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Abstract

Aims. In this paper we study density cusps that may contain cebkaak holes. The actual co-eval self-similar growth woutd n
distinguish between the central object and the surrousding

Methods. To study the environment of a growing black hole we seek dasans of steady ‘cusps’ that may contain a black hole and
that retain at least a memory of self-similarity. We refetite environment in brief as the ‘bulge’ and on smaller s¢ates‘halo’.
Results. We find simple descriptions of the simulations of collisesg matter by comparing predicted densities, velocityedgpns
and distribution functions with the simulations. In somees central point masses may be included by iteration. Wehasige
that the co-eval self-similar growth allows an explanatifrihe black hole bulge mass correlation between approeipaimilar
collisionless systems.

Conclusions. We have derived our results from first principles assumirigtasdic self-similarity and either self-similar viriaéifon
or normal steady virialisation. We conclude that distribatfunctions that retain a memory of self-similar evoluatiprovide an
understanding of collisionless systems. The implied gnextaxation of the collisionless matter is due to the timpatalence. Phase
mixing relaxation may be enhanced by clump-clump intecasti

Key words. theory-dark matter-galaxies:haloes-galaxies:nudkibhole physics-gravitation.

. Introduction masses. They deduce that between 1% an 6 of the blac
1.1 ducti They ded hat b 1% and 10% of the black
| ) K (Henrik ¢ al.. referred o h hole mass could be due to dark matter.

N a previous work (Renriksen et al., reterred 1o Nere as Pape \ye explored this possibility in the case of spherically sym-

i, and references hereafter) we discussed the relationelR®tW qtvic radial infall (papef] 1) and in this paper we will extsit

the formation of black holes (hereafter BH) and of galax®¥. 1, anisotropic infall. We use the same technique of infeyrize-
presented distribution _functlons (DF) for the co-eval fatfon . sonable distribution functions for collisionless mattemf lim-

of spherically symmetric cusps and bulges, as formed bligdi 15’ o the time dependent Collisionless Boltzmann (CBE) and
infalling, collisionless matter (€.g. dark matter or sjawe also0  pgiggon set, and are aided by some high resolution simogatio
discussed the influence of a centrally dominant mass, ifmgud of the evolution without a dominant central mass. We add a

a point mass BH. . dominant central mass either analytically or by iteratidust
Observations [(Kormendy & Richstone 199555 in the radial case, the loss cones are not empty for substan
Magorrian et al. 1998, | Ferrase & Merritt 2000¢jal growth. The relaxation of collisionless matter is doethe

Gebhardt et al. 2000) have established a strong correlatigfporal evolution (including the radial orbit instabyijitand,
between the BH mass and the surrounding stellar bulge massjfoaddition, to possible ‘clump-clump’ (two clump) intetams
velocity dispersion), which we take to be an indication of cqHenriksen 2009, MacMillan & Henriksen 2403).

eval growth. Such growth‘ occur’s.in part during the dissmat! We use, in this paper as in the previous padhr (1), the
baryon accretion by BH ‘seeds’ in the AGN (Active Galactig-arter-Henriksen[(Carter & Henriksen 1091) procedure to ob
Nuclei) phase, but there is as yet no generally accepte@soen,in 5 quasi-self-similar_system of coordinates (Henrikse
for the origin of the seeds. Moreover, recent suggestionsif 2006a,2006b, hereaft06b). This allows ngiti
early very supermassive BHs _(edOO?), togethfe CBE-Poisson set with explicit reference to possiblesient
with changes in the normalization of the BH mass-bulge maggit_similar dynamical relaxation. In this way we can remai

proportionality (relatively larger black holes at high rslift) ¢|5ge’ g self-similarity just as the numerical simulatappear
(e.g. [Maiolino et al. 20Q7), suggest an alternate early 410w, 4o

mechanism. Recently Peirani & de Freitas Pacheo (2008) haveStudies of BH-density cusps originated with the problem of

studied the possible size of the dark matter component in %‘H feeding [Peebles 19]7p, Bahcall & Wolf 1976), and with the
notion of adiabatic growth| (Young 198D, Quinlan et al., 1995

Send offprint requests to: MLeD Preprint: IFT-UAM/CSIC-09-27 MacMillan & Henriksen 207J2). Observations of the cen-




2 M. Le Delliou et al.: Black holes and galactic density cusps

tral Milky Way have detected a mainly isotropic denThis is because the mass reciprocal scalingas been reduced
sity cusp with logarithmic power in the rangel.1+ 0.3 to 30— 2« in order to maintain Newton’s consta@tscale in-
Gillessen et al. 2009). This is flatter than the adiabatiitli variant (e.g[ H2006a).

MacMillan & Henriksen 2002) and in any case the adiabatic We assume that time, radius, velocity and density are mea-
growth scenario does not produce the BH bulge correlatiosgred in fiducial units,/Vo,ro, Vo @and p, respectively. The unit
(ibid). All this has spurred the investigation of co-eval-dyof the DF isf, and that of the potential ig. We remove con-

namical growth instead of adiabatic growth. Central cusgsants from the transformed equations by taking
flatter than—1.5 can be created by tight binary BH systems

formed in_mergers that ‘scour’ the stellar environment (e.g fo=pPo/V3, V2 =A4nGpor2. (4)
Merritt & Szell 2006, [Nakano & Makino 1999). This process
can produce log slopes as flat ad or even—0.5, and it is These transformations convert equatioffs [[L),(2) to the re-

supported by a strong correlation between nuclear BH mass apective forms
central luminosity deficit|(Kormendy & Bender 2009).

However the correlation in itself only implicates the influ-
ence of the BH. It does not necessarily require the merger his 1 Y
tory, which in any case is unlikely to be the same for différen EaTP_ (3/a—1)P+ (E N g)dRP
galaxies. Consequently we explore in this paper whethgrcus

1/0¥V Z

as flat as those resulting from scouring might also be pratiuce ((1/a— 1Y+ — (ﬁ - @)) &P—(4/a—2)20;,P=0
during the dynamical formation of the black hole. a 5

We begin the next section with a summary of the general for- ®)
mulation in spherical symmetry. Subsequently we study a SY$hd
tem comprised of anisotropic non-radial orbits in sphésgan- 1 d oW
metry. Finally we give our conclusions. R dR <R2ﬁ> =0 (6)
2. Dynamical equations and previous results This integro-differential system is closed by
We will use the formulation of H200pa, wherein we transform o— i/ PdY dz. @)
to infall variables the collisionless Boltzmann and Poissqua- R?

tions for a spherically symmetric anisotropic system. Wgilbe

ith the “Euii 't .g[ Fujiwara 19B3), namel This completes the formalism that we will use to obtain the
w e Fujiwara’ form (e.g} Fujiwara 1953) y results below. The ‘cusps’ we describe there will generatig

in what is the central ‘bulge’ surrounding the black holehea

of of 2 0d\ of 1 than in the black hole itself.

E-l-VrE (F_W)O_Vr_ ) (2)

0 (0P 2 2 3. Spherically symmetric steady anisotropic bulges
— (r?2== ) =4m®G [ f(r,v, j?)dv,dj2. 2)

or or and cusps

Heref is the phase-space mass densitys the ‘mean’ field We follow the same pattern of discussion in this section teat
gravitational potentialj? is the square of the specific angulatised previously (papdlr 1) for radial orbits. We begin in tgs-

momentum and other notation is more or less standard. tion with steady bulge-black hole systems that retain a nrgmo
The transformation to infall variables takes the form (e.@f the prior nearly self-similar relaxation. The relaxatipro-
20064) ceeds by way of the relation
dE 00 .
R= re—aT/a7 Y = Vre—(l/a—l)aT, E = Eh ( )
Z=j%e W2 T =at, (with the appropriate total energy and potential energlyjs h-

P(RY,ZT)= el3/a-1)aT ¢ (r,vr, jz;t) , (3 cludes clump-clump interactions and the radial orbit ibsits
and produces finally the coarse grained (i.e. st¢ady H?
YRT)=e 22 DTpr) ORT)=prt)e T tem.p Y g ( tady Hpage2)
Lo . The steady self-similar cusps were found in (Henriksen &
The passage to the self-similar limit requires takihg=0  \yjidrow 1995 hereaftdr HW5) except for the case whaerel.

when acting on the transformed variables. Thus the seli&im ty,vever we can recover them here by using the same procedure
limitis a stationary system in these variables, which isgeghat hat we used for radial orbits (see paﬁ/er 1). We employ the-cha

we refer to as ‘self-similar virialisation’ (Henriksen & \dtiow . . . : AW . dR

- - acteristics of [(5), together with the identi§ = &* + RorW.
1999, hfereaftet HW 1.999’. Le Delliou 201). The virial rat'(%\_combination of the characteristics leads to ars1 expsfesfsion
2K/|W| is a constant in this state (although greater than ong

K is kinetic energy andV is potential), but the system is not & scaled energy on a characteristic, namely

steady in physical variables as infall continues. de RIY W
The single quantity is the constant that determines the dy- — =-2(1/a—1)&+2(1/a—1)¥W ——— + —,

namical similarity, called the self-similar index. It isroposed ds adrR s

of two separate reciprocal scalingsjn time andd in space, in \here

the forma = a/d. As it varies it reflects all dominant physical Y2

constants with dimensions of mass as well as of length aral tim &= > + R2 +W. (10)

9)
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We impose the steady state in equatic[h (9) by setting The general form of the DF becomes from equat@] (15)
dW/ds = 0 and requiring as in papfr | th&t 0 RP with p =

2(1—a) so that f = P(|E|j?)|E[¥2. (16)
Rd¥ This gives a number density of massless parti€las 3 for a
“adr A/amH¥=0 (11) potengtiakD = —M,/r. The rmys radial velocit?/ (the same as the
Consequently the characteristics of equatlﬂm (5) are sean-t radial velocity disp_ersiog sing? = 0) will generally bel) @ for
ply any power law choice d®(|E[j%).

One can come close to imitating the Bahcall and Wolf
dP (3/a—1)P (Bahcall & Wolf 1976) zero flux solution for a black hole cusp
ds ’ by choosing®(k) = F(|E|j?)/(|E|j?)%*. This yields the DF
(;—i = 72(1/a7 1)60, (12) > |E|1/4
dz mf =F(|El] )W, (17)
© —(4/a—2)Z.

whereF is an arbitrary function. In fact, they use for argument
These combine to give the general self-similar steady DF df their arbitrary functiom = (1— €?)/2, wheree s the orbital

the form @# 1 anda # 3/2) eccentricity, and for Keplerian orbits around a point migs
_ this become$E| j2/(GM. )2. In our unitsGM, = 1.
P=P(Zo,k)&9, (13) If this were exactly the Bahcall-Wolf solution it would be re

markable, since their solution is the result of collisiodiflusion

where into the loss cone. Here however we are obliged to have the add
K = &7 535, (14) tional dependencg?)~%4, which implies a divergentloss cone.
3_a Thus the necessary diffusion is simply assumed in this el@mp
g= —. in order to duplicate the energy and eccentricity depeneléare
2(a—1) bitrary because of spherical symmetry).
The quantityZ, is the value ofZ ats= aT = 0, that is j2. One can obtain the Bahcall-Wolf energy dependence from

However in the ab-initio steady self-similar analysissttiepen- the general form[(35) only by settirg= 7/3, which is quite

dence does not appe95). It is however present in glenéparealistic and gives the wrong arbitrary dependence. Vdé sh

in this limit from time dependent phase, and we use it in the: ne's_ee_lin papehml(;hat i; iﬁ EOSSible tﬁ choose a simple gc_)h—_sel
paper in this series (papki11l), on non-self-similar cusps  Similar DF that does fall between these two cases and irsitate

The phvsical f f1h lf-similar DE b , . the Bahcall-Wolf result more precisely.
the scgli%gyrséf;[ioarslni; © sef-simiiar ecomes, on usm@ There are two simple limits of the forrh {18) for which there

is some evidence in the numerical simulations of isolatatt da

nf = ﬁ(K)|E|q, (15) matter bulges|{(MacMillan 2006). Just as in the radial case th
(12 following comparison with simulations suggest that thishiig
K = [E|(j) 'z, of DF's may actually be realized. These limits are found lixy ta

whereE =v2/2+ j2/(2r?) + ®. This result has also been showrg]g first 5‘2] be a constarK, and then by taking it to be propor-
(e.g.[H20084) to be the zeroth order DF in the coarse grainfighal k™. This yields respectively

approach that becomes the exact steady state in the long tigje _ K|E[d (18)
limit (o — ). It was also used by Kulessa and Lynden-Bell K ’

(Kulessa & Lynden-Bell 1992) in their study of the mass of thef — —,

Galaxy. (i%)

An_earlier _important paper by Stiavelli and Bertir\Nh h definad = (3 4_2
(Stiavelli & Bertin, 1985) also proposed equilibrium dibtrtion ere we have definad = (3—a)/(4 - 2a). ,
functions for elliptical galaxies. These were based in galren app\ll;lenggffr?é ((;S:rirg'z?;sz;o sr'z etr?1 ]:/?qu\?g ihe}gr;[gi é@s%ﬁél\’l\/ ll
three integral models, but were reduced ta our two famiite- otential is then increasing with radius and so must be taken

g(r)?]lsf(;rr] ttr?: gaii?igilfﬁqhglrz'ci?;B]ffrgrrgﬁtt%elga%ireﬁfzzrtiggg]o“%ositive to obtain an attractive force. This allows us tacuokdte
9 ' the corresponding density explicitly as

the self-similar dynamical growth. There are neverthetesse
significant similarities, particularly as modified to an énted _ _a B
energy distribution by Merritt, Tremaine and Johnstone8@,9 p= 4\/2K(¢)a *B(ldl - 3/2,3/2). (20)
hereaftef MT)J). We discuss these points further below atitsin Here B(x,y) is the standard Beta function, which may be ex-
conclusions to this paper. o _ pressed in terms of the gamma functioix) as (x)I (y) /I (x+
The density profile that accompanies this DF for a particulgy.
choice of P(k) can be shown by direct integration over phase The Poisson equation shows that any power law solution for
space to bgp [ 122, and subsequently the consistent potentighe potential with this density goes &s0 r21- and hence
is ® 0 r21-% so long asa # 1,3/2. alsop O r~22, both as they must for self-similarity. The only
The case = 3/2 is excluded simply because it representsr@ason for giving this explicit form here is that it may bedge
point mass in a massless halo. However this is of interest pam iterative calculation of the transition from halo to iKdwle
cisely when describing the environment of a dominant céntominance. In such a calculation a point mass potentialthlkis
mass, whether this be the halo of a central black hole or tlee hhalo potential is inserted to give a new density, which imtur
of a coarse-grained collisionless bulge of stars. may be used in the Poisson equation to give a new potential and

(19)
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so on. The halo potential must dominate however so as to ke _|
the net potential positive. 1.0 —

As an example we assume that the potential has the fo —]
® = —Cy/r + Cor21-3 (C; andC; arbitrary positive constants)
so that by [2)0) the density becomes (C, — Cy /r3~2)r22, —
From the Poisson equation the new potential now follows as 0.75 —

C2r2(17a)

*H 2(1—a)(3—2a) ~

Cs—Cilnr)/r, (21) ]

whereCs should be positive to maintain the point mass contribi
tion. The inner boundary of this expression is at the radiosne

it equals zero and the outer boundary would be inside the NF —
(Navarro et al. 1996, hereafter NFW1996) scale radius (whi 0.25 —
we may set equal to our scale radigs The radial mean square ]
velocity V2 (also the radial squared dispersion) is proportion —
to ® and so we predict a minimum value just outside the radil =
rm where the central mass becomes dominant (&) = 0), 0.0 [TTTTTTTTTITTITTITTTI]TTTT]
followed by a steady rise that tendsrfé* 2. 0.7 0.75 08 0.85 0.9 0.¢

The density corresponding to this potential follows frc@)(z
as

pO®aT, (22)

so that it has fom < 1 a rapid rise neamn, followed by the self- _
similar regime whereip O r=22, The radiusrm, would be be- Figurel. The curve shows the dependence of the factor that

tween 1 and 10 pc in the halos of typical galaxies multiplies® in the tangential velocity dispersion as a function of
X R . - . . . . - . . 2

Of course this iteration has not fully converged but subsé- The adiabatic variation of with r is approximatelya = roz
quent cycles will produce higher order terms. The redulh (28H2007), where is measured in units of the NFW scale radius
seems to indicate that the black hole mass is enhancediby’an's-
cusp that peaks just outsideg.

The radial velocity dispersion is generally equal to thetroyhere the lower limit must be greater than zero for convergen
mean square radial velocity for the DF(18) since the meaiakradsincew > 1 fora > 1.
velocity is zero. This is proportional ® O r21-). The squared  The mean square radial velocity becomes in this limit
tangential velocity dispersion however becomes

- 2(3/2—w)ly

-0 (280 5297 _reld 20° TR

1= - ) (23)
3B(la| —3/2.3/2) 8B(|a|-3/2, 3/2)2> where, since > 1, this decreases with radius. The tangential ve-
locity dispersion has once again a more complicated express
namely

(26)

whereq < —2 or 1> a > 1/3. The factor (a) in this equation

that multipliesy/® is shown in figure[(1) as a function af
Unlike the radial velocity dispersion, which should stéadi

increase wittradius proportionally to® (which flattens as — <02 >— |0 2(3/2—w) lo(w—1)

1), the tangential velocity dispersion is expected to shomose + 5/2—w  lp(w)

precipitous drop as tends towards the scale radius amné> 1

asF (a) declines. The variation @fis only adiabatic with radius 95/2(3/2 — Wla(W—1/2 2
however, varying roughly a*?. We shall see evidence for this — ( ( /2 >|0( / )> (27)
below. (2= w)lo(w)

We turn first to an examination of the other Iim19). We ] )
expect this to apply in the outer region to which much anguldfthoughw(a) is slowly varying for 1< a < 3/2, the factor mul-
momentum has been transferred by the bar due to the radial of!ying @ declines to zero as — 3/2. _
instability (MacMillan et al. 2006, hereafter MWH 2406). irtee It is time however to compare these DF's chosen for their
we choose the regime whese> 1 and the energy/potential igSelf-similar memory to the results of simulations, in ortigjus-

negative. Iteration is not really relevant in this limitse@we are tify our attention. ,
far from the black hole, but because of its importance inwalc__In_references | (H200pa) and (Henriksen 2007, hereafter

lating mean quantities we give the density as H2007) it was concluded thata 0.72 near the outer boundary
of the relaxed region. Moreover we know from those papeis, an
2(3/2—w) Wi (3/2-w) more generally from extensive cosmological simulatiohsi t
p= mKlo(W)f |P| - (24) a=0.5in the interior, well relaxed, region. This is referred o a

adiabatic self-similarity{[(H200pa) since the indedynamically

Once again the Poisson equation has the consistent sofrfion evolves, but relatively slowlya(0 r, ar = O(0.2), [H2007)
—r21-3) andp 022, The integralo(w) is given by as already employed above. To match the simulation resaits w

requirea ~ 3/2 in the vicinity of the NFW scale radius, after
which there may be a tidal truncation to* (Henriksen 2004,

1 ody -1/2
|n(W)=./0+ W(l—y)m /2 (25)  hereaftef H2004)
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There is evidence in the simulations for the persistence of |
self-similarity, even in the case that most closely reseslain
isolated cosmological halo (i.e. cosmological pertudiaiare
included in the initial conditions). Thus in the cosmolagitike
halo simulation of6), the virial mass andiair
radius are found to grow in a power law manner according t:o
216 andt13% (we do not quote numerical errors, which are at
the level of a few percent) respectively. The logarithmingity

slope in the outer relaxed region is approximatel{.4 while
the pseudo-density logarithmic slope-ig.16.

The numerical predictions follow by usirg= 0.72 from
(H2007). The self-similar mass growth inside any growing ra
dius (fixedR) is (HW 1999)0 t(3/2-2) 0216 whiler O tY/2 0
t138 (see equation[[3)). The logarithmic density slope is pre-
dicted to be—2a = 1.44, and the pseudo-density logarithmic™
power (e.g| H20Q7| Hansen 2004) is given &y 3 = —2.28.
These reasonable correspondences with the numericalssimul ;|
tion (only the predicted pseudo-density differs signifitafrom
the simulated value) encourage us to adopt a DF as one of the
above steady forms. The self-similar memory is incorpatate -
therina=0.72 orina= 0.5 in the relaxed region, which bound-
ary is approximately (in fact the region wheae< 1 extends
beyond the scale radius by about a factor 2 in the simulatio
coincident with the NFW scale radius.

400

m/s)

200 -

0.5

0

r (kpc)

i)ure2. The figure shows two distinct simulations from
S i o ). The right hand panels display the reswith(
The velocity dispersion in the relaxed region is based on t@Bntinuing infall) of an isolated halo simulation startifigm a
DF (18) and has been given in equatipn| (23) for the tangential; of particles perturbed by a cosmological spectrum oiden

case, while the radial dispersion is proportionalf® O r1~2.  and velocity fluctuations. The panel on the left indicatesstime
Hence, away from the transition to the black hole region, wgage as developed from a non-perturbed halo. The upperiine
can test our predicted dispersions against the simulatitsing the upper panel in each case is for a similar halo, but allgwin
the valuea = 0.72 this gives the radialo;) velocity dispersion only purely radial collapse. The middle line is the radidbeity
going asr®28 which should be compared with figurg (2). Thelispersion while the lower line is the tangential dispersibhe
cosmological case is the right hand panel, which the phaseesplower panels display the anisotropy parameter for nonatadi-
diagram (not shown) shows to be more relaxed than the igitialapse.

unperturbed simulation on the left. ThH&?8 rise is a reasonable

description of the numerical behaviour, especially as sadie

abatic evolution ira towards unity is to be expected. This will At the end of this plateau we have entered the region where
flatten the rate of rise Between 4 and 60 kpc, the radial dispar~ 5/4 > 1. The decline in/® is however only as~%2° there,
sion rises by about a factor 2 while the predicted value usinghereas the observed decline in figlﬂe (2) is morerlike Once
a=0.72is 213. Allowing a to increase only to @5 on average, again the difference between this behaviour and that ofatiar
improves the fit. dispersion must lie in the factor multiplying.

Eventually at large enough radius, according to the Comple@so we ave found above that the implications of equations
cosmological simulations, we requime~ 3/2 and so we predict ) and [1P) are reasonable, but do we have any evidence con-

a decline in the radial dispersion proportionalrtd/2 in this Ce™Ming the DF itself? . L
region. Figurel]Z) indicateg that thFi)s k?egins at about twiee N the outer part of the relaxed region MacMillan (ibid, and
indicated scale radius. Before this point but still outsfiescale figure[}) finds that the DF is mainly dependent on angular mo-
radius the decline is slower. In fact the simulation giges5/4 MeNtUM. This is evident from the figure by noting that numeri-

5 . .

in this region so that the expected decline would be onty 4. I\)/l /Sgr:ge't?reoﬁrgﬁgdleei?“tggfoo energy units
The tangential dispersion velocity has the same behavtour a

smallr but rolls over more rapidly. This is indicated very clearly 1 d’M

in the graphs of the anisotropy paramgier 1 — af/or2 on the g(E, j?) dEdj?’

panel below the velocity dispersion. This is consistentitpta

tively with the action of the factdF (a) defined in equatior] (23), we infer thatf 0dIndM/dE/dj2. This is independent of energy

and displayed in figurd|(1) over the relevant ranga.dfe weak in the outer region. Note that in terms fFfthe figure is simply

adiabatic dependence afonr is not weak enough however tostretched by a factor of 2 in thiedirection.

cover the range in over whicho, stays flat. There is some un-  We therefore fit the self-similar DF{_(L9) wita = 1.25

certainty in this factor and fom [ r®*> one arrives at nearly ato obtain f [ (j2)~16. This is in fact a reasonable fit to the

factor two in radius aa varies from 072 to Q8. However figure DF in the less tightly bound region with angular momentum

(W) shows thaF has dropped by more than a factor two in thigreater than about 500 units (figdfle 3). Such a cut-off in an-

f(E,j%) = (28)

range, whiley/® increases by only a factor of2 at best. The ¢

ular momentum was contained in the Stiavelli and Bertin DF

implied factor two decline is not seen. The only explanat®n

Stiavelli & Bertin, 198f) where it was exponentifil. MTJ gav

thata does not vary significantly in this region, so that there i@ heuristic justification for a cut-off irfj? and also wondered

little adiabatic evolution.

whether an exponential or a power-law cut-off was superior.
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They also asked whether such behaviour arose naturallyein th
course of the dynamical formation of galaxies. Here our amsw
is in favour of a power-law cut-off following self-similanfall.

An intermediate region where the logarithmic density slope
varies from just above 2 to about 3 does occur in all simula-
tions of collisionless matter. Moreover this region tenalso-
incide with the passage from isotropy to radial orbits (E.)g.
According to the preceding remarks (i.e. the [E (19) vtk 1)
this region can be characterized by roughly constant nusrdfer
particles over a broad range of energy, but with numbersihapi
increasing towards a minimum in angular momentum. Some par-
ticles would have too much angular momentum to enter the cen-
tral region, while those below a critical angular momentwan ¢
populate the central regions.

In the simulations this redistribution of angular momentum 100
is attributed to the onset of the Radial Orbit InstabilityQlR = 10
in (MWH 2008) and the consequent formation of a bar. In the:
current spherically symmetric analysis, we are forced ticlpa © 1
these different regions together ‘by hand’, guided only lhg t

2000

1500
—
1000

500

0 2 4 6 8

dM/dJ

different possibilities foa. 01 b v v v v v
In the inner relaxed region we expect the [)H (18) to apply -300  —200  —100
with a~ 0.72. This gives an isotropit 0 E~*. The simulations B

(NEW1996) suggest tha— 1/2 in the very centre of the sys- )

tem, which would givef 0 E~%/2. This is in accord with previ- Figure3. The figure shows a contour plot ofM/dEdJ for
ous discussions (e.. H2006a). The fact that our energysis p6he full simulation of an isolated halg Mz;_chlllan 2006).dh
tive, while the simulation energy is negative, reflects tifed  Separate plots afM/dE anddMdJ are also indicated. The cor-

ent zero points for the potential. We use the centre of theegys r€SPonding density of states is almost independeaoid is the

- - 55 -
as the reference zero in our analysis, while the simulatassu €XPected (e.g.Binney & Tremaine 19878|~*° law. The line
infinity. on the upper left ig(E) for circular orbits.

Numerically, g(E) O |[E|72% in this region so that
d?M/dEdj? should vary asE~6% (E~° if a = 0.5). There is is nearly so. Such a relation might be tested by high resmiuti
very little dependence of? here so this prediction might besimulations containing a seed black hole.
compared to the behaviour dM /dE. This quantity is falling
s_te_eply beyon.(E = —300 @)’ but the evidence is weak at th%’.l. More general self-similar distribution functions
limit of resolution.

At slightly higher angular momentum there is a rising deFhe limits of equation[(35) that we discussed above are quite
pendence orj. This can be imitated with a self-similar solu-arbitrary, except for the expectation of central isotropd ¢he
tion by takingIS(K) 0 1/k in equation @5), which gives the DFdom.inance of angular momentum in the__(_)uter regions. In this
£ E75(j2)1/5_ section we explore_more general possibilities, even thargh

The above prolonged discussion suggests that a DF witt!scally the preceding limits seem adequate.
self-similar memory can be used to parametrise the phasespa 1N distribution function[(§5) can be putin a form that seems
of these collisionless simulations. At least this is true ac- 0 generalize the FPDF (i.e. Fridmann and Polyachenko DE). W

cept the adiabatic variability af, which has been made plausichooseP [ k—(&1) to obtain

ble on the grounds of a local entropy maximum ( 007). K
However what has this to do with the black-hole bulge mass cor nf = - s (30)
relation that the co-eval growth was supposed to explain? (j3) 73 |E —E[Y

If one assumes that the halo around the seed black hole isThe density integral over this DF requires a lower cut-off
accreted eventually through two-body and clump-clumpxrelain angular momentum faa > 1 and an upper cut-off in energy
ation (MacMillan & Henriksen 2003), then the mass of the blador a < 1 in order to avoid singularities. We have exhibited the
hole/halo should be proportional to the mass of the bulgelsim ypper energy cut-off i (30) explicitly. It appears as thiitmary
because of the power law density (with nearly constant pawer constant in the potential so that the differefige— E still has
siders). LettingM, be the black hole mashls be t_he bulge Mass the self-similar behaviour1-2), as does the density (22).
andrp, rs, be the black hole halo and bulge radii respectively (poreover fora > 1 the minimum angular momentum should be

is the scale radius); we find the relation a fixed fraction of the valuerf(E — ®), say 0< k; < 1, in order
(3-2a) for the density profile and potential associated with ecqme@)

M. (r_h) _ (29) to apply. The radial velocity dispersion is algbr1-a) |t is
Ms rs only whena = 1 that one obtains the 2 profile of the radial

) _ FPDF, and this must be discussed separately below.
If the appropriaten = 0.72, then the power of the radial depen-  |f one computes formally the density by integrating the DF
dence is 156. For a true universal relation however, we mu ) in a negative energy region (negative a|thoagh 1, be-

assume that galaxy growth is not only self-similar, but thate cause the central mass dominates), one finds that ot
is a similarity between galaxies so that the scale ratiorns-si ) La
lar. This is not exactly the case (e|g. Navarro et al., POO®)it pOr za(|®| —|Ey|)2a. (31)
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As in the previous section, this can be used in an iteratise-fa  If we calculate the density profile far > 0 by integrating

ion. over (3p) we arrive eventually at
Thus in a region dominated by a central point mass (and tak- ~
ing E; = 0) we see that the cusp would be, at lowest order, _ @ @ P(K) /”2 du (38)
r2 Jo kb2 u Uy/1—(u—Winu)/2k’

p O = (32)
whereu = j?/r?. The limitsus, u, are the two roots found in
The next order would be found by using this in the Poisson-equarms of the Lambert function by setting the argument of the
tion to obtain a new potential and then a new density from equsquare root equal to zero. WhenfW is large, the lower root
tion ). Once again this low order result can not be flattant becomes zero and the upper root approaclked Bere is slow
r~15The steepest limit is~? asa — 1—. We remark that at convergence of the inner integral. Provided tRét) is such as
a= 2/3 one obtains the Bahcall and Wolf zero flux cusp/4,  to make the outer integral converge, the profileié.
due to the filled loss cone in the DF. Fpe 0.72, the cusp is like We note that for any finite, the possible range af has a
r—178 very close to the Bahcall and Wolf cusp and still with &efinite upper limit and a definite lower limit that may be @os
filled loss cone. In papII of this series we shall find anatxato zero. This means that at giverthere is a finite range i|j]2
example of this type. that is present, and that this range collapses on zero-a$.
This is as expected with spherical symmetry.

3.2. Singular isothermal sphere: the global inverse square law Itis possible to have solutions with< 0 whereupon

So far we have ignored the case when 1, the singularisother- V2 [(¥I¥=¥)/2 P(k) d|k| [t du
mal limit. In fact the steady DF with = 1 must be treated sep-p T r2 Jo |k|1/2 u U/ (Winu—u)/2/k| - 1
arately because of the logarithmic potentia= Winr (¥ con- (39)

stant) that accompanies the inverse square density law. &e Where again the inner limits are the roots found by settireg th
still deduce it from the characteristics ¢f (5) if we take= 0 argument of the square root equal to zero. For a real rangs-of v
finally, since a steady state is the same at any time. The appigs,W/|k| must be greater than a minimum value that depends
priate characteristics become, weth- 1, on the value of¥. The same restriction on angular momentum
dP asr — 0 applies. In all cases the velocity dispersion is constant.

— = 2P, Unlike the radial FPDF that has an inverse square cusp,
ds a black hole is not readily incorporated into this distribat
drR _ Y R (33) However at large enough(or basically where in phase space
ds o ’ wherev; /12 < Vo /r2) it suffices to modify the integral by a point
dy 1 < 7 tp) mass potential so that
ds ~a\R R) -
Ve o] GM. ¥
=+ -5 +Winr— ——=Inj°. 4
(;_Z:_zz_ K=gtoptrnr———=5nl (40)
S
) ) The velocity dispersion is no longer strictly constant,assl
These integrate to give j? > GM,r, but the influence of the black hole is weak in this
~ regime.
P = P(Z,k)/Z, (34) One special model of an inverse square, steady, anisotropic
y bulge is provided by equatioﬂ36) by taking
K = &— > InZ,
~ 2K
here P) = Kexp( (55 (1+D)). (41)
Y2
=S tomt WinR, (35)  wherebis any real number.
In velocity space the anisotropic DF becomes explicitly
andZ, is againj? ats= 0 on the characteristic. (V=v2+V2)
By writing the self-similar physical form af = 0 we find
(fora=1) K b+ 1)\?
’ R ) [
;- Pl 36
mt = j2 7 (36) This form s quite closely related to the DF suggested byv8liia
22 W and Bertin [Stiavelli & Bertin, 1985). However it offers ambi-
K = & 4+ 1_2 +Winr— =1Inj? nation of an exponential cut-off and a possible power-lataaffs
2 2_r _ 2 in angular momentum. It does have the inverted distribuition
vVooj2w | i? energy (it increases outward) as suggestef by] MTJ. Thisds al

Il
|
+
|
|
|
|

(37) true of the DF that we suggest for the inner region, namelaequ

tion (@) witha < 1. Thus we obtain this inversion naturally as
Once againE = v?/2+ j2/(2r%) + Winr so thatk = E— a consequence of the self-similar evolution.
W/2Inj2. Whenb = 0 we have a pure Gaussian in the energy and once
This limit with a = 1 is an extension of the inverse squaragain the singular isothermal sphereb K 0 there is a filled loss
density law to non-radial orbits, but the functiorvofs arbitrary. cone and fob > 0 the loss cone is empty. Providbd> —1 this
The DF is certainly non-unique for the same density profile. DF is elliptical in velocity spaceZ, v, ) at eachr and becomes
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circular (isotropic) atb = 0. The isothermal form witthb = 0 Gaussian that has been found previously in coarse graining
also appears in the fully asymmetric case of zeroth orderseoa(Henriksen & Le Delliou 2002). We included it there as a sec-
graining as discussed in the appendix{of (H3004). ond example of a radial DF that producesraR density profile
This example is only of interest in the context of the persi).
tentr—2 mass distribution in galaxies and clusters referred to in The inclusion of angular momentum here leads to more real-
paper|]|. There is clearly a lack of uniqgueness however, as setic situations. We re-derived the steady self-similaisfom
eral distribution functions may produce an inverse square d first principles in equation|(}5). We showed that these can be
sity profile. Adding a black hole to this example is inconwatii used to describe the simulated collisionless halos cdkllia
(unless it is negligible) as the form of the DF is not suitdiole (MacMillan 2006), if we use the value af~ 0.72 identified in
iteration. However just as in the general case abaveiay be (H2007) and take two limits. In onﬂlS) the DF is isotropidan
taken as that given in equati40). describes approximately the most relaxed central regidhef
One can calculate the growth of a central black hole embeulilge. The other limit|[(19) describes the outer region are th
ded in an inner bulge with the DﬂlS). We can expect to maitransition across the NFW scale radius. The qualitativeesor
tain the steady bulge DF until the black hole mass is a sigmific spondence supports the relevancy of this family. The piaent
fraction of the bulge mass. We find after obvious but tedi@ks c of a central mass can not be included exactly in these distrib

culations that tion functions, but iteration is possible. An example wagegi
for the DF (1B).
ax 5 3 6GPsS 3(1-a) 1») " :
i (2m)*/2\/Gps—— X3 , (43) In particular, velocity dispersions have been calculated! a
c

compared qualitatively with the results of a high resolutiu-
wherex = r, /rs, the subscrips refers to characteristic bulgemerical simulation of an isolated halo. These correspomede
quantities, anéh > 1/3 for convergence of the integrals. We resonable densities when adiabatic self-similarity is erygtb

call that the last stable radius of a Schwarzschild black el Unfortunately these do not apply to the vicinity of the black
r. = 6GM, /c?. Fora = 2/3 the growth is exponential, but thehole itself. However the eventual dom.inance of the _blaclehol
e-folding time is longer than the age of the Universex(50t%) through the_r*1 potential becomes obvious, as seen in the iter-
even if the bulge has M., in one kiloparsec. The result isated potential[(41). _
similar for other values o&. However growth of halo cloaking ~ Simple forms for the DF have been suggested for the various
the actual black hole could be much faster. In general thesmé&ggions of the halo. And given the dynamic co-eval growth of
growth from the DF@8) isrg, andM;, are replaced by the black black-hole/halo and bulge, we explain the black-hole buigss

hole values to obtain the previous equation) correlation_simply@g). This relies on the approximateikinty
between different halos.

dMy, 3/2 3(Th 3(1-3) The forms that we find follow from the assumed self-similar
ot (2m)*%/Gpspsrs e , (44)  path to equilibrium. Remarkably they are in accord with the
general forms for the DF as presented in Stiavelli and Bertin
whereM;, is the mass accreted inside the radigisThis radius (Stiavelli & Bertin, 1985) and as modified J_ That is, ke
would be an intermediate scale between the bulge ssaed distribution functions contain an inner inverted disttiba in
r., determined ultimately by the minimum angular momentummergy (referred to as negative temperatufe in]MTJ) and-aféut
actually available. The accretion rate is proportionalie ta- in the distribution in angular momentum farther from theteen
dius of the structure and is faster than the black hole rate Wjie scale of the inner region that is argued to coincide wiENMN
h/re whena = 1. One assumes that all of this mass is eventgeale radius in this paper is the paramején the earlier papers,
ally accreted by the black hole through relaxation proceés@. so inner and outer have similar meanings.
MacMillan & Henriksen 2003), although multiple steps might The variation is a power-law generally in both energy and
be required.Then the black hole growth is limited by the timgngular momentum, although in the very relevant case of-an in
to empty this reservoir onto the centre. verse square density profile, an exponential variationsite.

This calculation is done without any bias towards the losshese conclusions follow from the assumed adiabatically se
cone ( ~ 0), and with a self-similar DF of the forn{ (80), onesimilar evolution towards equilibrium. As such they tencate
can actually grow the black hole directly. We shall save this  swer questions posed|in MTJ such as whether these distritsuti
culation for papef 1]I. arise naturally and if the variations are exponential or @ew
law. We now know however that part of the answer lies in the
anisotropy produced by the radial orbit instability (MWHG).

We have also found a self-similar generalization of theakdi
In this paper, we have developed distribution functions ttee FPDF in equation@O). Unfortunately this DF does not haee th
scribe both dark matter bulges and a central black hole east| property of yielding a density that is independent of thesptal
a central mass concentration. We succeed mainly in desgriband so a point mass potential is incompatible with selfgirity.
the dark matter bulges. It might describe a system at large radii with a large cemiads.

In the discussion of cusps and bulges based on purely ra- As alwaysa = 1 must be treated separately and we give a
dial orbits (papeﬂ 1), we were able to distinguish the Disttion derivation from first principles. The result is new and it gen
function of Fridmann and Polyachenko from that of Henriksealizes the FPDF in the sense tigaf] r =2 always. Although we
and Widrow. The FPDF was found to describe accurately tikan not place a central mass inside this bulge exactly,dtvall
purely radial simulations of isolated collisionless hatasried an anisotropic DF in the=2 bulge region.
outin dMacMiIIan 200[5). Moreover a point mass could be added Generally we find that we can not describe elegantly
without changing the form of the DF, which allows a self-dami anisotropic bulges containing black holes with self-saniDFs.
growth of a central bulge or black hole. In the next paper in this series (pa@r 1), we shall widen ou

The final result concerning steady, self-similar radiacope to the study and production of non-self-similar cispbs
orbits concerned the special case= 1. The DF is a DF.

4. Conclusions
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