
HAL Id: hal-00431277
https://hal.science/hal-00431277

Submitted on 11 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Node Degree Distribution in Amino Acid Interaction
Networks

Omar Gaci, Stefan Balev

To cite this version:
Omar Gaci, Stefan Balev. Node Degree Distribution in Amino Acid Interaction Networks. Computa-
tional Structural Bioinformatics Workshop, Nov 2009, Washington D.C., United States. pp.107-112.
�hal-00431277�

https://hal.science/hal-00431277
https://hal.archives-ouvertes.fr


Node Degree Distribution in Amino Acid Interaction Networks

Omar GACI
Le Havre University

LITIS Laboratory
Le Havre, France

Email: omar.gaci@univ-lehavre.fr

Stefan BALEV
Le Havre University

LITIS Laboratory
Le Havre, France

Email: stefan.balev@univ-lehavre.fr

Abstract—A protein interaction network is a graph whose
vertices are the protein’s amino acids and whose edges are the
interactions between them. Using a graph theory approach,
we study the properties of these networks. In particular, we
are interested in the degree distribution and mean degree of
the vertices. The results presented in this paper constitute the
first steps of a new network approach to the protein folding
problem.
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I. I NTRODUCTION

Proteins are biological macromolecules participating in
the large majority of processes which govern organisms. The
roles played by proteins are varied and complex. Certain pro-
teins, called enzymes, act as catalysts and increase several
orders of magnitude, with a remarkable specificity, the speed
of multiple chemical reactions essential to the organism
survival. Proteins are also used for storage and transport of
small molecules or ions, control the passage of molecules
through the cell membranes, etc. Hormones, which transmit
information and allow the regulation of complex cellular
processes, are also proteins.

Genome sequencing projects generate an ever increasing
number of protein sequences. For example, the Human
Genome Project has identified over 30,000 genes which
may encode about 100,000 proteins. One of the first tasks
when annotating a new genome, is to assign functions to
the proteins produced by the genes. To fully understand
the biological functions of proteins, the knowledge of their
structure is essential.

In their natural environment, proteins adopt a native com-
pact three-dimensional form. This process is called folding
and is not fully understood. The process is a result of
interactions between the protein’s amino acids which form
chemical bonds. In this paper we identify some of the
properties of the network of interacting amino acids. We
believe that understanding these networks can help to better
understand the folding process.

In this study, we treat proteins as networks of interacting
amino acid pairs [3]. In particular, we consider the subgraph
induced by the set of amino acids participating in the sec-
ondary structure also called Secondary Structure Elements

(SSE). We term this graph SSE interaction network (SSE-
IN). We carry out a study to identify the node distribution
relying on a dataset composed by more than 18000 proteins.

The rest of the paper is organized as follows. In section II
we briefly present the main types of amino acid interactions
which determine the protein structure. In section III we
introduce our model of amino acid interaction networks.
Section IV presents three general network models defined
by their cumulative degree distribution. In section V we
compare protein interaction networks to a general model
and empirically characterize them based on a dataset. We
show how the properties of these networks are related to the
structure of the corresponding proteins. Finally, in section
VI we conclude and give some future research directions.

II. PROTEIN STRUCTURE

Unlike other biological macromolecules (e.g., DNA), pro-
teins have complex, irregular structures. They are built up
by amino acids that are linked by peptide bonds to form
a polypeptide chain. We distinguish four levels of protein
structure:

• The amino acid sequence of a protein’s polypeptide
chain is called its primary or one-dimensional (1D)
structure. It can be considered as a word over the 20-
letter amino acid alphabet.

• Different elements of the sequence form local regular
secondary (2D) structures, such asα-helices or β-
strands.

• The tertiary (3D) structure is formed by packing such
structural elements into one or several compact globular
units called domains.

• The final protein may contain several polypeptide
chains arranged in a quaternary structure.

By formation of such tertiary and quaternary structure,
amino acids far apart in the sequence are brought close
together to form functional regions (active sites). The reader
can find more on protein structure in [5].

One of the general principles of protein structure is that
hydrophobic residues prefer to be inside the protein con-
tributing to form a hydrophobic core and a hydrophilic sur-
face. To maintain a high residue density in the hydrophobic
core, proteins adopt regular secondary structures that allow



Figure 1. Left: anα-helix illustrated as ribbon diagram, there are 3.6
residues per turn corresponding to 5.4Å. Right: A β-sheet composed by
three strands.

non covalent hydrogen-bond and hold a rigid and stable
framework. There are two main classes of secondary struc-
ture elements (SSE),α-helices andβ-sheets (see Fig. 1).

An α-helix adopts a right-handed helical conformation
with 3.6 residues per turn with hydrogen bonds between
C’=O group of residuen and NH group of residuen + 4.

A β-sheet is build up from a combination of several
regions of the polypeptide chain where hydrogen bonds can
form between C’=O groups of oneβ strand and another
NH group parallel to the first strand. There are two kinds
of β-sheet formations, anti-parallelβ-sheets (in which the
two strands run in opposite directions) and parallel sheets
(in which the two strands run in the same direction).

III. A MINO ACID INTERACTION NETWORKS

The 3D structure of a protein is determined by the coor-
dinates of its atoms. This information is available in Protein
Data Bank (PDB) [4], which regroups all experimentally
solved protein structures. Using the coordinates of two
atoms, one can compute the distance between them. We
define the distance between two amino acids as the distance
between theirCα atoms. Considering theCα atom as a
“center” of the amino acid is an approximation, but it works
well enough for our purposes. Let us denote byN the
number of amino acids in the protein. A contact map matrix
is aN×N 0-1 matrix, whose element(i, j) is one if there is
a contact between amino acidsi andj and zero otherwise. It
provides useful information about the protein. For example,
the secondary structure elements can be identified using this
matrix. Indeed,α-helices spread along the main diagonal,
while β-sheets appear as bands parallel or perpendicular to
the main diagonal [13]. There are different ways to define
the contact between two amino acids. Our notion is based
on spacial proximity, so that the contact map can consider
non-covalent interactions. We say that two amino acids are
in contact iff the distance between them is below a given
threshold.A commonly used threshold is 7Å [8] and this is
the value we use.

Consider a graph withN vertices (each vertex corre-
sponds to an amino acid) and the contact map matrix as
incidence matrix. It is called contact map graph. The contact
map graph is an abstract description of the protein structure

Figure 2. Protein 1DTP (left) and its SSE-IN (right).

taking into account only the interactions between the amino
acids. Now let us consider the subgraph induced by the
set of amino acids participating in SSE. We call this graph
SSE interaction network (SSE-IN) and this is the object we
study in the present paper. The reason of ignoring the amino
acids not participating in SSE is simple. Evolution tends
to preserve the structural core of proteins composed from
SSE. In the other hand, the loops (regions between SSE)
are not so important to the structure and hence, are subject
to more mutations. That is why homologous proteins tend
to have relatively preserved structural cores and variable
loop regions. Thus, the structure determining interactions
are those between amino acids belonging to the same SSE
on local level and between different SSEs on global level.
Fig. 2 gives an example of a protein and its SSE-IN.

In [15], [6] the authors rely on similar models of amino
acid interaction networks to study some of their properties,
in particular concerning the role played by certain nodes or
comparing the graph to general interaction networks models.
Thanks to this point of view the protein folding problem can
be tackled by graph theory approaches.

As we will see in the next section, there are three main
models of interaction networks, extensively studied and
whose properties are identified. The purpose of our work is
to identify specific properties which associate the proteins
SSE-IN with a general network model. Based on such a
pattern description of SSE-IN, one can plan the study of
their formation, dynamics and evolution.

IV. INTERACTION NETWORKS

Many systems, both natural and artificial, can be repre-
sented by networks, that is by sites or vertices bound by
links [16]. The study of these networks is interdisciplinary
because they appear in scientific fields like physics, biology,
computer science or information technology. The purpose
of these studies is to explain how elements interact inside
the network and what are the general laws which govern the
observed network properties.

From physics and computer science to biology and the
social sciences, researchers have found that a broad variety
of systems can be represented as networks, and that there
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Figure 3. Degree distribution for each the three models described by
Amaral [2]. The red line follows a power law, a function with arelatively
”fat tail” as for scale-free networks. The green line corresponds to truncated
scale-free networks because it describes a power law regimefollowed by a
sharp cut-off. The black curve has a fast decaying tail, typically exponential,
and corresponds to single-scale networks.

is much to be learned by studing these networks [7].
Indeed, the study of the Web [1], of social networks [17]
or of metabolic networks [14] are contribute to put in light
common non-trivial properties to these networks which have
a priori nothing in common. The ambition is to understand
how the large networks are structured, how they evolve and
what are the phenomenom acting on their constitution and
formation [18].

One of the most important network properties is the
degree distribution of vertices. A degree of a vertex is
the number of edges incident to it. The mean degree of
a network is the mean of the degrees of all vertices. For a
network with n vertices andm edges the mean degree is
z = 2m/n. We will note bypk the ratio of vertices having
degreek (or the probability that a vertex has a degreek).
The valuespk define the degree distribution of a network.
The cumulative degree distributionPk =

∑
∞

i=k pk is the
probability for a vertex to have a degree at leastk.

The random graphs of Erdős and Rényi [9], [10] are
the most studied network model. They have Poisson degree
distribution. However, many real networks have different
degree distributions. Amaral et al [2] have studied networks
that can be classified it three groups according to the shape
of their cumulative degree distribution, see Fig. 3. First,
scale-free networks are those with power law distribution
pk ∼ k−α or Pk ∼ k−(α−1), a function which decreases
polynomially with k. The second class are single scale
networks with exponential degree distributionPk ∼ e−k/α.
This distribution decreases exponentially, much faster than
the previous. The third class are broad-scale or truncated
scale-free networks with distribution

Pk ∼ k−(α−1)e−k/α (1)

This distribution is somewhere between the previous two,
a power law regime followed by a sharp exponential cutoff.

Table I
STRUCTURAL FAMILIES STUDIED. WE CHOOSE ONLY FAMILIES WHICH

CONTAIN MORE THAN 100PROTEINS, FOR A TOTAL OF 18294
PROTEINS. WE HAVE WORKED WITH THE SCOP 1.73CLASSIFICATION.

Class Number of Number of
families proteins

All α 12 2968
All β 17 6372
α/β 18 5197
α + β 16 3757

The common feature of these classes is that most of the
vertices have low degree and there exists a small number
of high degree nodes. The last are called hubs and play
important role for the connectivity of the whole network.

V. EXPERIMENTAL RESULTS

The first step before studying the proteins SSE-IN is to
select them according to their SSE arrangements. Thus, a
protein belongs to a SCOP fold level iff all its domains
are the same. We have worked with the SCOP v1.73
classification. We have computed the measures from the
previous section for the four mains classes of the hierarchical
classification SCOP (see Tab. I). Thus, each class provides a
broad sample guarantying more general results and avoiding
fluctuations. Moreover, these four classes contain proteins of
very different sizes, varying from several dozens to several
thousands amino acids in SSE.

To compute the cumulative degree distribution for protein
SSE-IN (denotedPk, see Eq. 1), we divided our dataset into
two parts whose first one is composed with 20% of the total
studied proteins. Then, we fit our specific sub dataset with
a function expressed as follows

Pk = a k−bexp−k/c

We have realised a numerical approximation using the
method of least squares. Once, we have obtained the coeffi-
cients for our sub dataset, we apply the apply them for the
rest of the studied protein SSE-IN, a sample of our results is
presented on Fig. 4. We can remark that the curves describe
a power law regime followed by the sharp cut-off. The power
law function is expressed as following:

p(k) = 213.413k−α, whereα = 3.2 ± 0.6

while the distribution is approximed by the next function:

Pk = 1.48347k0.962515exp−k/2.12615

We observe the same result for all studied proteins,
that is a cumulative degree distribution approximated by
the functionPk. Here, we discuss about characteristics or
conditions which involve a such a behavior.

First, we are interested in the degree distribution and
mainly its shape, see Fig. 5. We can see that degree
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Figure 4. Cumulative degree distribution for protein 1COY SSE-IN.
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Figure 5. Degree and cumulative distribution for 1COY SSE-IN. They
decrease for degree values greather than the mean degree.

distribution follows a Poisson distribution whose peak is
reached for a degree nearz. This result provides precision
about how the vertices are connected within SSE-IN. It
implies that the degree of the vertices is homogenous. In
other words, a major part of them has a connectivity enough
close to the mean degree. Consequently, the cumulative
distribution depends on the mean degree value which acts
as a threshold beyond which it decreases as an exponential
since it’s approximedvia Pk.

Second, we study how the mean degree evolves through
all SSE-IN. Its distribution, see Fig. 6, indicates a relative
weak variation according to the size. Even if two protein
SSE-IN have size ratio around 10 or 100, their mean degree
ratio is esimated to 1.05 or 1.15 and remains in the same
scale order.

To illustrate the mean degree homogeneity we choose two
proteins, namely 1SE9 and 1AON with sizes respectively 50
and 4998. Their size ratio is approximately 100. Even if the
mean degrees are slightly different, the distributions arevery
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Figure 7. Cumulative degree distribution of 1SE9 and 1AON SSE-IN
whose size equal 50 and and 4988. Despite their important size difference,
their mean degree stay close and worth respectively 6.6 and 7.5.

similar (see Fig. 7).
To recapitulate, we show that the mean degree values

constitute a threshold for protein SSE-IN cumulative degree
distribution. For degrees lower than the mean degree it
decreases slowly and after this threshold its decrease is fast
compared to an exponential one, as shown Fig. 4,5,7.

Consequently, we find a way to approximate all proteins
SSE-IN cumulative degree distribution by the functionPk

which can be adjusted. This function describes a power law
regime followed by a sharp cut-off which arises for degree
values exceeding the mean degree. Proteins SSE-IN are so
truncated scale-free networks.

Since the mean degree plays the role of a threshold
beyond which the cumulative degree distribution decreases
exponentially, it is interesting to study its evolution with
the size of the network. Fig. 6 shows that the mean degree
increases very slightly with the size of the network. Even



Figure 8. SSE-IN of 1DTP protein. The edges connecting different SSE
are green.

for networks with size ratio of 100, the mean degree ratio
is only 1.15. As an example, see Fig. 7.

Whatever the size of the network is, we observe that
the mean degree is always between 5 and 8. This mean
degree interval is a common property characterizing all SSE-
IN. In order to explain this property, let us consider the
structure of our networks. They are composed of densely
connected subgraphs corresponding to secondary structure
elements (see Fig. 8). The number of edges connecting
different subgraphs is relatively small, but these edges are
the most important, since they correspond to interactions
determining the tertiary structure.

We start by computing the mean degree in each SSE
subgraph. The results are shown on Fig. 9. We can see that
the mean degree evolution at microscopic level is almost
the same as at macroscopic level (compare to Fig. 6).
Independently of the SSE size and type, the mean degree
of each SSE subgraph,zSSE is always bounded:

zmin < zSSE < zmax (2)

when the size of the network is more than 10. In the general
casezmin = 5 andzmax = 8, but when we consider a specific
SSE size and type, finer bounds can be found (see Fig. 9).

Now let us consider a whole protein. Suppose that it
containss secondary structure elements and let the element
i hasni vertices andmi edges,i = 1, . . . , s. Then the total
number of vertices isn =

∑s
i=1 ni and the total number

of edges ism =
∑s

i=1 mi + minter, where minter is the
number of edges connecting vertices from different SSEs.
Let r = minter/m be the ratio of inter-SSE edges. Then:

m

n
=

∑s
i=1 mi + minter∑s

i=1 ni
=

∑s
i=1 mi∑s
i=1 ni

+ r
m

n
(3)

and hence for the mean degreez we have

z =
2m

n
=

2

1 − r

∑s
i=1 mi∑s
i=1 ni

(4)
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Figure 9. SSE subgraphs size distribution and mean degree asa function
of the size.

On the other hand, from (2) it follows that
zmin

2
ni < mi <

zmax

2
ni, i = 1, . . . , s (5)

By summing up the last equation we obtain

zmin

2
<

∑s
i=1 mi∑s
i=1 ni

<
zmax

2
(6)

which together with (4) gives
zmin

1 − r
< z <

zmax

1 − r
(7)

The last equation gives finer bounds on the mean degree.
It shows that the bounds onz depend not only on the
bounds onzSSE, but also on the ratio of inter-SSE edges. A
higher proportion of inter-SSE edges shifts up the bounds.
Proteins with bigger size have more SSEs and hence more
links between different SSEs. This explains the increase of
the mean degree with the size of the networks. Fig. 10
shows that the number of inter-SSE edges is quite variable,
but it never exceeds 20%. It is the consequence of the
excluded volume effect, since the number of residues that
can physically reside within a given radius is limited. This
last property explains why the mean degree is homogenous.

VI. CONCLUSION

In this paper we introduce the notion of interaction net-
work of amino acids of a protein (SSE-IN) and study some
of the properties of these networks. The main advantage of
this model is that it allows to cope with different biological



1

10

20

 1-50
50-100

100-500

500-1000

1000-

A
ve

ra
ge

 R
at

io
 in

te
r-

S
S

E

Proteins SSE-IN size

All Alpha SSE-IN

1

10

20

 1-50
50-100

100-500

500-1000

1000-

A
ve

ra
ge

 R
at

io
 in

te
r-

S
S

E

Proteins SSE-IN size

All Beta SSE-IN

1

10

20

 1-50
50-100

100-500

500-1000

1000-

A
ve

ra
ge

 R
at

io
 in

te
r-

S
S

E

Proteins SSE-IN size

Alpha / Beta SSE-IN

1

10

20

 1-50
50-100

100-500

500-1000

1000-

A
ve

ra
ge

 R
at

io
 in

te
r-

S
S

E

Proteins SSE-IN size

Alpha + Beta SSE-IN

Figure 10. Ratio of inter-SSE edges (r) as a function of the network size
for the four classes of studied proteins.

problems related to protein structure using graph theory
tools. Ignoring details, such as the type and the exact
position of each amino acid, this abstract and compact
description allows to focus on the interactions’ structureand
organization.

In this paper we show that we can approximate all proteins
SSE-IN cumulative degree distribution by a unique function.
This function describes a power law regime followed by
a sharp cut-off which arises for degree values exceeding
the mean degree. Proteins SSE-IN are so truncated scale-
free networks. This node distribution implies that there exist
amino acids whose degree is marginal (greater than the mean
degree).

A short term perspective is to study the hubs notably to
understand how they appear in the folded protein. By this
way, we would be able to understand if the nature of a hub
depends on its position in the protein sequence or it depends
on other chimical parameters.

As a long term perspective, the characterization we pro-
pose constitutes a first step of a new approach to the protein
folding problem. The properties identified here, but also
other properties we studied [11], [12], can give us an insight
on the folding process. They can be used to guide a folding
simulation in the topological pathway from unfolded to
folded state.

REFERENCES

[1] R. Albert, H. Jeong, and A.-L. Barabási. The diameter ofthe
world wide web.Nature, 401:130–131, 1999.

[2] L.A.N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley.
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