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Abstract—A protein interaction network is a graph whose
vertices are the protein’s amino acids and whose edges areeh
interactions between them. Using a graph theory approach,
we study the properties of these networks. In particular, we
are interested in the degree distribution and mean degree of
the vertices. The results presented in this paper constitet the
first steps of a new network approach to the protein folding
problem.
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(SSE). We term this graph SSE interaction network (SSE-
IN). We carry out a study to identify the node distribution
relying on a dataset composed by more than 18000 proteins.
The rest of the paper is organized as follows. In section I
we briefly present the main types of amino acid interactions
which determine the protein structure. In section Il we
introduce our model of amino acid interaction networks.
Section IV presents three general network models defined
by their cumulative degree distribution. In section V we

compare protein interaction networks to a general model
and empirically characterize them based on a dataset. We
Proteins are biological macromolecules participating inshow how the properties of these networks are related to the
the large majority of processes which govern organisms. Thetructure of the corresponding proteins. Finally, in secti
roles played by proteins are varied and complex. Certain proVl we conclude and give some future research directions.
teins, called enzymes, act as catalysts and increase kevera
orders of magnitude, with a remarkable specificity, the dpee ) _ )
of multiple chemical reactions essential to the organism Unlike other biological macromolecules (e.g., DNA), pro-
survival. Proteins are also used for storage and transport §€ins have complex, irregular structures. They are built up
small molecules or ions, control the passage of moleculeBY @mino acids that are linked by peptide bonds to form
through the cell membranes, etc. Hormones, which transm@ Polypeptide chain. We distinguish four levels of protein
information and allow the regulation of complex cellular Structure:
processes, are also proteins. « The amino acid sequence of a protein’s polypeptide
Genome sequencing projects generate an ever increasing chain is called its primary or one-dimensional (1D)
number of protein sequences. For example, the Human structure. It can be considered as a word over the 20-
Genome Project has identified over 30,000 genes which letter amino acid alphabet.
may encode about 100,000 proteins. One of the first tasks ¢ Different elements of the sequence form local regular
when annotating a new genome, is to assign functions to ~ secondary (2D) structures, such ashelices or j3-
the proteins produced by the genes. To fully understand  Strands.
the biological functions of proteins, the knowledge of thei « The tertiary (3D) structure is formed by packing such
structure is essential. structural elements into one or several compact globular
In their natural environment, proteins adopt a native com-  units called domains.
pact three-dimensional form. This process is called fgdin « The final protein may contain several polypeptide
and is not fully understood. The process is a result of  chains arranged in a quaternary structure.
interactions between the protein’s amino acids which formBy formation of such tertiary and quaternary structure,
chemical bonds. In this paper we identify some of theamino acids far apart in the sequence are brought close
properties of the network of interacting amino acids. Wetogether to form functional regions (active sites). Thedera
believe that understanding these networks can help torbettean find more on protein structure in [5].
understand the folding process. One of the general principles of protein structure is that
In this study, we treat proteins as networks of interactinghydrophobic residues prefer to be inside the protein con-
amino acid pairs [3]. In particular, we consider the subfrap tributing to form a hydrophobic core and a hydrophilic sur-
induced by the set of amino acids participating in the secface. To maintain a high residue density in the hydrophobic
ondary structure also called Secondary Structure Elementre, proteins adopt regular secondary structures tha all

I. INTRODUCTION

Il. PROTEIN STRUCTURE
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Figure 1. Left: ana-helix illustrated as ribbon diagram, there are 3.6

residues per turn corresponding to R4 Right: A 3-sheet composed by

three strands. . ) ) .
Figure 2. Protein 1DTP (left) and its SSE-IN (right).

non covalent hydrogen-bond and hold a rigid and stable ) ) )
framework. There are two main classes of secondary strudaking into account only the interactions between the amino
ture elements (SSE}-helices and3-sheets (see Fig. 1). ~ acids. Now let us consider the subgraph induced by the
An a-helix adopts a right-handed helical conformation S€t 0f amino acids participating in SSE. We call this graph
with 3.6 residues per turn with hydrogen bonds betweerrSE interaction network (SSE-IN) and this is the object we
C’=0 group of residue: and NH group of residue -+ 4. study in the present paper. The reason of ignoring the amino
A B-sheet is build up from a combination of several @Cids not participating in SSE is simpl_e. Evolution tends
regions of the polypeptide chain where hydrogen bonds cafp Preserve the structural core of proteins composed from
form between C'=O groups of ong strand and another SSE. In thg other hand, the loops (regions between SSE)
NH group parallel to the first strand. There are two kinds@'® Not so important to th.e structure and hence, are subject
of B-sheet formations, anti-parallgksheets (in which the @ more mutations. That is why homologous proteins tend
two strands run in opposite directions) and parallel sheet!® have relatively preserved structural cores and variable

(in which the two strands run in the same direction). loop regions. Thus, the structure determining interastion
are those between amino acids belonging to the same SSE
I1l. AMINO ACID INTERACTION NETWORKS on local level and between different SSEs on global level.

The 3D structure of a protein is determined by the coorFig. 2 gives an example of a protein and its SSE-IN.
dinates of its atoms. This information is available in Pimte  In [15], [6] the authors rely on similar models of amino
Data Bank (PDB) [4], which regroups all experimentally acid interaction networks to study some of their properties
solved protein structures. Using the coordinates of twdn particular concerning the role played by certain nodes or
atoms, one can compute the distance between them. \\gomparing the graph to general interaction networks models
define the distance between two amino acids as the distandéanks to this point of view the protein folding problem can
between theirC,, atoms. Considering th€, atom as a be tackled by graph theory approaches.

“center” of the amino acid is an approximation, but it works As we will see in the next section, there are three main
well enough for our purposes. Let us denote Nythe models of interaction networks, extensively studied and
number of amino acids in the protein. A contact map matrixwhose properties are identified. The purpose of our work is
is a N x N 0-1 matrix, whose elemeit, 5) is one if there is  to identify specific properties which associate the pratein
a contact between amino acitlandj and zero otherwise. It SSE-IN with a general network model. Based on such a
provides useful information about the protein. For examplepattern description of SSE-IN, one can plan the study of
the secondary structure elements can be identified usiag thiheir formation, dynamics and evolution.

matrix. Indeed,a-helices spread along the main diagonal,

while g-sheets appear as bands parallel or perpendicular to IV. INTERACTION NETWORKS

the main diagonal [13]. There are different ways to define Many systems, both natural and artificial, can be repre-
the contact between two amino acids. Our notion is basedented by networks, that is by sites or vertices bound by
on spacial proximity, so that the contact map can considelinks [16]. The study of these networks is interdiscipliyar
non-covalent interactions. We say that two amino acids arbecause they appear in scientific fields like physics, biglog
in contact iff the distance between them is below a givercomputer science or information technology. The purpose
threshold.A commonly used threshold iA7[8] and this is  of these studies is to explain how elements interact inside
the value we use. the network and what are the general laws which govern the

Consider a graph withV vertices (each vertex corre- observed network properties.
sponds to an amino acid) and the contact map matrix as From physics and computer science to biology and the
incidence matrix. It is called contact map graph. The cdntacsocial sciences, researchers have found that a broadyvariet
map graph is an abstract description of the protein stracturof systems can be represented as networks, and that there



Table |
STRUCTURAL FAMILIES STUDIED. WE CHOOSE ONLY FAMILIES WHICH
CONTAIN MORE THAN 100PROTEINS FOR A TOTAL OF 18294
PROTEINS WE HAVE WORKED WITH THE SCOP 1.73LASSIFICATION.

Class Number of Number of

X

0:51 families proteins

S Alla 12 2968
All B 17 6372
o/ 18 5197
a+p 16 3757

log k
. o _ The common feature of these classes is that most of the
Figure 3. Degree distribution for each the three models rdest by . h | d d th . I b
Amaral [2]. The red line follows a power law, a function withrelatively vertl_ces ave low degree and there exists a small number
"fat tail” as for scale-free networks. The green line copasds to truncated ~ Of high degree nodes. The last are called hubs and play

scale-free networks because it describes a power law refgitoered by a important role for the Connectivity of the whole network.
sharp cut-off. The black curve has a fast decaying tail cslhi exponential,

and corresponds to single-scale networks. V. EXPERIMENTAL RESULTS

The first step before studying the proteins SSE-IN is to

. . select them according to their SSE arrangements. Thus, a
is much to be learned by studing these networks [7]yrotein belongs to a SCOP fold level iff all its domains

Indeed, the study of the Web [1], of social networks [17] 5re the same. We have worked with the SCOP v1.73

or of metabolic networks [14] are contribute to put in light ¢|assification. We have computed the measures from the
common non-trivial properties to these networks which have,eyious section for the four mains classes of the hieraathi

a priori nothing in common. The ambition is to understand c|5ssification SCOP (see Tab. I). Thus, each class provides a
how the large networks are structured, how they evolve angl;oad sample guarantying more general results and avoiding

what are the phenomenom acting on their constitution ang,ctyations. Moreover, these four classes contain pretin

formation [18]. _ o very different sizes, varying from several dozens to sdvera
One of the most important network properties is theingusands amino acids in SSE.

degree distribution of vertices. A degree of a vertex is T compute the cumulative degree distribution for protein

the number of edges incident to it. The mean degree o§sg.|N (denoted?,, see Eq. 1), we divided our dataset into

a network is the mean of the degrees of all vertices. For g, parts whose first one is composed with 20% of the total

network with n vertices andn edges the mean degree is sydied proteins. Then, we fit our specific sub dataset with
z = 2m/n. We will note byp, the ratio of vertices having 5 function expressed as follows

degreek (or the probability that a vertex has a degrige
The valuesp, define the degree distribution of a network. Pr=a k_beﬂl?p_k/c

: I = e e
The cumulative degree distributioR, = > .=, py is the We have realised a numerical approximation using the

probability for a vertex to have a degree at lelst method of least squares. Once, we have obtained the coeffi-

The random graphs of Erdds and Renyi [9.]’ [10] are ients for our sub dataset, we apply the apply them for the
the most studied network model. They have Poisson degree . . .

S : rést of the studied protein SSE-IN, a sample of our results is
distribution. However, many real networks have different

degree distributions. Amaral et al [2] have studied network gres\?vr;tﬁgv(\jr;eFli?ﬁ:;‘;\I/gv:s;bremiﬂs(r::\?t ;c:rllﬁ_giir\_/rehsedeosv(\izlrae
that can be classified it three groups according to the sha P 9 y P ' P

of their cumulative degree distribution, see Fig. 3. Firstﬁgw function is expressed as following:

scale-free networks are those with power law distribution
pr ~ k= or P, ~ k~(@=1 a function which decreases
polynomially with k. The second class are single scale while the distribution is approximed by the next function:
networks with exponential degree distributidl ~ e =%/,

This distribution decreases exponentially, much fastanth Py, = 1.48347k0-962515 ¢,y —F/2.12615

the previous. The third class are broad-scale or truncated ) .
scale-free networks with distribution We observe the same result for all studied proteins,

that is a cumulative degree distribution approximated by
Py ~ k(@ D/ (1) the function P,. Here, we discuss about characteristics or
conditions which involve a such a behavior.
This distribution is somewhere between the previous two, First, we are interested in the degree distribution and
a power law regime followed by a sharp exponential cutoff.mainly its shape, see Fig. 5. We can see that degree

p(k) = 213.413k“, wherea = 3.2 £ 0.6
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Figure 4. Cumulative degree distribution for protein 1COSESIN.
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Figure 7. Cumulative degree distribution of 1SE9 and 1AONESS

whose size equal 50 and and 4988. Despite their importaatdifierence,
their mean degree stay close and worth respectively 6.6 &hd 7

distribution follows a Poisson distribution whose peak is
reached for a degree near This result provides precision
about how the vertices are connected within SSE-IN. Issimilar (see Fig. 7).
implies that the degree of the vertices is homogenous. In To recapitulate, we show that the mean degree values
other words, a major part of them has a connectivity enouglgonstitute a threshold for protein SSE-IN cumulative degre
close to the mean degree. Consequently, the cumulativéistribution. For degrees lower than the mean degree it
distribution depends on the mean degree value which ac@ecreases slowly and after this threshold its decreasetis fa
as a threshold beyond which it decreases as an exponentk@mpared to an exponential one, as shown Fig. 4,5,7.
since it's approximedia Pj. Consequently, we find a way to approximate all proteins

Second, we study how the mean degree evolves througBSE-IN cumulative degree distribution by the functiéi
all SSE-IN. Its distribution, see Fig. 6, indicates a rekati which can be adjusted. This function describes a power law
weak variation according to the size. Even if two proteinregime followed by a sharp cut-off which arises for degree
SSE-IN have size ratio around 10 or 100, their mean degreealues exceeding the mean degree. Proteins SSE-IN are so
ratio is esimated to 1.05 or 1.15 and remains in the sam#uncated scale-free networks.
scale order. Since the mean degree plays the role of a threshold

To illustrate the mean degree homogeneity we choose twbeyond which the cumulative degree distribution decreases
proteins, namely 1SE9 and 1AON with sizes respectively 5@&xponentially, it is interesting to study its evolution it
and 4998. Their size ratio is approximately 100. Even if thethe size of the network. Fig. 6 shows that the mean degree
mean degrees are slightly different, the distributionsvary  increases very slightly with the size of the network. Even



100 10

e e ] All a-Helix IN ——
n Mean degree
st 80 f 18
n (]
a S 60l 16 &
| = g
- n S ] c
" ™ § 40 1 4 é
e Y. LSav/» : 20 H 12
.. e - 0 . . 1 — 0
N A “%o \}o‘eo eo‘e\,\ e‘f‘e)o
[ B '. NN a-Helix-IN size
" 100 10
All b-Sheet IN ——
Mean degree
80 18
Figure 8. SSE-IN of 1DTP protein. The edges connecting mdiffe SSE
are green. s el 16 g
H E
g 4f 14 é
for networks with size ratio of 100, the mean degree ratio " ,
is only 1.15. As an example, see Fig. 7. H ﬂ
Whatever the size of the network is, we observe that 0 . - B ’—@‘ 0
the mean degree is always between 5 and 8. This mean v % Ty Ty
degree interval is a common property characterizing all-SSE b-Sheet-IN size

IN. In order to explain this property, let us consider the

structure of our networks. They are composed of densel¥igure 9. SSE subgraphs size distribution and mean degraefiastion

connected subgraphs corresponding to secondary structufkthe size-

elements (see Fig. 8). The number of edges connecting

different sgbgraphs is.relatively small, but theseT edgeg a'0n the other hand, from (2) it follows that

the most important, since they correspond to interactions _

determining the tertiary structure. @ni <m; < Zﬁxni, i=1,...,8 (5)
We start by computing the mean degree in each SSE , 2 2 , .

subgraph. The results are shown on Fig. 9. We can see th§Y SUMMIng up the last equation we obtain

the mean degree evolution at microscopic level is almost Zmin Doy ™i  Zmax
the same as at macroscopic level (compare to Fig. 6). o S < 2 6)
i=

Independently of the SSE size and type, the mean degree

of each SSE subgraphsse is always bounded: which together with (4) gives
Zmin Zmax
<z < 7
Zmin < 2sSE < Zmax (2 1—r 1—7r Y
The last equation gives finer bounds on the mean degree.
when the size of the network is more than 10. In the generg} ¢ J\vo thzgtuthle b?)ll\J/ndSI on de;end not only on thgelz

Casezmin = 5 andzmax = 8, but when we consider a Specific . ,,qq on.qq but also on the ratio of inter-SSE edges. A
SSE size and type,_ﬁner bounds can b? found (see Fig. s?)nigher proportion of inter-SSE edges shifts up the bounds.
Now let us consider a whole protein. Suppose that itpgeins with bigger size have more SSEs and hence more
containss secondary structure elements and let the elemenj,, s petween different SSEs. This explains the increase of
@ hasn; vertices andn; edges; = 1,...,s. Then the tofal 0 ' mean degree with the size of the networks. Fig. 10
number of vertices is: = 5_;_; n; and the total number gp,qus that the number of inter-SSE edges is quite variable,
but it never exceeds 20%. It is the consequence of the

of edges ism = 2;1 M; + Minter, WheEre minger is the
number of edges connecting vertices from different SSESexcluded volume effect, since the number of residues that
can physically reside within a given radius is limited. This

Let r = miner/m be the ratio of inter-SSE edges. Then:

m _ > i + Minter _ S mg L, a) last property explains why the mean degree is homogenous.
n Dlimg M Ygmion VI. CONCLUSION
and hence for the mean degreeve have In this paper we introduce the notion of interaction net-

work of amino acids of a protein (SSE-IN) and study some
of the properties of these networks. The main advantage of
this model is that it allows to cope with different biologica

2m 2 §, m;
_ 21_1 (4)

n L—r Y0
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for the four classes of studied proteins.

problems related to protein structure using graph theo

[4]

(5]

[6]

[7]

(8]

9]

r
tools. Ignoring details, such as the type and the exailo]
position of each amino acid, this abstract and compact

description allows to focus on the interactions’ structane
organization.

(11]

In this paper we show that we can approximate all proteins
SSE-IN cumulative degree distribution by a unique function

This function describes a power law regime followed by,

a sharp cut-off which arises for degree values exceeding
the mean degree. Proteins SSE-IN are so truncated scale-

free networks. This node distribution implies that theriesex

amino acids whose degree is marginal (greater than the me?{g]

degree).

A short term perspective is to study the hubs notably to
understand how they appear in the folded protein. By this
way, we would be able to understand if the nature of a hui14]
depends on its position in the protein sequence or it depends

on other chimical parameters.

As a long term perspective, the characterization we profis)
pose constitutes a first step of a new approach to the protein
folding problem. The properties identified here, but also
other properties we studied [11], [12], can give us an irtsigh
on the folding process. They can be used to guide a foldin@m]

simulation in the topological pathway from unfolded to

folded state.
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