N
N

N

HAL

open science

Black Holes and Galactic Density Cusps II Spherically
Symmetric Anisotropic Cusps

Morgan Le Delliou, Richard Henriksen, Joseph D. Macmillan

» To cite this version:

Morgan Le Delliou, Richard Henriksen, Joseph D. Macmillan. Black Holes and Galactic Density Cusps
IT Spherically Symmetric Anisotropic Cusps. 2010. hal-00431278v4

HAL Id: hal-00431278
https://hal.science/hal-00431278v4
Preprint submitted on 22 Feb 2010 (v4), last revised 30 Jul 2010 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00431278v4
https://hal.archives-ouvertes.fr

Astronomy & Astrophysicsnanuscript no. AA"'2009 13648v2HAL.hyper5415 © ESO 2010
February 22, 2010

Black Holes and Galactic Density Cusps |l
Spherically Symmetric Anisotropic Cusps

M. Le Delliou!, R.N. Henriksef, and J.D. MacMillaA

1 Instituto de Fisica Tebdrica UAM/CSIC, Facultad de CiesciC-XI, Universidad Autbnoma de Madrid
Cantoblanco, 28049 Madrid SPAIN
e-mail:Morgan.LeDelliouQuam.es

2 Queen’s University, Kingston, Ontario, Canada
e-mail:henriksn@astro.queensu.ca

3 Faculty of Science, University of Ontario Institute of Teology, Oshawa, Ontario, Canada L1H 7K4
e-mail: joseph.macmillan@gmail.com

Abstract

Aims. In this paper we study density cusps that may contain cebkaak holes. The actual co-eval self-similar growth woutd n
distinguish between the central object and the surrousding

Methods. To study the environment of a growing black hole we seek dasans of steady ‘cusps’ that may contain a black hole and
that retain at least a memory of self-similarity. We refetite environment in brief as the ‘bulge’ and on smaller s¢ates‘halo’.
Results. We find simple descriptions of the simulations of collisesg matter by comparing predicted densities, velocityedgpns
and distribution functions with the simulations. In somees central point masses may be included by iteration. Wehasige
that the co-eval self-similar growth allows an explanatifrihe black hole bulge mass correlation between approeipaimilar
collisionless systems.

Conclusions. We have derived our results from first principles assumirigtadic self-similarity and either self-similar viriaéifon
or normal steady virialisation. We conclude that distribatfunctions that retain a memory of self-similar evoluatiprovide an
understanding of collisionless systems. The implied gnextaxation of the collisionless matter is due to the timpatalence. Phase
mixing relaxation may be enhanced by clump-clump intecasti

Key words. theory-dark matter-galaxies:haloes-galaxies:nudkibhole physics-gravitation.

1. Introduction We explored this possibility in the case of the spherically
. K ” L ref h sgmmetric radial infall (papd} 1). In this paper we will ertéit
In & previous work (Henriksen et al,, referred to here as papg apisotropic infall. We use the same technique of inferrea-

I’ and refe_rences hereafter) we discussed the relat'Om?m”:"vsonable distribution functions for collisionless mattemf lim-
the formation of black holes (hereafter BH) and of galax#e. jq of the time dependent Collisionless Boltzmann (CBE) and
presented distribution functions (DF) for the co-eval fation pgisson set. We are aided by some high resolution simutation
of spherically symmetric cusps and bulges, as formed byligdi ¢ 1he evolution without a dominant central mass. We add a
infalling, collisionless matter (e.g. dark matter or sja¥e als0 4o minant central mass either analytically or by iteratidust
discussed the influence of a centrally dominant mass, iMud 5 i, the radial case. The loss cones are not empty for substan
a point mass_BH. . tial growth. The relaxation of collisionless matter is doethe
Observations [(KR1995,[ Ma9s[ Ferrase & Merritt 200Qemporal evolution (including the radial orbit instalyijitand,

(Gebhardt et al., 20P0) have establishgd a strong correlatjg addition, to possible ‘clump-clump’ (two clump) intetams
between the BH mass and the surrounding stellar bulge mass(ﬁm,lMacMillan & Henriksen 2003).

velocity dispersion), which we take to be an indication of co
eval growth. Such growth occurs in part during the dissygati
baryon accretion by BH ‘seeds’ in the AGN (Active Galacti
Nuclei) phase, but there is as yet no generally acceptedsoen

We use, in this paper as in the previous paﬂer (), the Carter-
é—|enriksen ((Carter & Henriksen 1991) procedure to obtain a
quasi-self-similar system of coordinatgs (H20006, H2Q0aA)s

for the origin of the seeds. Moreover, recent suggestionef allows writing _the CBE—.qusson set .W'th expl|c_|t ref_erertoe
early very supermassive BHs (eOO?), togetrposs'ble trans_ler?t self—’S|m|Iar dy_na_1m|_cal _relaxatlonthls way
with changes in the normalization of the BH mass-bulge ma clan. remain closedto self-similarity just as the numefic
proportionality (relatively larger black holes at high relift) simu atlt?ns appear to .0' o )

(e.g. [Maiolino et al. 2037), suggest an alternate early grow Studies of BH-density cusps originated with the problem of
mechanism. Recently (Peirani & de Freitas Pacheo]2008) h&id feeding [Peebles 197, Bahcall & Wolf 1976), and with the
studied the possible size of the dark matter component in E}@tion of adiabatic growth| (Young 198D, Quinlan et al., 1995

masses. They deduce that between 1% and 10% of the bikcMillan & Henriksen 2042). Observations of the cen-
hole mass could be due to dark matter. tral Milky Way have detected a mainly isotropic den-

sity cusp with logarithmic power in the rangel.1+ 0.3
Send offprint requests to: MLeD Preprint: IFT-UAM/CSIC-09-27 (Gillessen et al., 2009). This is flatter than the adiabatit|
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(MacMillan & Henriksen 20(2) and in any case the adiabatic We assume that time, radius, velocity and density are mea-
growth scenario does not produce the BH bulge correlatiosgred in fiducial units,/Vo,ro, Vo @andp, respectively. The unit
(ibid). All this has spurred the investigation of co-eval-dyof the distribution function (DF from now on) i§ and that of
namical growth instead of adiabatic growth. Central cuspise potential isv2. We remove constants from the transformed
flatter than—1.5 can be created by tight binary BH systemsquations by taking
formed in mergers that ‘scour’ the stellar environment .(e.g 2
Merritt & Szell 2006, [Nakano & Makino 19P9). This process fo=Po/V3, V3= 4nGpors. (4)
can produce log slopes as flat ad or even—0.5, and it is These transformations convert equatiofjs [JL),(2) to the re-
supported by a strong correlation between nuclear BH mass ective forms
central luminosity deficit|(Kormendy & Bender 2009).
However the correlation in itself only implicates the influ-
ence of the BH. It does not necessarily require the merger his 1 Y R
tory, which in any case is unlikely to be the same for différen EaTP_ (3/a-1)P+ (E N E)dRP
galaxies. Consequently we explore in this paper whethgrscus 1/0¥Y Z
as flat as those resulting from scouring might also be pratiuce ((1/61— Y+ — (— - —)) &P—(4/a-2)29,P=0
. ; ) a\dR R3
during the dynamical formation of the black hole.

We begin the next section with a summary of the general for- ®)
mulation in spherical symmetry. Subsequently we study a sysd
tem comprised of anisotropic non-radial orbits in sphésgan- 1d RzakP _o 6
metry. Finally we give our conclusions. R2dR 9R) T 6)
This integro-differential system is closed by
2. Dynamical Equations and previous results 1
. . _ 0= / PdY dz. )
We will use the formulation of H2006, wherein we transform to R
infall variables the collisionless Boltzmann and Poissqoze This completes the formalism that we will use to obtain the
tions for a spherically symmetric anisotropic system. Wgilbe resyts below. The ‘cusps’ we describe there will generaitg
with the ‘Fujiwara’ form (e.g} Fujiwara 1983) namely in what is the central ‘bulge’ surrounding the black holehea
than in the black hole itself.
of Vdf L df_o :
o Viar T\ ar o 1 3 Spherically Symmetric Steady Anisotropic

Bulges and Cusps
9 (rza—q’) :47126/ £t v, j2)dvedj2. @) o
or or We follow the same pattern of discussion in this section et

. . ‘ o used previously (papﬂr ) for radial orbits. We begin in theés-
Heref is the phase-space mass densitys the ‘mean’field tion with steady, bulge-black hole, systems that retain morg
gravitational potentialj“ is the square of the specific angulabf the prior nearly self-similar relaxation. The relaxatipro-

momentum and other notation is more or less standard. ceeds by way of the relation
The transformation to infall variables takes the form (e.g.
FZ008) dE_ oo, @
d  at "
R_reaT/a vy _y e (1/a-DaT (with the appropriate total energy and potential energlgis h-
- ’ - ’ cludes clump-clump interactions and the radial orbit ibsits
Z=jleWa2aT = &aT _ gt and produces finally the coarse grained (i.e. stdady H20@6) s

T\ _  a(3/a-1)aT i2. tem.
PRY,ZT)= ¢ it (rv %Y, @) The steady self-similar cusps were found[in (H\V95) except

YRT)=e 22 DTpr) ORT)=prt)e 2. for the case whera = 1. However we can recover them here
by using the same procedure that we used for radial orbiés (se
The passage to the self-similar limit requires takihg= pape]l). We employ the characteristics[df (5), togethen e
0 when acting on the transformed variables. Thus the Sqmentity‘é—”s’ — %—W+(é—'§0RLIJ.Acombinati0n ofthe characteristics
similar limit is a stationary system in these variables,alhis  |eads to an expression for the scaled energy on a chardicteris
a state that we refer to as ‘self-similar virialisatiop’ (H1899, namely

e Delliou 2001). The virial ratio B /|W| is a constant in this

state (although greater than ore;s kinetic energy andV is d& B oy ROY oY
potential), but the system is not steady in physical vaeslals ds 2t/a-nF+2t/a- ¥ aoR + as’ ©)
infall continues. where

The single quantity is the constant that determines the dy- Y2 7
namical similarity, called the self-similar index. It isroposed E=FtomtW (10)

of two separate reciprocal scalingsjn time andd in space, in . . . .
the forma = a /3. As it varies it reflects all dominant physical _ We impose the steady state in equati¢h p(g). by setting
constants with dimensions of mass as well as of length aret tid */9S = 0 and requiring as in papfr | thiit T RP with p =
This is because the mass reciprocal scalingas been reduced 2(1 — @) S0 that

to 30 — 2a in order to maintain Newton’s consta@tscale in- RdW¥

variant (e.g[ H20d6). ~-gr F2l/a-pw=o (11)
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Consequently the characteristics of equat@m (5) are sean-t radial velocity dispersion sinag = 0) will generally bel] @ for

ply any power law choice d?(|E|j?).
dp One can come close to imitating the Bahcall and Wolf
— = (3/a—1)P, (Bahcall & Wolf 1976) zero flux solution for a black hole cusp
(;j; by choosing®(k) = F(|E|j2)/(|E|j?)%/*. This yields the DF
— = —2(1/a-1)&, (12)
e 2, [E[V4
d_Z — _(4/a_2)z 7Tf—F(|E|J )(j2)5/45 (17)
ds
These combine to give the general self-similar steady DF\vhereF is an arbitrary function. In fact they use for argument
the form @ # 1 anda # 3/2) of their arbitrary functiom = (1—€?)/2 wheree is the orbital
_ eccentricity, and for Keplerian orbits around a point migs
P = P(Zo,k)&9, (13) this become$E|j?/(GM,)?. In our unitsGM, = 1.
If this were exactly the Bahcall-Wolf solution it would be re
where markable, since their solution is the result of collisiogiéfusion
_ _1a into the loss cone. Here however we are obliged to have thie add
K = 2 7, (14) . (N B epr o )
tional dependendg?)~>4, which implies a divergent loss cone.
q= 3-a ) Thus the necessary diffusion is simply assumed in this el@mp
2(a—1) in order to duplicate the energy and eccentricity depeneléare

. . .., bitrary because of spherical symmetry).
'I|_'|he quan_tltthO 'f) the valuedon {Ij:‘t S.:.IUT N ? FhatL!SJ ' One can obtain the Bahcall-Wolf energy dependence from
owever in the ab-initio steady self-similar analysissttiepen- o general form[(}5) only by settimg— 7/3, which is quite

dence does not appedr (HV/95). It is however present in genglareajistic and gives the wrong arbitrary dependence. \&# sh

in this limit from time _de_pendent phase, and we use it in tr’E,E'ee in the next paper in this series (papé¢r 111) that it is jpbesso
pap_?rr]m, r?n UOT}Self'S'Tuar C‘ﬁp?- ilar DE b . choose a simple non-self-similar DF that does fall betwberé
e physical form of the seff-similar ECOMES, on USINGo cases and imitates the Bahcall-Wolf result more prégise

the scaling relations[k3), There are two simple limits of the forrﬂ18) for which there

nf = P(k)[E[ (15) is some evidence in the numerical simulations of isolate# da
L matter bulges|(MacMillan 2006). Just as in the radial case th
kK = |E|(j5) (72, following comparison with simulations suggest that thisnily

5 s _ of DF’s may actually be realized. These limits are found lixy ta
whereE =7 /24 j°/(2r%)+ ®. This result has also been showhyg first P to be a constarit, and then by taking it to be propor-
(e.g.|H200p) to be the zeroth order DF in the coarse grainifggnal tox 9. this yields respectively
approach that becomes the exact steady state in the long time

limit (a — ). It was also used by Kulessa and Lynden-Belf — K|E|9, (18)

(Kulessa & Lynden-Bell 1992) in their study of the mass of the K

Galaxy. nf = —» (29)
An_earlier important paper by Stiavelli and Bertin (i?)

(Stiavelli & Bertin, 198p) also proposed equilibrium dibtrtion

functions for elliptical galaxies. These were based in galren . ) .
three integral mgdels,gbut were reduced to our two fanﬁim—i We expect (see discussion to follow) that the [E .(15) will
grals in the case of spherical symmetry. In our case the motiPPIy near the centre of a system whare 1. The self similar
tion for the equilibrium DF is different, because it derijesm Potential is then increasing with radius and so must be taken
the self-similar dynamical growth. There are neverthesesse positive to obta_ln an atiractive fqrce.Th|s allows us tccokdte
significant similarities, particularly as modified to an emted th€ corresponding density explicitly as
energy distribution by Merritt, Tremaine and JohnstoneB@.9 a
hereaftef MT}J). We discuss these points further below atft&in p = 4V2K(®)=1B(|q| - 3/2,3/2). (20)
conclusions to this paper.

The density profile that accompanies this DF for a particul&tere B(x,y) is the standard Beta function, which may be ex-
choice ofP(k) can be shown by direct integration over phaseressed in terms of the gamma functiofx) as ()" (y) /T (x+

space to be 0 r~22 and subsequently the consistent potentié{ ' ) _ .

is ® 0r20-3) 50 long as # 1,3/2 The Poisson equation shows that any power law solution for
The case — 3/2 is excluded simply because it representsgs potential with this density goes ds[] r#1-# and hence

point mass in a massless halo. However this is of interest p p U=, both_as the_y_ must for s_elf-S|m|_Iar|ty. The _only

cisely when describing the environment of a dominant céntf£2Son for giving this explicit form here is that it may bedige

mass. whether this be the halo of a central black hole or tlie h@" iterative calculation of the transition from halo to IHdwle

of a cbarse-grained collisionless bulge of stars. ominance. In such a calculation a point mass potentialthkeis

The general form of the DF becomes from equat@ (15) halo potentiall is inser'ged to give a new o_Iensity, which imtur
may be used in the Poisson equation to give a new potential and

where we have definetl= (3—a)/(4— 2a).

it = P(|E|j?)|E|¥2 (16) SO on. The halo potential must dominate however so as to keep
the net potential positive.
This gives a number density of massless particlas 2 for a As an example we assume that the potential has the form

potential® = —M, /r. The rms radial velocity ( the same as th& = —C; /r +C,or?1-3 (C; andC; arbitrary positive constants)
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so that by [2)0) the density becomes (C, — Cy /r322)r—22, _
From the Poisson equation the new potential now follows as 1.0 —

2(1-a)
Y R— (Cz—Cylnr)/r, (21) —

2(1-a)(3—2a) _|

whereC; should be positive to maintain the point mass contr
bution. The inner boundary of this expression is at the mdi
where it equals zero and the outer boundary would be insile - E —]
NFW (NFW1996) scale radius (which we may set equal to o 0.5—
scale radius,). The radial mean square veloci§ (also the ra-
dial squared dispersion) is proportionakkcand so we predict a —
minimum value just outside the radius $1$ where the central —
mass becomes dominant (iférm) = 0), followed by a steady 0.25 —
rise that tends 0?12, _

The density corresponding to this potential follows fr@)(z —
as

p 0 ®a, (22) OO T TTT T I T TTI I TITI]TTTT]

(C
so that it has foa < 1 a rapid rise near $m$ followed by the 0.7 0.75 0.8 0-85 0.9 0-¢

self-similar regime whereip 0 r=22, The radiusry, would be a
between 1 and 10 pc in the halos of typical galaxies.
Of course this iteration has not fully converged but subs

quent cycles will produce higher order terms. The re (2|11igure1. The curve shows the dependence of the factor that
O

seems to indicate that the black hole mass is enhancedy’an ltiplies® in th ial velocity di ; functi f

cusp that peaks just outsidg, multiplies® in the tangential velocity dispersion as a uncolicz)n 0
The radial velocity dispersion is generally equal to thetro & ;88 d'aﬁatlc variation Cﬂdw'th ' .'ts aﬁc)pt)rr]oxll\ln;%t/elwzl ' di

mean square radial velocity for the DF|(18) since the mea’alra ), where is measured in units of the scale radius

velocity is zero. This is proportional ® 0 r21-®, The squared s

tangential velocity dispersion however becomes

. (8B(la—5/2,5/2)  mB(|g—2,2)?
7t =(3nia 3253 8bla Taszr) @ =l 26)
- 0

The mean square radial velocity becomes in this limit

whereq < —2 or 1> a > 1/3. The factor~ (a) in this equation
that multipliesy/® is shown in figure|]1) as a function af
Unlike the radial velocity dispersion, which should stdadi
increase withradius proportionally to® (which flattens as —
1), the tangential velocity dispersion is expected to shomoee
precipitous drop as tends towards the scale radius amé> 1 ) 2(3/2—w) lp(w—1)
asF (a) declines. The variation afis only adiabatic with radius ~ < 91 >= |®| 5/2—w

where sincea > 1 this decreases with radius. The tangential ve-
locity dispersion has once again a more complicated express
namely

h i 2 : . lo(w)
owever, varying roughly as"2. We shall see evidence for this
below. 5/2 2
We turn first to an examination of the other limft [19). We _ [ 2EE/2-wlow-1/2) | @7)
expect this to apply in the outer region to which much angular (2—w)lo(w)

momentum has been transferred by the bar due to the radial or-

bit instability (MWH 2008). Hence we choose the regime wheigithoughw(a) is slowly varying for 1< a < 3/2, the factor mul-
a> 1 and the energy/potential is negative. Iteration is ndtyeatip|ying ® declines to zero as — 3/2.

relevant in this limit since we are far from the black holet bu " ‘It is time however to compare these DF's chosen for their
because of its importance in calculating mean quantitiegivee - self-similar memory to the results of simulations, in ortbejus-

the density as tify our attention.
— In references[(H2006) and (H2¢07) it was concluded that
_2 Kl —w|p|(3/2-w) o4y @=0.72nearthe outer boundary of the relaxed region. Moreover
p= (Wr|o| : (24) )
3/2—w we know from those papers, and more generally from exten

sive cosmological simulations, that= 0.5 in the interior, well
Once again the Poisson equation has the consistent sotifion relaxed, region. This is referred to as adiabatic selfisirity
—r21-3 andp Or~22, The integralo(w) is given by (H2009) since the indea dynamically evolves, but relatively
slowly (a O r%, ar = O(0.2), H2007) as already employed
| o [tdy 1 (—1/2) o5 above. To match the simulation results we reqaire 3/2 in
n(W) = /0+ W( -Y) (25) the vicinity of the NFW scale radius, after which there maybe
tidal truncation ta—# (H2004)
where the lower limit must be greater than zero for convezgen  There is evidence in the simulations for the persistence of
sincew > 1 fora> 1. self-similarity, even in the case that most closely resesilain
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isolated cosmological halo (i.e. cosmological pertudraiare . !
included in the initial conditions). Thus in the cosmolagitike l
halo simulation of6), the virial mass andiair R
radius are found to grow in a power law manner according to o
t216 andt1%° (we do not quote numerical errors, which are ag ,,, | !
the level of a few percent) respectively. The logarithmingity f

slope in the outer relaxed region is approximately.4 while
the pseudo-density logarithmic slope-ig.16.

- 400 -

The numerical predictions follow by usirg= 0.72 from 0
(H2007). The self-similar mass growth inside any growing ra

dius (fixedR) is (HW 1999)0 t(3/2-2) 1216 whiler OtY2 [0 1
t138 (see equation[[3)). The logarithmic density slope is pre-
dicted to be—2a = 1.44, and the pseudo-density logarithmic o5
power (e.g H20Q7] Hansen 2004) is given &y 3 = —2.28.
These reasonable correspondences with the numericalssimu
tion (only the predicted pseudo-density differs signifitafrom
the simulated value) encourage us to adopt a DF as one of the
above steady forms. The self-similar memory is incorparate ~ °° [
therina=0.72 orina= 0.5 in the relaxed region, which bound-
ary is approximately (in fact the region wheae< 1 extends -1
beyond the scale radius by about a factor 2 in the simulation)
coincident with the NFW scale radius. r (kpec)

The velocity dispersion in the relaxed region is based on the _ o ) _
DF ) and has been given in equati(23) for the tangentilure_z. The figure shows two d|st|nc_t simulations from
case, while the radial dispersion is proportionahfe® O r1-2, )- The right hand panels display the reswitf{
Hence, away from the transition to the black hole region, wientinuing infall) of an isolated halo S|mglat|on startlflgm_ a
can test our predicted dispersions against the simulatitsing €t of particles perturbed by a cosmological spectrum o$iden
the valuea = 0.72 this gives the radiald{) velocity dispersion and velocity fluctuations. The panel on the left |nd|cate$|a‘zm_e
going asr®28 which should be compared with figurd (2). Thetage as developed from a non-perturbed halo. The uppeorine
cosmological case is the right hand panel, which the pheamaspthe upper panel in each case is for a similar halo , but allgwin
diagram (not shown) shows to be more relaxed than the igitiaPnly purely radial collapse. The middle line is the radidbegty
unperturbed simulation on the left. Th&28 rise is a reasonable dispersion while the lower line is the tangential dispersibhe
description of the numerical behaviour, especially as sadie lower panels display the anisotropy parameter for nonatadi-
abatic evolution ira towards unity is to be expected. This willlapse.
flatten the rate of rise Between 4 and 60 kpc, the radial disper

ion ri f 2 while th i I ing . . . . .
Zlo:no'n?sze :SS g{; tﬁrgﬁng Zt%r inc\:ve;s?etoﬁlyptrg ggtﬁg ;/\?elﬁsglé&% ain the difference between this behaviour and that ofatiiar

improves the fit. dispersion must lie in the factor multiplying.

: : So we_have found above that the implications of equations
Eventqally at Iarg(_e enough rad|_us, according to the corqplei@) and ) are reasonable, but do we Fr)1ave an evidgnce con-
cosmological simulations, we requize~ 3/2 and so we predict : ' y

LI S . . : . rning the DF itself?
a decline in the radial dispersion proportionalrto/2 in this cerning the tse

; . o X ; ) In the outer part of the relaxed region MacMillan (ibid, and
region. Figure([{2) indicates that this begins at about tvie figure[3) finds that the DF is mainly dependent on angular mo-
indicated scale radius. Before this point but still outsfttescale o v\ This is evident from the figure by noting that numeri-

radius the decline is slower. In fact the simulation giges5/4 cally g(E. j) 0 dM /dE in the range-100 to—200 energy units
in this region so that the expected decline would be onty &4 )_ Hence from the definition

The tangential dispersion velocity has the same behavtour a
smallr but rolls over more rapidly. This is indicated very clearly > 1 d2m
in the graphs of the anisotropy paramgler 1 — 02 /a? on the f(E,j°) = o(E. ) dEd}2’ (28)
panel below the velocity dispersion. This is consistentitata ’
tively with the action of the factdF (a) defined in equatiO), we infer thatf 01dIndM/dE/d j2. This is independent of energy
an_d d|splayed In flgureﬂ(l) over the relevant range. dihe weak in the outer region. Note that in terms fFfthe figure is simply
adiabatic dependence afonr is not weak enough however t0gi atched by a factor of 2 in thiedirection.
cover the range in over whichg, stays flat. There is some un- We therefore fit the self-similar DF|Z|19) with = 1.25

certainty in this factor and foa 0 r®*° one arrives at nearly a  opiain f 0 (j2)-18, This is in fact a reasonable fit to the

factor two in radius aa varies from 072 to Q 8. Howeverfig_ure DF in the less tightly bound region with angular momentum

(@ shows thak has dropped by more than a factor two in thig e ater than about 500 units (figyde 3). Such a cut-off in an-
range, whiley'® increases by only a factor of2 at best. The gujar momentum was contained in the Stiavelli and Bertin DF
implied factor two deqlln_e_ is not seen. The_only explanatmn_ Stiavelli & Bertin, 198b) where it was exponemi@TJ gav
t_hata d_oes not vary _S|gn|f|cantly in this region, so that there i§ heuristic justification for a cut-off ij2 and also wondered
litle adiabatic evolution. _ whether an exponential or a power-law cut-off was superior.
At the end of this plateau we have entered the region whefgey also asked whether such behaviour arose naturallyein th
a~5/4> 1. The decline in/® is however only as~ % there, course of the dynamical formation of galaxies. Here our amsw
whereas the observed decline in figLEIe (2) is morerlike Once s in favour of a power-law cut-off following self-similanfall.
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An intermediate region where the logarithmic density slope
varies from just above 2 to about 3 does occur in all simula-
tions of collisionless matter. Moreover this region tena€o-
incide with the passage from isotropy to radial orbits (E.)g.
According to the preceding remarks (i.e. the [E (19) waitk 1) 1500
this region can be characterized by roughly constant nusrifer
particles over a broad range of energy, but with numbersihapi —
increasing towards a minimum in angular momentum. Some par-
ticles would have too much angular momentum to enter the cen-
tral region, while those below a critical angular momentwan ¢

2000

1000

populate the central regions. 500

In the simulations this redistribution of angular momentum
is attributed to the onset of the Radial Orbit InstabilityQIR L .
in (MWH 2008) and the consequent formation of a bar. In the 100 0 2 4 6 8

current spherically symmetric analysis, we are forced tmipa
these different regions together ‘by hand’, guided only lhg t 5 10
different possibilities for. =

In the inner relaxed region we expect the EE (18) to apply 1
with a~ 0.72. This gives an isotropit 0 E~*. The simulations
(NFW1996) suggest tha— 1/2 in the very centre of the sys- 01
tem, which would givef 0 E~5/2. This is in accord with previ-
ous discussions (e.f. H2906). The fact that our energy isiys E
, While t_he simulation energy is negative, reflects the dffie . ure3. The fiqure shows a contour blot oM /dEdJ for
zero points for the po;entlal. We use the_ centre .of the_ syst%:ﬁg full simulatiogn of an isolated hal06).é'h
as the reference zero in our analysis, while the simulatgesu =
infinity. separate plots cd_l\/l/dE andd_l\/IdJ are also indicated. The cor-

. o5 . : responding density of states is almost independehtod is the

Numerically g(E) U [E]| in this region so that expected (e.f§.Binney & Tremaine 19878| 25 law. The line
d?M/dEdj? should vary as=~° (E~° if a=05). There is gn'the upper left ig(E) for circular orbits.
very little dependence off here so this prediction might be
compared to the behaviour dM/dE. This quantity is falling
steeply beyond = —300 @), but the evidence is weak at the3.1. More General Self-Similar Distribution Functions
limit of resolution. The limits of equation @5) that we discussed above are quite

At slightly higher angular momentum there is a rising de: ... ; ;
s . L . 2 rbitrary, ex for the ex ion of central isotr &h
pendence orj. This can be imitated with a self-similar solu-a bitrary, except for the expectation of central isotropyl ghe

X Rt ) X - ’ dominance of angular momentum in the outer regions. In this
tion by takingP(x) 0 1/k in equation[(Z5), which gives the DF section we explore more general possibilities, even thangh
f OE-5(j2)Y5. pirically the preceding limits seem adequate.

The above prolonged discussion suggests that a DF with a The distribution function@S) can be putin a form that seems
self-similar memory can be used to parametrise the phase sp@ generalize the FPDF (i.e. Fridmann and Polyachenko DE). W
of these collisionless simulations. At least this is truadf ac- ho0sed 1k~ (221) to obtain
cept the adiabatic variability &f, which has been made plausi-
ble on the grounds of a local entropy maximum ( 007). K (30)

dM/dJ

-300 —200 —100

I

However what has this to do with the black-hole bulge mass cor = (jz)z%a |Eo— E|1/2'

relation that the co-eval growth was supposed to explain?

If one assumes that the halo around the seed black hole is The density integral over this DF requires a lower cut-off
accreted eventually through two-body and clump-clumpxeelain angular momentum faa > 1 and an upper cut-off in energy
ation (MacMillan & Henriksen 2003), then the mass of the klador a < 1 in order to avoid singularities. We have exhibited the
hole/halo should be proportional to the mass of the bulgelgim upper energy cut-off explicitly irf (0) explicitly. It appes as the
because of the power law density (with nearly constant pawer arbitrary constant in the potential so that the differeBge- E
siders). LettingM, be the black hole maskls be the bulge mass still has the self-similar behaviour{'~?), as does the density
andry, rs, be the black hole halo and bulge radii respectively ((r—22). Moreover fora > 1 the minimum angular momentum

is the scale radius); we find the relation should be a fixed fraction of the value’2E — ®) say 0< k; <
1, in order for the density profile and potential associatét w

M. r (3-2a) equation ) to apply. The radial velocity dispersion soal

M= (r—s) (29) r21-9) |tis only whena = 1 that one obtains the 2 profile of

the radial FPDF, and this must be discussed separately below
) . If one computes formally the density by integrating the DF
If the appropriatea = 0.72, then the power of the radial depen(g) in a negative energy region (negative althoagh 1, be-
assume that galaxy growth is not only self-similar, but thate

is a similarity between galaxies so that the scale ratioris-si pO r*zg—a(|q)| _ IEOI)%:_S. (31)
lar. This is not exactly the case (e}g. Navarro et al., POQ®)it

is nearly so. Such a relation might be tested by high resmiutiAs in the previous section, this can be used in an iteratisie-fa
simulations containing a seed black hole. ion.
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Thus in a region dominated by a central point mass (and takhereu = j2/r2. The limitsus, up are the two roots found in
ing E, = 0) we see that the cusp would be, at lowest order, terms of the Lambert function by setting the argument of the
3a square root equal to zero. WhenfW is large, the lower root
pUr za. (32) becomes zero and the upper root approacked Bere is slow

The next order would be found by using this in the Poisson eque@nvergence of the inner integral. Provided thék) is such as
tion to obtain a new potential and then a new density from equa make the outer integral converge, the profileis.
tion ). Once again this low order result can not be flattant We note that for any finite, the possible range af has a
r—15The steepest limit is—2 asa — 1—. We remark that at definite upper limit and a definite lower limit that may be @os
a=2/3 one obtains the Bahcall and Wolf zero flux cusp/4, to zero. This means that at giverthere is a finite range ih2
due to the filled loss cone in the DF. Foe= 0.72, the cusp is like that is present, and that this range collapses on zero-ag.
r—178 very close to the Bahcall and Wolf cusp and still with &his is as expected with spherical symmetry.
filled loss cone. In papdr ]Il of this series we shall find anagxa It is possible to have solutions with < 0 whereupon
example of this type. _

\/é (WInw—-w)/2 P(K) d|K| up du

P — 95 )
3.2. Singular Isothermal Sphere: The Global Inverse Square r2 Jo k[Y2 Ju uy/(Winu—u)/2k[ -1
Law

] ) ) where again the inner limits are the roots found by settirgy th
So far we have ignored the case wizen 1, the singular isother- argument of the square root equal to zero. For a real ranga-of v
mal limit. In fact the steady DF witl = 1 must be treated sep-yes,W/|k| must be greater than a minimum value that depends
arately because of the logarithmic potentiak= Winr (W con-  on the value of¥. The same restriction on angular momentum
stant) that accompanies the inverse square density law. &e rasr — 0 applies. In all cases the velocity dispersion is constant.

still deduce it from the characteristics ¢f (5) if we take= 0 Unlike the radial FPDF that has an inverse square cusp,
finally, since a steady state is the same at any time. The app{dyjack hole is not readily incorporated into this distribot
priate characteristics become wih-= 1 However at large enough(or basically where in phase space
dp wherev; /r? < vo/r2) it suffices to modify the integral by a point
e 2P, mass potential so that
dR Y
c_ T R 33 2 2 GM. ¥ .
ds a (33) K:V—F+J—2+LIJInr7 ——=1Inj2 (40)
&y 1/z W 2 & ro2
ds  « <$ B ﬁ) ’ The velocity dispersion is no longer strictly constant,assl
dz j2 > GM.r, but the influence of the black hole is weak in this
e —2Z. regime.
) ) One special model of an inverse square, steady, anisotropic
These integrate to give bulge is provided by equatiof (36) by taking
P = P(Z,k)/Z, (34) o
oYz B) = Kexp( (55 (140)). (@1)
2 )
where v 7 whereb is any real number.
_ In velocity space the anisotropic DF becomes explicitly
&=—+— +W¥InR 35
7 T TYINR (3 2=t
andZ, is againj? ats= 0 on the characteristic. b+ 12
By writing the self-similar physical form af = 0 we find K +1)v
(fOI' ay: 1) g Py nf = r_z eXp<(T)) (Vi>b (42)
mf = m, (36) Thisformis quite closely related to the DF suggested by8liia
j2 and Bertin [Stiavelli & Bertin, 1985). However it offers amobi-
Vo2 W, nation of an exponential cut-off and a possible power-latrafti
K= + 22 +Winr — > Inj<. in angular momentum. It does have the inverted distribuition
2 2 oy 2 energy ( itincreases outward) as suggeste MTJ. Thisas al
-V, 1_2 N 1_2 (37) true of the DF that we suggest for the inner region, namelpequ
2 e 20 tion ([L§) witha < 1. Thus we obtain this inversion naturally as
Once againE = vr2/2 + jz/(2r2) + Winr so thatk = E — aconsequence of the self-similar evolution.
W/2Inj2. Whenb = 0 we have a pure Gaussian in the energy and once

This limit with a = 1 is an extension of the inverse squar@dain the singular isothermal sphereb K 0 there is a filled loss
density law to non-radial orbits, but the functiorvofs arbitrary. cone and fob > 0 the loss cone is empty. Provided> —1 this
The DF is certainly non-unique for the same density profile. DF is elliptical in velocity spacex, v, ) at eactr and becomes

If we calculate the density profile far > 0 by integrating Circular (isotropic) ato = 0. The isothermal form wittb = 0

over (3p) we arrive eventually at also appears in the fully asymmetric case of zeroth ordeiseoa
N graining as discussed in the appendix|of (H2004).
_ £2 /°° P(k) K /'“2 du (38) This example is only of interest in the context of the persis-
T r2 Jo k12 Ju, u\/l— (u— qJ|nu)/2K’ tentr~2 mass distribution in galaxies and clusters referred to in
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paper|]|. There is clearly a lack of uniqueness however, as sévst principles in equationm5). We showed that these can be
eral distribution functions may produce an inverse square d used to describe the simulated collisionless halos cakmxlilia
sity profile. Adding a black hole to this example is inconeerii  (MacMillan 2006), if we use the value af~ 0.72 identified in
(unless it is negligible) as the form of the DF is not suitdiole (H2007) and take two limits. In onﬂw) the DF is isotropidan
iteration. However just as in the general case abevenay be describes approximately the most relaxed central regichef
taken as that given in equati40). bulge. The other limit|(119) describes the outer region ared th
One can calculate the growth of a central black hole embedansition across the NFW scale radius. The qualitativeecor
ded in an inner bulge with the Dﬂ18). We can expect to maispondence supports the relevancy of this family. The piatient
tain the steady bulge DF until the black hole mass is a sigmific of a central mass can not be included exactly in these distrib
fraction of the bulge mass. We find after obvious but tedi@lks ction functions, but iteration is possible. An example wagegi

culations that for the DF [1B).
dx 6G o2 In particular, velocity dispersions have been calculated a
& (2m3/2 /GPS$X3(17""), (43) compared qualitatively with the results of a high resoluti-
c

merical simulation of an isolated halo. These correspomdae

wherex = r./rs, the subscrips refers to characteristic bulgesonable densities when adiabatic self-similarity is eryetb
quantities, ané > 1/3 for convergence of the integrals. We renfortunately these do not apply to the vicinity of the black
call that the last stable radius of a Schwarzschild black el hole itself. However the eventual dominance of the blacle hol
r. = 6GM,/c?. Fora = 2/3 the growth is exponential, but thethrough the_r*1 otential becomes obvious, as seen in the iter-
e-folding time is longer than the age of the Universex(B0t%) ~ated potentiall(41). _
even if the bulge has 8M., in one kiloparsec. The result is _Slmple forms for the DF_have been suggested for the various
similar for other values of. However growth of halo cloaking régions of the halo. And given the dynamic co-eval growth of
the actual black hole could be much faster. In general thes m&ack-hole/halo and bulge, we explain the black-hole buigss
growth from the DF[(1I8) isr¢, andMp, are replaced by the black correlation simply[(29). This relies on the approximateikirity

hole values to obtain the previous equation) between different halos. o
The forms that we find follow from the assumed self-similar

dMm ) 332 path to equilibrium. Remarkably they are in accord with the
Fh = (277)3/2\/ Gpspst (r—h> ) (44) general forms for the DF as presented in Stiavelli and Bertin
s Stiavelli & Bertin, 198F) and as modified jn MTJ. That is, see

whereMy, is the mass accreted inside the radigsThis radius distribution functions contain an inner inverted disttiba in
would be an intermediate scale between the bulge ssalad energy (referred to as negative temperatufe in|MTJ) and-aftut
r., determined ultimately by the minimum angular momentuin the distribution in angular momentum farther from thetcen
actually available. The accretion rate is proportionalhte ta- The scale of the inner region that is argued to coincide wiER\WN
dius of the structure and is faster than the black hole rate bgale radius in this paper, is the paramegén the earlier papers
rn/re whena = 1. One assumes that all of this mass is eventse inner and outer have similar meanings.
ally accreted by the black hole through relaxation proceéseg. The variation is a power-law generally in both energy and
MacMillan & Henriksen 2003), although multiple steps migh&ngular momentum, although in the very relevant case of-an in
be required.Then the black hole growth is limited by the timeerse square density profile, an exponential variation ssibte.
to empty this reservoir onto the centre. these conclusions follow from the assumed adiabaticalfy se

This calculation is done without any bias towards the lossmilar evolution towards equilibrium. As such they tendate
cone (j ~ 0), and with a self-similar DF of the forn] (30), oneswer questions posed fin MTJ such as do these distributitses ar
can actually grow the black hole directly. We shall save this naturally and are the variations exponential or power-I1&\&?
culation for papeml. now know however that part of the answer lies in the anisgtrop
produced by the radial orbit instability (MWH 2d06).

We have also found a self-similar generalization of theakdi
FPDF in equation[(30). Unfortunately this DF does not haee th

In this paper, we have developed distribution functions tlea  Property of yielding a density that is independent of theepttl
scribe both dark matter bulges and a central black hole eaat| and so a point mass potential is incompatible with self-sirty.

a central mass concentration. We succeed mainly in desgriblt might describe a system at large radii with a large cemtiass.
the dark matter bulges. As alwaysa = 1 must be treated separately and we give a
In the discussion of cusps and bulges based on purely ﬁ&_\.rivation from f.irst principles. The result is new. It doengr-

dial orbits (papef] ), we were able to distinguish the Distion  alize the FPDF in the sense tha(] r 2 always. Although we
function of Fridmann and Polyachenko from that of Henriksegfih not place a central mass inside this bulge exactly,dtvall
and Widrow. The FPDF was found to describe accurately tA8 anisotropic DF in the~Z bulge region. .
purely radial simulations of isolated collisionless hatesried ~ Generally we find that we can not describe elegantly
outin (MacMillan 200p). Moreover a point mass could be addeisotropic bulges containing black holes with self-samiDFs.
without changing the form of the DF, which allows a self-dani In the next paper in this series (paper 111), we shall widen ou
growth of a central bulge or black hole. scope to the study and production of non-self-similar cusyb
The final result concerning steady, self-similar radialitsrb DF.
concerned the special case- 1. The DF is a Gaussian that has
been found previously in coarse grainirjg (HLeD 3002). We iry
cluded it there as a second example of a radial DF that preducé
anr—2 density profile [Mutka 2009). RNH acknowledges the support of an operating grant from the
The inclusion of angular momentum here leads to more reahnadian Natural Sciences and Research Council. The work
istic situations. We re-derived the steady self-similasfem of MLeD is supported by CSIC (Spain) under the contract
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