈ {1, 2, ...,m− 1} consider the field bi orthogonal to b0 and satisfying

bi · ∇yψk = δik, k ∈ {1, ...,m− 1}. (57)

Notice that the differential operators bi · ∇y leave invariant the kernel of T because for

any, let say smooth, u(y) = v(ψ1(y), ..., ψm−1(y)) ∈ kerT we have

bi · ∇yu =
m−1
∑

k=1

∂v

∂ψk
bi · ∇yψk =

∂v

∂ψi
(ψ(y)) ∈ kerT. (58)

Therefore, by Proposition 5.5 we have for any i ∈ {1, ...,m− 1} and any u ∈ D(bi ·∇y)

〈u〉 ∈ D(bi · ∇y), bi · ∇y 〈u〉 −
〈

bi · ∇yu
〉

=
〈

(u− 〈u〉)divyb
i
〉

.

Obviously the previous statement also holds true for the operator T = b0 ·∇y. Actually,

for any i ∈ {1, ...,m − 1}, it is possible to construct a first order differential operator

b̃i · ∇y commuting with the average operator. Indeed, consider b̃i = bi − λib0, where

Tλi = divyb
i − 〈divyb

i〉 , 〈λi〉 = 0. It easily seen that b̃i · ∇y leaves invariant the kernel

of T and that divy b̃
i is constant along the flow of b0

divy b̃
i = divyb

i − Tλi =
〈

divyb
i
〉

.

Therefore Theorem 5.1 implies that b̃i ·∇y and 〈·〉 are commuting for any i ∈ {1, ...,m−

1}.

We compute now the fields bi, i ∈ {1, ...,m − 1} in the specific case of strongly

magnetized plasmas. We have m = 6, y = (x, p), b0(x, p) = (0, 0, 0, ωc(x)p ∧ b(x)),

T = ωc(x) (p ∧ b(x)) · ∇p

ψ1(x, p) = x1, ψ2(x, p) = x2, ψ3(x, p) = x3, ψ4(x, p) = |p ∧ b(x)|, ψ5(x, p) = p · b(x)

and

〈u〉 (x, p) =
1

2π

∫

S(x)

u(x, |p ∧ b(x)|ω + (p · b(x))b(x)) dω (59)
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where S(x) = {ω ∈ S2 : b(x) · ω = 0}. Under the assumption infx∈R3 B(x) > 0 we

know by Proposition 2.2 that (49) holds true. Notice also that (52) is satisfied. We

obtain the formula

∇x,p ψi = (ei, 0, 0, 0), i ∈ {1, 2, 3}

∇x,p ψ4 =

(

−
(p · b(x))

|p ∧ b(x)|
t∂xb p,

p− (p · b(x))b

|p ∧ b(x)|

)

, ∇x,p ψ5 = (t∂xb p, b)

bi =

(

ei,−
(t∂xb p)i
|p ∧ b(x)|

⊥p

)

, i ∈ {1, 2, 3}, b4 =

(

0, 0, 0,
p− (p · b(x))b

|p ∧ b(x)|

)

, b5 = (0, 0, 0, b)

(60)

where ⊥p = |p ∧ b(x)| b− (p · b(x)) p−(p·b(x))b
|p∧b(x)|

. Notice that

divp
⊥p = −

(p · b(x))

|p ∧ b(x)|
, divx,p b

i =
(t∂xb p)i
|p ∧ b(x)|2

(p · b(x)), i ∈ {1, 2, 3}

divx,p b
4 =

1

|p ∧ b(x)|
, divx,p b

5 = 0.

5.2 Multi-scale analysis

The Vlasov equation describing the dynamics of strongly magnetized plasmas (1) is of

the form

∂tu
ε + a(t, y) · ∇yu

ε +
1

ε
b0 · ∇yu

ε = 0, t ∈ R+, y ∈ R
m (61)

with m = 6, y = (x, p), a(t, x, p) = (p/m, qE(t, x)), b0(x, p) = (0, 0, 0, ωc(x)p ∧ b(x)).

Notice that divx,p a = divx,p b
0 = 0. The ansatz uε = u + εu1 + ε2u2 + ... leads to the

sequence of equations

Tu = b0 · ∇yu = 0 (62)

∂tu+ a(t, y) · ∇yu+ Tu1 = 0 (63)

∂tu
1 + a(t, y) · ∇yu

1 + Tu2 = 0 (64)

...

The time evolution equation for the leading order term u comes by applying the average

operator to (63) and taking into account that Tu1 ∈ ker 〈·〉. We obtain

∂tu+ 〈a(t) · ∇yu(t)〉 = 0. (65)
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Consider now the m− 1 fields b1, ..., bm−1 orthogonal to b0 and satisfying (57). Let us

denote by α0, α1, ..., αm−1 the coordinates of a in the basis b0, b1, ..., bm−1

a(t, y) =
m−1
∑

i=0

αi(t, y)bi(y).

Taking into account that u(t) ∈ kerT we have by (58) that bi · ∇yu(t) ∈ kerT , i ∈

{1, ...,m− 1} and b0 · ∇yu(t) = 0. Therefore we can write

〈a(t) · ∇yu(t)〉 =
m−1
∑

i=0

〈

αi(t)
〉

bi · ∇yu(t) =
m−1
∑

i=1

〈

αi(t)
〉

bi · ∇yu(t). (66)

Actually the formula (66) holds true for any function in the kernel of T saying that

any transport operator a · ∇y reduces, by averaging along the flow of b0 to another

transport operator, denoted 〈a · ∇y〉. If a ·∇y =
∑m−1

i=0 αibi ·∇y is a linear combination

of differential operators leaving invariant the kernel of T then the effective operator by

averaging is

A · ∇y = 〈a · ∇y〉 =
m−1
∑

i=1

〈

αi
〉

bi · ∇y (67)

and therefore the model for the dominant term u is given by

∂tu+
m−1
∑

i=1

〈

αi
〉

bi · ∇yu = 0.

Remark 5.3 Assume that a,A are smooth and verify

divya = 0, 〈a · ∇yu〉 = A · ∇yu, u ∈ C1
c (R

m) ∩ kerT.

Integrating with respect to y ∈ R
m we deduce that for any u ∈ C1

c (R
m) ∩ kerT

∫

Rm

A · ∇yu dy =

∫

Rm

〈a · ∇yu〉 dy =

∫

Rm

a · ∇yu dy = −

∫

Rm

u divya dy = 0.

Therefore we obtain
∫

Rm

u 〈divyA〉 dy =

∫

Rm

u divyA dy = −

∫

Rm

A · ∇yu dy = 0

implying that 〈divyA〉 = 0. In particular taking λ0 = λ0(y) such that 〈λ0〉 = 0, Tλ0 =

divyA (which is possible because 〈divyA〉 = 0) we can replace the averaged transport

operator A · ∇y by an equivalent one A′ · ∇y = A · ∇y − λ0b0 · ∇y

〈a · ∇yu〉 = A · ∇yu = A′ · ∇yu, u ∈ C1
c (R

m) ∩ kerT

such that

divyA
′ = divyA− divy(λ

0b0) = divyA− Tλ0 = 0.
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When considering the Vlasov equation (1) and the fields bi, i ∈ {1, 2, 3, 4, 5} in (60) we

obtain

α0 = −m
(v∧ · p)

|p ∧ b(x)|2
, (α1, α2, α3) =

p

m
, v∧ =

E ∧ b

B
(68)

α4 = −
(p · b(x))

|p ∧ b(x)|

(

∂xb :
p⊗ p

m

)

+ qE ·
p− (p · b(x))b

|p ∧ b(x)|
, α5 =

(

∂xb :
p⊗ p

m

)

+ qE · b.

(69)

The average of the above coefficients are

〈

α0
〉

= 0,
〈

(α1, α2, α3)
〉

=
(p · b(x))

m
b (70)

〈

α4
〉

= −
(p · b(x))|p ∧ b(x)|

2m
divxb,

〈

α5
〉

=
|p ∧ b(x)|2

2m
divxb+ qE · b (71)

and therefore the average of the transport operator p
m
· ∇x + qE · ∇p is

〈 p

m
· ∇x + qE · ∇p

〉

=
(p · b(x))

m
b · ∇x + (q(E · b)b+ ω(x, p) ⊥p) · ∇p

with

ω(x, p) =
|p ∧ b(x)|

2m
divxb−

(p · b(x))

m

(

∂xb b ·
p

|p ∧ b(x)|

)

.

We have retrieved the limit model (31).

Remark 5.4 It is also possible to determine the average transport operator A · ∇y =

〈a · ∇y〉 by imposing (66) for any prime integral ψi, i ∈ {1, 2, ...,m− 1} together with

the condition A · b0 = 0. It is easily seen that any prime integral for a which belongs

to the kernel of T is also a prime integral for A. Indeed, if a · ∇yI = 0 then A ·

∇yI = 〈a · ∇yI〉 = 0. In particular |p|2/2m + qφ(t, x) ∈ ker T is a prime integral for

((p · b) b/m, q(E · b) b+ ω(x, p)⊥p) if E(t, x) = −∇xφ(t, x).

In the sequel we intend to take into account the first order corrections u1, that is, write

a model whose solution coincides with u + εu1 up to O(ε2). By using the orthogonal

decomposition in L2(Rm)

u1 = v1 + w1, T v1 = 0,
〈

w1
〉

= 0

we obtain from (63), (65)

−Tw1 = ∂tu+ a · ∇yu

= ∂tu+ a · ∇yu− 〈∂tu+ a · ∇yu〉

=
m−1
∑

i=1

(αi −
〈

αi
〉

)bi · ∇yu.
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Therefore the zero average contribution of u1 is given by

w1 = −Ã · ∇yu, Ã =
m−1
∑

i=1

βibi (72)

where for any i ∈ {1, 2, ...,m− 1}, βi solves

Tβi = αi −
〈

αi
〉

∈ ker 〈·〉 ,
〈

βi
〉

= 0.

Applying the average operator in (64) yields

∂tv
1 + A · ∇yv

1 +
〈

a · ∇yw
1
〉

= 0 (73)

and combining (65), (73) leads to

∂t(u+ εu1) + A · ∇y(u+ εu1) + ε(
〈

a · ∇yw
1
〉

− ∂tw
1 − A · ∇yw

1) = 0. (74)

Replacing the time derivative in terms of space derivatives thanks to ∂tu = −A · ∇yu

we transform the time derivative of w1 as follows

−∂tw
1 = ∂tÃ · ∇yu− Ã · ∇y(A · ∇yu).

The equation (74) can be written in the form

∂t(u+ εu1) + A · ∇y(u+ εu1) + ε(∂tÃ · ∇yu+R(u)) = 0 (75)

where

R(u) =
〈

a · ∇yw
1
〉

− A · ∇yw
1 − Ã · ∇y(A · ∇yu).

We need to express R(u) in terms of u in view of (72). Eventually R(u) contains second

order derivatives of u. We will see that all second order derivatives cancel. Moreover

we will show that R(u) reduces to a first order differential operator. Let us split the

computations into several steps.

Proposition 5.6 Assume that divya = 0. For any function u ∈ kerT we have

〈

a · ∇yw
1
〉

=
m−1
∑

j=1

[

m−1
∑

i=1

{bi · ∇y

〈

βi Tβj
〉

+
〈

divyb
i
〉 〈

βi Tβj
〉

}

]

bj · ∇yu.
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Proof. By Proposition 5.5 we can write

〈

a · ∇yw
1
〉

=

〈

m−1
∑

i=0

αibi · ∇yw
1

〉

=

〈

m−1
∑

i=0

bi · ∇y(α
iw1)

〉

−

〈

m−1
∑

i=0

(bi · ∇yα
i)w1

〉

=
m−1
∑

i=0

bi · ∇y

〈

αiw1
〉

−

〈

m−1
∑

i=0

(αiw1 −
〈

αiw1
〉

)divyb
i

〉

−
m−1
∑

i=0

〈

(bi · ∇yα
i)w1

〉

=
m−1
∑

i=0

bi · ∇y

〈

αiw1
〉

+
m−1
∑

i=0

〈

αiw1
〉 〈

divyb
i
〉

−
〈

w1divya
〉

=
m−1
∑

i=1

bi · ∇y

〈

αiw1
〉

+
m−1
∑

i=1

〈

αiw1
〉 〈

divyb
i
〉

.

In the last equality we have taken into account that 〈α0w1〉 ∈ kerT and divyb
0. Since

〈w1〉 = 0 we have for any i ∈ {1, ...,m− 1}

〈

αiw1
〉

=
〈

w1 Tβi
〉

= −
〈

βi Tw1
〉

=
m−1
∑

j=1

〈

βi Tβj
〉

bj · ∇yu.

Notice that the matrix (〈βi Tβj〉)i,j is skew-symmetric

〈

βi Tβj
〉

+
〈

βj Tβi
〉

=
〈

T (βiβj)
〉

= 0, i, j ∈ {1, ...,m− 1}.

Another key point is that for any i, j ∈ {1, ...,m− 1} the operators bi · ∇y, b
j · ∇y are

commuting on functions of kerT . Indeed if u = v(ψ1, ..., ψm−1) ∈ kerT we have cf.

(58)

bi · ∇yu = ∂ψi
v(ψ(y)), bj · ∇yu = ∂ψj

v(ψ(y)).

It follows that

bi · ∇y(b
j · ∇yu) − bj · ∇y(b

i · ∇yu) = ∂2
ψiψj

v(ψ(y)) − ∂2
ψjψi

v(ψ(y)) = 0.

Combining the skew-symmetry of (〈βi Tβj〉)i,j and the symmetry of (bi ·∇y(b
j ·∇yu))i,j

we deduce that

m−1
∑

i=1

bi·∇y

〈

αiw1
〉

=
m−1
∑

i=1

bi·∇y

[

m−1
∑

j=1

〈

βi Tβj
〉

bj · ∇yu

]

=
m−1
∑

j=1

[

m−1
∑

i=1

bi · ∇y

〈

βi Tβj
〉

]

bj·∇yu.
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Therefore the term 〈a · ∇yw
1〉 can be written

〈

a · ∇yw
1
〉

=
m−1
∑

j=1

[

m−1
∑

i=1

{bi · ∇y

〈

βi Tβj
〉

+
〈

divyb
i
〉 〈

βi Tβj
〉

}

]

bj · ∇yu.

Proposition 5.7 For any function u ∈ kerT we have

−A · ∇yw
1 − Ã · ∇y(A · ∇yu) = [A, Ã] · ∇yu

where [A, Ã] stands for the Poisson bracket between the fields A =
∑m−1

i=1 〈αi〉 bi and

Ã =
∑m−1

i=1 βibi.

Proof. Obviously we have

−A · ∇yw
1 − Ã · ∇y(A · ∇yu) = A · ∇y(Ã · ∇yu) − Ã · ∇y(A · ∇yu) = [A, Ã] · ∇yu.

Proposition 5.8 Assume that divya = 0. Then for any function u ∈ kerT we have

R(u) =
m−1
∑

j=1

[

m−1
∑

i=1

{bi · ∇y

〈

βi Tβj
〉

+
〈

divyb
i
〉 〈

βi Tβj
〉

}

]

bj · ∇yu+ [A, Ã] · ∇yu. (76)

Remark 5.5 If I(t) ∈ kerT is a prime integral for a(t) =
∑m−1

i=0 αi(t)bi therefore

I(t) is also a prime integral for A(t) =
∑m−1

i=1 〈αi(t)〉 bi cf. Remark 5.4 and thus the

corresponding function w1 vanishes, because −Tw1 = a(t) · ∇yI(t)−A(t) · ∇yI(t) = 0.

We deduce by Proposition 5.8 that I(t) is a prime integral for R i.e., R(I(t)) = 0.

Coming back in (75) we deduce that u+ εu1 solves

∂t(u+εu1)+A ·∇y(u+εu1)+ε[∂tÃ ·∇y(u+εu1)+R(u+εu1)] = ε2[∂tÃ ·∇yu
1 +R(u1)].

Therefore we expect that the function ũε solving

∂tũ
ε + (A+ εA1) · ∇yũ

ε = 0 (77)

A1 = ∂tÃ+
m−1
∑

j=1

[

m−1
∑

i=1

{bi · ∇y

〈

βi Tβj
〉

+
〈

divyb
i
〉 〈

βi Tβj
〉

}

]

bj + [A, Ã]
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will be a second order approximation for u+ εu1

ũε = u+ εu1 + O(ε2).

Consequently, motivated by the ansatz uε = u + εu1 + ε2u2 + ..., the solution of (77)

will approximate the solution of (61) up to a second order term

ũε = uε + O(ε2).

5.3 Derivation of the gyrokinetic Vlasov equation

This section is devoted to the explicit computation of the second order model (77)

which corresponds to the Vlasov equation (1) with strong magnetic field. We already

know that the transport operator A · ∇x,p has the form

A · ∇x,p =
(p · b)

m
b · ∇x + (q(E · b) b+ ω(x, p) ⊥p) · ∇p.

It remains to identify the transport operator A1 · ∇x,p. We need the following lemma,

whose proof is left to the reader.

Lemma 5.3 We have the formula

T −1(p− 〈p〉) = −
p ∧ b

ωc(x)
(78)

T −1(p⊗ p− 〈p⊗ p〉) = −
p ∧ b

ωc
⊗

[

3

4
(p · b)b+

p

4

]

−

[

3

4
(p · b)b+

p

4

]

⊗
p ∧ b

ωc
. (79)

Proposition 5.9 The transport operator Ã · ∇x,p = Ãx · ∇x + Ãp · ∇p is given by

Ãx = −
p ∧ b

mωc

Ãp =
m(v∧ · p)

|p ∧ b(x)|

p− (p · b(x))b

|p ∧ b(x)|
+[t∂xb p·(p∧b)+ωc(∂xb : T −1(p⊗p−〈p⊗ p〉)]

⊥p

mωc|p ∧ b|
.

In particular we have

∂tÃ · ∇x,p =
m(∂tv∧ · p)

|p ∧ b(x)|

p− (p · b(x))b

|p ∧ b(x)|
· ∇p, v∧ =

E ∧ b

B
. (80)
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Proof. Using (78) and the expressions of the coefficients αi, 〈αi〉, i ∈ {1, ...5} computed

before cf. (68), (69), (70), (71) we obtain

(β1, β2, β3) = T −1p− 〈p〉

m
= −

p ∧ b

mωc

β4 = −
(p · b(x))

|p ∧ b(x)|

(

∂xb : T −1p⊗ p− 〈p⊗ p〉

m

)

+m
v∧ · p

|p ∧ b(x)|

β5 =

(

∂xb : T −1p⊗ p− 〈p⊗ p〉

m

)

.

Therefore thanks to (60) we deduce that

Ãx = −
p ∧ b

mωc(x)

Ãp =
[

t∂xb p · (p ∧ b) + ωc(∂xb : T −1(p⊗ p− 〈p⊗ p〉)
]

⊥p

mωc|p ∧ b|
+m

v∧ · p

|p ∧ b|

p− (p · b)b

|p ∧ b|

and (80) follows.

Based on the above considerations we complete now the regularity result used in the

proof of Theorem 4.2.

Proposition 5.10 We suppose that E ∈ L∞
loc(R+;W 1,∞(R3))3, ∂tE ∈ L∞

loc(R+;L∞(R3))3,

b ∈ W 2,∞(R3)3, B ∈ W 1,∞(R3), divx(Bb) = 0 and infx∈R3 B(x) > 0. Let f in ∈

ker T ∩ C2
c (R

3 × R
3) verifying

f in(x, p) = 0, (x, p) ∈ R
3 × R

3, |p ∧ b(x)| ≤ rin

for some rin > 0. We denote by f = f(t, x, p) the solution of the limit model

∂tf + b(x) ⊗ b(x)
p

m
· ∇xf +

(

qb(x) ⊗ b(x)E + ω(x, p) ⊥p
)

· ∇pf = 0, (p ∧ b) · ∇pf = 0

with the initial condition f(0, x, p) = f in(x, p), (x, p) ∈ R
3 × R

3. For any t ∈ R+ we

consider h(t) ∈ D(T ) the unique function satisfying

∂tf +
p

m
· ∇xf + qE(t, x) · ∇pf + T h(t) = 0, 〈h(t)〉 = 0.

Therefore for any T > 0 the function h belongs to W 1,∞([0, T ] × R
3 × R

3) and has

compact support. In particular ∂th+ p
m
·∇xh+qE(t, x) ·∇ph ∈ L∞([0, T ];L2(R3×R

3)).
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Proof. As in the proof of Theorem 4.2, the regularity of the electro-magnetic field

guarantees that f ∈ W 2,∞([0, T ]×R
3×R

3). Moreover, the compactness of the support

of f in implies the compactness of the support of f(t), uniformly for t ∈ [0, T ]. We have

−T h(t) =
5

∑

i=1

(αi −
〈

αi
〉

) bi · ∇x,pf(t) =
5

∑

i=1

T βi bi · ∇x,pf(t)

saying that

−h(t) =
5

∑

i=1

βi bi · ∇x,pf(t) = Ã · ∇x,pf(t).

Obviously h has compact support and by Lemma 5.3, Proposition 5.9 we deduce that

the components of the field Ã are locally Lipschitz in {(t, x, p) ∈ [0, T ] × R
3 × R

3 :

|p ∧ b(x)| ≥ rin
√

inf B/ supB}. Our conclusion follows immediately by observing that

the invariance of the magnetic moment µ = |p ∧ b|2/2mB ensures

supp f(t) ⊂

{

(t, x, p) ∈ [0, T ] × R
3 × R

3 : |p ∧ b(x)| ≥ rin

√

inf B

supB

}

, t ∈ R+.

We need to compute the matrix (〈βi T βj〉)1≤i,j≤5. The following formula will be used.

Lemma 5.4 For any k ∈ {1, 2, 3} we have

〈pkp⊗ p〉 = (p·b)bk

[

(p · b)2 −
3

2
|p ∧ b|2

]

b⊗b+
(p · b)|p ∧ b|2

2
[bkI+b⊗ek+ek⊗b]. (81)

Proposition 5.11 The elements of the matrix (〈βi T βj〉)1≤i,j≤5 are given by











|p∧b|2

2m2ωc
M [b] − |p∧b|

2
(v∧ + vCD) (p·b)|p∧b|2

2m2ωc
b ∧ ∂xb b

|p∧b|
2

t(v∧ + vCD) 0 (p·b)|p∧b|
2B

E · (b ∧ ∂xb b)

− t
[

(p·b)|p∧b|2

2m2ωc
b ∧ ∂xb b

]

− (p·b)|p∧b|
2B

E · (b ∧ ∂xb b) 0











(82)

where M [b] is the matrix of the linear map p→ b ∧ p

M [b] =











0 −b3 b2

b3 0 −b1

−b2 b1 0











and v∧ = E∧b
B

, vCD = (p·b)2

m2ωc
b ∧ ∂xb b.
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Proof. Recall that the matrix (〈βi T βj〉)1≤i,j≤5 is skew-symmetric and

〈

βi T βj
〉

=
〈

βiαj
〉

, i, j ∈ {1, ..., 5}.

After computations we deduce that the matrix 〈β ⊗ α〉 is given by (82).

Thanks to Proposition 5.6 we obtain the following explicit expression for the term

〈a · ∇yw
1〉.

Proposition 5.12 For any function u ∈ ker T we have

〈

a · ∇yw
1
〉

= (v∧ + vGD + vCD + vRD) · ∇xu−
t∂xb p

|p ∧ b|
· (v∧ + vGD + vCD + vRD) ⊥p · ∇pu

+
(p · b)|p ∧ b|

2m2ωc
B divx

(

b ∧ ∂xb b

B

)

⊥p · ∇pu

+ (∂xb b · v∧)

(

3

2
(p · b) b−

p

2

)

· ∇pu− (divxv∧)
p− (p · b) b

2
· ∇pu

where v∧, vGD, vCD, vRD are the electric cross field drift, the magnetic gradient drift, the

magnetic curvature drift and the magnetic rotational drift respectively

v∧ =
E ∧ b

B
, vGD =

|p ∧ b|2

2m2ωc

b ∧∇xB

B
, vCD =

(p · b)2

m2ωc
b∧∂xb b, vRD =

|p ∧ b|2

2m2ωc
(b·rotxb)b.

Proof. The entries of the matrix (〈βi T βj〉)1≤i,j≤5 belong to the kernel of T . Thus the

terms bi ·∇x,p 〈β
i T βj〉 can be easily computed since bi ·∇x,p = ∂ψi

for any i ∈ {1, ..., 5}

cf. (58). Notice also that 〈divx,p b
i〉 = 0 for i ∈ {1, 2, 3, 5} and 〈divx,p b

4〉 = 1/|p ∧ b|

implying that

〈

a · ∇yw
1
〉

=
5

∑

j=1

[

5
∑

i=1

bi · ∇x,p

〈

βi T βj
〉

+
〈β4 T βj〉

|p ∧ b|

]

bj · ∇x,p u =
5

∑

j=1

Cjbj · ∇x,p u.

After computations one gets

(C1, C2, C3) = v∧ + vGD + vCD + vRD

C4 = −
(p · b)2|p ∧ b|

2m2ωc
B(x) divx

(

b ∧ ∂xb b

B

)

−
|p ∧ b|

2
[(v∧ · ∂xb b) + divxv∧]

C5 =
(p · b)|p ∧ b|2

2m2ωc
B(x) divx

(

b ∧ ∂xb b

B

)

+ (p · b)(v∧ · ∂xb b)

and the conclusion follows.
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Finally combining Propositions 5.9, 5.12 we obtain

Theorem 5.2 The second order model (77) which corresponds to the Vlasov equation

(1) with strong magnetic fields is

∂tf̃
ε + (Ax + εA1

x) · ∇xf̃
ε + (Ap + εA1

p) · ∇pf̃
ε = 0 (83)

where

Ax =
(p · b)

m
b, Ap = q(E · b) b+ ω(x, p) ⊥p, εÃx = −

p ∧ b

mωεc

εÃp = m
vε∧ · p

|p ∧ b|

p− (p · b)b

|p ∧ b|
+[t∂xb p ·(p∧b)+ωc(∂xb : T −1(p⊗p−〈p⊗ p〉)]

⊥p

mωεc |p ∧ b|

εA1
x = vε∧ + vεGD + vεCD + vεRD + [A, εÃ]x

εA1
p = m

∂tv
ε
∧ · p

|p ∧ b|

p− (p · b)b

|p ∧ b|
−

t∂xb p

|p ∧ b|
· (vε∧ + vεGD + vεCD + vεRD) ⊥p

+
(p · b)|p ∧ b|

2m2ωεc
Bε divx

(

b ∧ ∂xb b

Bε

)

⊥p

+ (∂xb b · v
ε
∧)

(

3

2
(p · b) b−

p

2

)

− (divxv
ε
∧)

p− (p · b)b

2
+ [A, εÃ]p

and

Bε =
B

ε
, ωεc =

qBε

m

vε∧ =
E ∧ b

Bε
, vεGD =

|p ∧ b|2

2m2ωεc

b ∧∇xB
ε

Bε
, vεCD =

(p · b)2

m2ωεc
b∧∂xb b, vεRD =

|p ∧ b|2

2m2ωεc
(b·rotxb)b.
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