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ABSTRACT
In this paper we study the distribution functions that arise naturally during self-
similar radial infall of collisionless matter. If a rigorous steady state is assumed, then
the system is infinite and is described by a universal distribution function for a general
self-similar index. The logarithmic potential case is exceptional and yields the familiar
Gaussian for an infinite system with an inverse-square density profile. We also show
that for time-dependent radial self-similar infall, the logarithmic case is accurately
described by the Fridmann and Polyachenko distribution function. The system in this
case is finite but growing. We are able to embed a central mass in the universal steady
distribution only by iteration except in the case of massless particles. The iteration
yields logarithmic corrections to the massless particle case and requires a ‘renormaliza-
tion’ of the central mass. A central spherical mass may be accurately embedded in the
Fridmann and Polyachenko growing distribution however. Some speculation is given
concerning the importance of radial collisionless infall in actual galaxy formation.

Key words: Cosmology:theory – Dark Matter – large-scale structure of Universe -
Galaxies:formation – galaxies:haloes – galaxies: bulges - gravitation

1 INTRODUCTION

The relation between the formation of black holes and of
galaxies has developed into a key astrophysical question.
From the early papers by Kormendy and Richstone (Kor-
mendy & Richstone 1995), to the more recent discoveries by
Magorrian et al. (Magorrian et al. 1998), Ferrarese and Mer-
ritt (Ferrase & Merritt 2000), and Gebhardt et al.(Gebhardt
et al., 2000). These papers establish a strong correlation be-
tween what is essentially the black hole mass and the sur-
rounding stellar bulge mass (or velocity dispersion). The
origin of this proportionality, which extends well beyond
the gravitational dominance of the black hole, remains un-
proven. But it is generally taken to imply a coeval growth
of the black hole and bulge.

Various proposals have been offered to explain the black
hole mass-bulge mass proportionality as a consequence of
the AGN phase. There is as yet no generally accepted sce-
nario although a kind of ‘auto-levitation’ or feed-back mech-
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anism is plausible. In any event there remains the question
of the origin of the seed masses. In some galaxies at very
high red shift the inferred black hole masses are already of
order 109 M⊙ (Kurk et al., 2007, for e.g.) after about one
Ga of cosmic time. This may require frequent, extremely lu-
minous early events (Walter et al., 2009, for e.g.), or it may
suggest an alternate growth mechanism.

The latter possibility is reinforced by the detection of
a change in the normalization of the black hole mass-bulge
mass proportionality in the sense of relatively larger black
holes at high red shift (Maiolino et al. 2007, for e.g.). As
suggested in that paper it seems that the black holes may
grow first, independently of the bulge. The collisionless mat-
ter that we invoke might be stars or it might be the dark
matter itself.

Recently (Peirani & de Freitas Pacheco 2008) have stud-
ied the possible size of the dark matter component in black
hole masses. By assuming that the dimensional or ’pseudo
phase space density’ (H2006, i.e. Henriksen 2006b, for e.g.)
is strictly constant they convert the relativistic accretion
of the dark matter into an adiabatic Bondi flow problem
and obtain the resulting accretion rate. Then by adopting
the mass proportionality between bulge and black hole and
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fitting boundary conditions from cosmological halo simula-
tions, they deduce that between 1% and 10% of the black
hole mass could be due to dark matter.

If we accept this result at face value, it seems that a
seed mass of say 106M⊙ could have grown from dark mat-
ter. It would now be part of a super massive black hole that
subsequently grew in the AGN phase. Some seeds may be
primordial. As early as 1978 fully general relativistic nu-
merical collapse calculations (Bicknell & Henriksen 1979)
predicted primordial black hole masses in the range 102 to
106M⊙.

In this and subsequent papers we will attempt to embed
a black hole (or at least a central mass) in a distribution of
particles that arises naturally during the formation of the
galactic core. We will predict the consequent density cusp
profile and that of the velocity dispersion variation in the
cusp. It is perhaps significant in the light of the extensive
orbital study of (( Van den Bosch et al. 2008)) that we are
most successful in a time-dependent case. For these authors
suggest that the central mass may render the orbits chaotic
and non-stationary. We find in the steady systems that a
series of iterations diverges at the centre.

Density cusps surrounding black holes have been stud-
ied extensively previously. Classic studies by (Peebles 1972)
and by (Bahcall & Wolf 1976) dealt with the problem of
feeding the black hole from a filled loss cone (nearly ra-
dial orbits). In addition to these diffusion studies, Young
(Young 1980) explored the cusps produced by the adiabatic
growth of a black hole in a pre-existing isothermal stellar
environment. This was extended by (Quinlan et al 1995)
and by (MacMillan & Henriksen 2002) to more general en-
vironments. In a cosmological context, Bertschinger (1985)
also studied the growth of a central black hole by radial in-
fall. The conclusions were that the black hole induced cusps
were never flatter than r−1.5 (the isothermal and cosmologi-
cal case) and that no black hole mass-bulge mass correlation
was established (MacMillan & Henriksen 2002). This latter
conclusion has spurred the investigation of coeval dynamical
growth of the black hole and bulge in contrast to adiabatic
growth (MacMillan & Henriksen 2003).

Such concerns have passed from the abstract to the
practical with the detection of stellar cusps around galactic
nuclear black holes (Gillessen et al., 2009). This latter paper
reports stellar cusp power laws for the central Milky Way in
the range −1.1 ± 0.3, significantly shallower than the adia-
batic −1.5 or the zero flux (Bahcall & Wolf 1976) −1.75.
We seek to find under what general conditions such power
laws may arise during collisionless infall. In the present pa-
per that is restricted to radial infall, we do not find cusps
flatter than r−2.

An effective alternate method of evolving flat cusps is to
invoke tight binary black hole systems produced by mergers
that ’scour’ the stellar environment (Merritt & Szell 2006;
Nakano & Makino 1999, for e.g.). Depending on the power
law assumed for the initial stellar environment, Merritt and
Szell simulate scoured power laws that can be as flat as −1
in an initially −1.5 cusp, and as flat as −0.5 in an initially
−1 stellar cusp. Flatter values are reduced to essentially
constant density cores. The −1 slope as noted above is a
reasonable fit to the Milky Way (ibid).

Subsequently, but taking at least the central relaxation
time, the cusps should regenerate to the zero flux condi-

tion (r−1.75) according to the simulations in (Merritt & Szell
2006). However this will extend only out to about 0.2 of the
gravitational influence radius of the black hole. This regener-
ation is not thought to be relevant to the Milky Way central
stellar cusp, but may be present on small scales elsewhere.

Such a picture is seductive, especially given the recent
detection of a strong correlation between the nuclear black
hole mass and the central luminosity deficit (Kormendy &
Bender 2009). However the correlation in itself only impli-
cates the influence of the black hole. It does not necessarily
require the merger history, which in any case is unlikely to
be the same for different galaxies. Consequently we explore
in this series of papers (I; II; III) whether cusps as flat as
those resulting from scouring might also be produced during
the dynamical formation of the black hole or mass concen-
tration. In this first paper we present a summary of the
situation for radial orbits since the arguments are typical
but easily carried out in that case.

The first general result on radial infall was in fact given
in (Fillmore & Goldreich, 1984) and the Bertschinger (1985)
result follows by putting their parameter ǫFG = 1/3. How-
ever neither this work nor that of Bertschinger attempted
to infer closed forms for the equilibrium distribution func-
tion. This was begun by Henriksen and Widrow in 1995. In
(H2006) it is pointed out that a = 9/8 (ǫ = 3) yields the
Bertschinger solution in its entirety, including the recently
heralded power law of the proxy for phase space density. The
parameter ǫ = 3ǫFG and it is related to the index called ‘a’,
both by simulations and theory.

We are aware that such a radial system is unstable
to the radial orbit instability on small scales (MWH 2006,
coined ROI). However even fully cosmological simulations
show an outer envelope wherein the orbits are trending to
be radial. Moreover isolated halos, which also show statisti-
cal relaxation that is begging to be understood, show quite
radial orbits in the envelope (ibid). We speculate below that
the growth of the bulge in such an envelope may be de-
scribed in terms of radial infall, and that this might continue
hierarchically to smaller scales after relaxation by the ROI
and clump-clump interactions (MacMillan & Henriksen
2003). Such interactions would remove angular momentum
from some particles in favour of others.

We begin the next section with the general formulation
in spherical symmetry. Subsequently we discuss the vari-
ous possible steady distribution functions (DF from now
on) for radial orbits. Then we show that the DF of Frid-
man and Polyachenko (Fridmann & Polyachenko 1984, here-
after called FPDF) describes a system of radial orbits that
is growing self-similarly. This is contrasted with an infinite
steady system for which the DF is Gaussian. After some
discussion, we give our conclusions.

2 DYNAMICAL EQUATIONS IN INFALL
VARIABLES

Following the formulation of (H2006) in this section we
transform the collisionless Boltzmann and Poisson equa-
tions to ‘infall variables’. We treat a spherically symmetric
anisotropic system in the ‘Fujiwara’ form (Fujiwara 1983,
for e.g.) namely
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∂f

∂t
+ vr
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∂
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(
r2
∂Φ
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)
= 4π2G

ˆ

f(r, vr, j
2)dvrdj

2, (2)

where f is the phase-space mass density, Φ is the ‘mean’
field gravitational potential, j2 is the square of the specific
angular momentum and other notation is more or less stan-
dard.

The ‘infall variables’ are a system of variables and coor-
dinates that allows us either to readily take the self-similar
limit or to retain a memory of previous self-similar dynami-
cal relaxation into a true steady state. In this way we can re-
main ‘close’ to self-similarity just as the simulations appear
to do. These coordinates (H2006; H2006A) allow the general
expression of the Vlasov-Poisson set, but they also contain
a parameter (a) that reflects underlying self-similarity. The
self-similar limit is taken by assuming what we term ‘self-
similar virialisation’, wherein the system is steady in these
coordinates, although it is not absolutely steady since mass
is accumulating in this mode.

The transformation to infall variables has the form
(H2006, for e.g.)

R = r e−αT/a, Y = vre
−(1/a−1)αT ,

Z = j2e−(4/a−2)αT , eαT = αt,

P (R, Y, Z; T ) = e(3/a−1)αTπf
(
r, vr, j

2; t
)
, (3)

Ψ(R;T ) = e−2(1/a−1)αTΦ(r),

Θ(R;T ) = ρ(r, t)e2αT .

This transformation is inspired by the nature of self-
similarity, which can be understood as a scaling group
wherein each quantity scales according to its dimensions
(Carter& Henriksen,1991). The group parameter is the loga-
rithmic time T . The combinations of scaling constants (note
that a ≡ α/δ see below) multiplying αT in the exponential
factor of each physical quantity reflect the dimensions of
that quantity. When the dependence on the parameter T is
retained in the new variables, there is clearly no invariance
along the scaling group motion and so no self-similarity. This
means that the passage to the self-similar limit requires tak-
ing ∂T = 0 when acting on the transformed variables. Thus
the self-similar limit is a stationary system in these variables,
which is a state that we have described elsewhere as ‘self-
similar virialisation’ (HW 1999; Le Delliou 2001, i.e. Henrik-
sen & Widrow 1999). The virial ratio 2K/|W | is a constant
in this state (although greater than one; K is kinetic energy
andW is potential), but the system is not steady in physical,
i.e. untransformed, variables, since infall continues.

The single constant quantity a is the constant that
determines the dynamical similarity, called the self-similar
index. It is composed of two separate scalings, α in time
and δ in space, in the form a ≡ α/δ. The dimensions of
any mechanical quantity can be expressed in the scaling
space ~a ≡ (α, δ, µ), where µ is the mass scaling. The ex-
ponential factor of any physical quantity Q (which includes

physical constants) is calculated as ~a · ~dQ where ~dQ de-
scribes the quantity Q in scaling space. Thus for the velocity
~dv = (−1, 1, 0), for the distribution function ~df = (3,−6, 1)

and for Newton’s constant ~dG = (−2, 3,−1). In a gravita-
tion problem the scalings α and δ can express the scalings of
all physical quantities having mass, length and time dimen-
sions. This is because we require G to be constant under the
scaling motion so that ~a· ~dG = 0 and hence µ = 3δ−2α. This
changes ~df to (1,−3) as used in equation (3). This procedure
yields the constants in the exponential factors transforming
all physical quantities in the equations (3).

We assume that time, radius, velocity and density are
measured in fiducial units ro/vo,ro, vo and ρo respectively.
The unit of the distribution function is fo and that of the
potential is v2o . We remove constants from the transformed
equations by taking

fo = ρo/v
3
o , v2o = 4πGρor

2
o . (4)

These transformations convert equations (1),(2) to the
respective forms

1

α
∂TP − (3/a− 1)P + (

Y

α
− R

a
)∂RP

−
(
(1/a− 1)Y +

1

α

(
∂Ψ

∂R
− Z

R3

))
∂Y P−(4/a−2)Z∂ZP = 0

(5)

and

1

R2

∂

∂R

(
R2 ∂Ψ

∂R

)
= Θ. (6)

This integro-differential system is closed by

Θ =
1

R2

ˆ

PdY dZ. (7)

Until we enforce the self-similar limit (∂/∂T = 0) these
equations remain completely general, because we have made
a continuous and invertible change of variables in equation
(3). The merit of the transformation at this stage is only that
it puts the expected asymptotic self-similar behaviour in the
explicit exponential factors, while relegating the declining
time dependence leading to this state to the transformed
variables. These variables are strictly independent of T in
the self-similar state.

We will in this paper restrict ourselves to the filled loss
cone limit of radial infall (HLeD 2002), although this is not
the case in subsequent papers of this series. This special case
is certainly not realistic where angular momentum becomes
important, but it may have application on large scales and
in the subsequent evolution in regions where angular mo-
mentum is transformed away either by bars or other asym-
metries. It may in any case be regarded as an introduction
to our methods.

To proceed we set

P = F (R,Y ;T )δ(Z) = F (R,Y ;T )δ(j2)(e(4/a−2)αT )

(δ() is the Dirac delta, not the scaling delta) which
changes the scaling for the DF in equation (3) to

πf = F (R,Y, ;T )e(1/a−1)αT δ(j2), (8)

while other scalings remain unchanged.
The governing equations now become equation (6) plus

the Boltzmann equation for F (R, Y ;T ) in the form
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1

α
∂TF + (1/a− 1)F +

(
Y

α
− R

a

)
∂RF

−
(
(1/a− 1)Y +

1

α

∂Ψ

∂R

)
∂Y F = 0. (9)

Finally equation (7) reduces to

Θ =
1

R2

ˆ

F dY. (10)

This completes the formalism that we will use to obtain
the results below.

3 STEADY CUSPS AND BULGES WITH
RADIAL ORBITS

We expect one mode of relaxation in collisionless cusps to be
of the ‘moderately violent’ type satisfying, in terms of the
particle energy E and mean field potential Φ, the relation

dE

dt
=
∂Φ

∂t
|r. (11)

This includes phase-mixing. Another mode (Diemand et
al., 2006) is furnished by the presence of hierarchical sub-
structure . The sub-structure can interact in clump-clump
interactions that can induce relaxation on a coarse-grained
scale (H2009, i.e. Henriksen 2009).

However the temporal evolution of the system is dif-
ficult to follow analytically even in the self-similar limit,
so we normally look for equilibria established by the evo-
lution.This may be either a strictly steady state in some
appropriate coarse-grained description, or it may be a self-
similar virialised state.

In general one can not find a unique solution of the
governing equations that consistently reproduce infall onto
a central mass. We find that this is possible in one interest-
ing case (Fridman and Polyachenko DF) of accretion onto a
point mass, but not for a truly steady distribution around a
point mass. One can allow for the presence of a point mass in
a steady distribution by iterating about an equilibrium state
that is determined initially by the central mass. This allows
the central mass and the environment to be evolved together
towards a new equilibrium, although normally only a single
loop is feasible. We proceed to discuss these two possibilities
in this section.

Using the characteristics of equation (9) plus the total
derivative

dΨ

ds
=
∂Ψ

∂s
+
dR

ds
∂RΨ (12)

where ds ≡ αdT , one finds by a simple manipulation that

d(Y
2

2
+Ψ)

ds
= −2(1/a − 1)

Y 2

2
− R

a
∂RΨ+

∂Ψ

∂s
. (13)

In order for this last equation to yield the energy as an
isolating integral (i.e. characteristic constant) the last two
terms must together sum to give −2(1/a−1)Ψ. This is most
simply effected by setting ∂Ψ/∂s = 0 and R∂RΨ = pΨ,
which turns out to be a condition for both self-similarity
and a true steady state. Here

p = 2(1− a). (14)

so that Ψ = ΨoR
p for some constant Ψo.

Hence, on setting E ≡ Y 2/2+Ψ, we have from equation
(13)

dE
ds

= −2(1/a− 1)E . (15)

This variation does render E constant on characteris-
tics (and therefore in time) as one sees by integrating to the
form Eo exp (−2(1/a− 1)s), and then by using the trans-
formations (3) to find E = E exp (2(1/a − 1)αT ) ≡ Eo. An
example of such a state is a system of massless particles
dominated by the potential of a central point mass M∗, for
which a = 3/2 and p = −1. The similarity index a = 3/2
reflects the presence of the Keplerian constant GM∗ whose
vector ~dK = (−2, 3) and for which ~a · ~dK = 0. We refer to
this example again below.

Equation (9) also yields along the characteristic

dF

ds
= −(1/a− 1)F, (16)

so that with equation (15)

F = F̃ (κ)|E|1/2. (17)

The steady unscaled DF follows from this last equation and
the transformations (3) as (a 6= 1)

πf = F̃ (κ)|E|1/2δ(j2). (18)

The quantity κ in equation (18) labels any other (be-
sides E) possible characteristic constant, but in general
nothing other than E is readily available. For this reason
we discuss the DF (18) with F̃ strictly constant.

In (HW95) this DF was first given and was shown to
yield the asymptotic particle distribution found by Fillmore
and Goldreich (Fillmore & Goldreich, 1984).Their result fol-
lowed from a direct integration of particle orbits in radial in-
fall. The example given in (HW95) for comparison purposes
corresponds to the choice of our current index a = 18/17.
In general, a = 3ǫ/2(ǫ + 1), where the initial density profile
is ∝ r−ǫ. The initial system is infinite for ǫ ≤ 3, which is
a ≤ 9/8. In (HW 1999) this DF was argued to be the natu-

ral state for steady self-similarity. Thus the DF (18) with F̃
constant probably describes a steady system of self-similar
radial orbits characterized by the index a. For this reason
together with the numerical evidence discussed presently, we
discuss the implications here in more detail, bearing in mind
the possibility of embedding a central black hole.

In (HW 1999) weak evidence was presented to show
that the |E|1/2 law did appear near the end of the infall
for the most tightly bound particles. These would be clos-
est to being described as occupying an eternal steady state.
A similar result was found by MacMillan (MacMillan 2006)
for the most tightly bound particles even while infall con-
tinued. The case was re-enforced by additional calculation
of initially infinite systems by Le Delliou (Le Delliou 2001)
(see figure 1). The figure shows another example of the Fill-
more and Goldreich (ibid) problem wherein the DF (18 is a
reasonable fit over most of the energy range. The cut-off is
probably numerical in this case since numerically the system
is ultimately finite.

However the DF (18) does not fit the complete energy
distribution found in high resolution simulations of radial
orbit growing isolated halos (MacMillan 2006, for e.g.) in a
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Figure 1. A shell code evaluation of the DF (Le Delliou 2001), evolved from a system with initial density ρ ∝ r−1.5. The first fit is with
a cut off power law (F ∝ E−pe−E/Ec with p ≃ 1/2, Ec ≃ −10−2; upper left panel), while the second fit is just a power law (lower left),
confirming (HW99). The cut off is confirmed by higher resolution in the DF (upper right) and in density of states g(E) (lower right).

state of self-similar virialisation (HW 1999). In such a state,
infall continues. We reserve the explanation of this behaviour
to the next section where it involves the exceptional case
wherein a = 1.

Continuing for the moment with the discussion of equa-
tion (18) we observe that an upper energy cut-off E+ ∝ Φ
is required for finiteness in the positive energy case (a < 1
when the potential increases outwards), while the cut-off is
zero in the negative energy case (a > 1 when the potential
decreases outwards). Moreover we note that one can add an
arbitrary constant Eo to E in this DF, which reflects the
arbitrary constant in the potential. For negative energy the
DF would appear as F̃ (Eo − E)1/2 for E < Eo < 0. This
was the type of fit used by MacMillan (ibid) to fit his sim-
ulations. The DF decreases to zero at Eo and increases to
negative energy. A large positive constant Eo and E > −Eo

so that f ∝ (Eo + E)1/2 would express a negative energy
cut-off at the value −Eo and the DF would increase towards
zero energy.

The potential and density pair for these eternally steady
models take the form1 (a 6= 1)

1 We have used our current notation when using the results of

Ψ = ΨoR
(2−2a), Θ = 2(3− 2a)(1− a)ΨoR

−2a. (19)

In a very recent submission Amorisco and Evans (Amor-
isco&Evans 2010) prove that the power-law relation between
the galactic half-light radius and the central velocity disper-
sion in dwarf ellipticals requires a power law potential to be
valid. This arises naturally here.

In the example of a dominant central point mass, in-
serting the index a = 3/2 in the above pair yields a
point mass surrounded by massless particles. The mass-
less particles may be distributed in any manner, but since
~dN = (0,−3) dimensional analysis requires that the number
density N should vary as N ∝ No(R)e

−3δT = No(R)R
3/r3.

In a rigorously steady state this should be time independent
so that No(R) ∝ R−3 and hence N ∝ r−3. Such a halo could
exist outside any dominant mass as was discussed in (HW
1999). Thus it might surround a central point mass or in-
deed be the diffuse halo around a bulge containing most of
the system mass. However this is only a limiting behaviour

previous papers, in which δ,X, S in ((HW 1999)) are respectively
1/a, R,ΘR2. In ((HW95)) δ there becomes 1/(1 − a) in current
notation.

c© 2010 RAS, MNRAS 000, 1–11
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and does not include the transition region. This interests us
particularly in the context of central black holes.

The direct density integral over the DF (18) for negative
energies yields for ρ

ρ =
πF̃√
2

|Φ|
r2
. (20)

Since this is linear in the potential, one can readily include a
central mass by iteration. We may begin with a point mass
potential for Φ in the density (20), and then use the Poisson
equation to obtain a new potential in a form that is no longer
self-similar. This yields

Φ1 = −M⋆ + C2(1 + ln r)

r
, (21)

whence follows a new density by (20). The constant M⋆

would be the mass inside ln r = −1 (regarded as a point

mass) while C2 =
(
πF̃/

√
2
)
M⋆. There is only a logarithmic

modification to the r−3 law at large r where the iteration
should apply. In effect the iteration yields a singular pertur-
bation series at r = 0 because of the diverging potential and
hence energy. Therefore we arbitrarily cut off the series at
small r and ‘renormalize’ the central mass. The next loop of
the iteration gives

Φ2 = −
M∗(1− C2

2

2M2
∗

)

r
−C2(1 +

2C2

M∗

)
(1 + ln r)

r
− ln2 r

r

C2
2

2M∗

where again we have ‘renormalised’ at ln r = −1. Putting
this back into equation (20) yields ρ2 as r−3 flattened only
by logarithmic terms at large r (HW 1999). The large scale
r−3 density profile does not fit the bulge simulations inside
the NFW (Navarro, Frenk & White 1996) scale length, but
it does describe the halo region outside a central bulge of
mass M⋆ (HW 1999).

Since the density is linear in the potential we may also
solve for a self-consistent cusp having the DF (18) by let-
ting the potential be determined by the Poisson equation.
Working in transformed variables we find

Ψ = −ARp
− −BRp+ , (22)

where A, B are arbitrary real constants > 0 and

p± = −1

2
±

√
1

4
− π√

2
F̃ . (23)

By letting F̃ → 0 we see that p− is the power that
should be taken near the centre if we wish to create a strong
central mass concentration. It tends to −1 in this limit while
p+ tends to zero. Hence we set B = 0 in this limiting domain.
The potential then satisfies our basic condition (14) with
a new self-similar index. This is given by a = 1 − p−/2
according to equation (14), that is explicitly

a− =
5

4
+

1

2

√
1

4
− π√

2
F̃ . (24)

Equation (19) now gives the inner cusp density law as

Θ = |p−|(1 + p−)|Ψo|R(−2+p
−
).) (25)

This can not be flatter than R−2.5, which appears only for
the ‘ maximum bulge’ for which F̃ = 1/(2π

√
2). At large r

the term in p+ dominates, and the behaviour tends to r−2

for F̃ small.
In the context of dark matter simulations such a steady

halo of radial orbits could describe the region just beyond
the NFW scale radius, based on the density profile alone. It
is not stable in a strict steady state according to the usual
Antonov criteria (Binney & Tremaine 1987 , for e.g.), unless
the energy is negative. Consequently we do not expect it
in central regions where a < 1 where the energy is positive
(with a central zero: the potential increases outward accord-
ing to Eq. 19). The radial velocity dispersion is v2r = |Φ|/2.

This concludes our study of the general, steady, spher-
ically symmetric, DF for power law distributions of radial
orbits. The main justification for the study is that it per-
mits definite conclusions. The effect of an embedded mass is
more problematic, but iteration does suggest the r−3 law to
within logarithmic corrections.

In the next section we turn to the exceptional case for
which a = 1. We are able to place this case in the context
of other discussions.

4 THE LOGARITHMIC CASE

The case a = 1 is obviously special and, as it turns out,
rather important. We return to the equation (13) and ob-
serve that we also have an integral in the steady state if
ψ = ψo lnR. For in that case the equation integrates to
E + ψoαT = κ, where κ is constant on the characteristic.
Equation (16) then requires that in general F = F (κ), so F
is also constant on the characteristic. With a = 1 we note
from equation (3) that Ψ ≡ Φ, Y ≡ vr and so E ≡ E. How-
ever κ = v2r/2 + ψo lnR + αT = v2r/2 + ψo ln r ≡ E and
moreover πf ≡ F . Hence our conclusion is for the moment
only that

πf = F (E), (26)

in this case.
By taking the potential to be logarithmic Ψ = Ψo lnR,

we have required by equation (6) that Θ = Ψo/R
2 and

hence, by the appropriate members of the set (3), that
ρ = Ψo/r

2. But for consistency we must also have

ρ =
Ψo

r2
=

1

r2

ˆ

F (E) dvr. (27)

We must therefore find a DF F (E) which satisfies this equa-
tion. In effect, the integral over the particle velocities must
be a constant independent of the logarithmic potential.

To find such a DF we convert the integral to an integral
over energy in the normal fashion and write our consistency
condition as

I ≡
√
2

ˆ

F (E)√
(E − Φ)

dE = Ψo. (28)

We might expect a power law form for F (E) on general
grounds, and given this a brief experimentation shows that
the most general form for F (E) in this case may be written
as (we suppose negative energy to ensure convergence and
E < Eo < 0 where Eo is an arbitrary constant energy)

F (E) =
K√

(Eo − E)
(29)
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This may also be inferred as the unique solution with a finite
energy range by recognizing that equation (28) is really a
simple form of Abel’s integral equation (see e.g. (Binney
& Tremaine 1987 ) in the first or finite form, p651) whose
solution is equation (29) with

K =
Ψo√
2π
. (30)

This may be checked by direct evaluation of the integral to
find that ρ = Ψo/r

2 as required.
This result holds only where E < 0 and hence where r <

ro, where ro is an arbitrary scale. However since we have not
actually set a fixed scale in the problem (which would entail
setting δ = 0), we have implicitly implied that r/ro = R/Ro.
Thus we have assumed that ro = Roe

αT = αRot. We may
take Ro constant (dimensionless) so that there is a residual
time dependence because the outer boundary expands ac-
cording to ro = Roe

αT . This implies that the mass inside Ro

and indeed inside any fixed R is growing as M = 4πΨoRαt.
We have thus succeeded according to the above in deriv-

ing the Fridmann and Polyachenko DF (Fridmann & Poly-
achenko 1984) as the unique result of time-dependent radial
accretion of a growing inverse-square density ‘bulge’. This is
one of our major conclusions.

A numerical measure of the DF in radial self-similar
continuing infall was made by MacMillan (MacMillan 2006).
Instead of the steady DF, the DF of Fridman and Poly-
achenko (Fridmann & Polyachenko 1984) is found to predict

accurately all of the measured quantities as in the accompa-
nying figures. These include an inverse square density law
and a power law pseudo phase space density of ≈ −1.5,
but there are logarithmic corrections to the power law as
can be calculated from the FP distribution function. The
pseudo phase space density power is flatter (MWH 2006,
i.e. MacMillan, Widrow & Henriksen 2006) than is gener-
ally found in full cosmological simulations. These results are
illustrated in figures (2) and (3).

This DF (Fridmann & Polyachenko 1984) used to make
the fits in figures (2) and (3) is

f =
K

(−E + Eo)1/2
δ(j2), (31)

for E < Eo ≤ 0, and r ≤ rf (where Φ(rf ) = Eo) and zero
otherwise. This is just as we inferred above. The density pro-
file is r−2 and the potential is logarithmic. The logarithmic
variation of the velocity dispersion together with the inverse
square density profile accounts for the pseudo density ap-
proximate power law found in the simulations (MacMillan
2006).

The persistence of this DF is undoubtedly due to the
strict proscription of non-radial forces in the simulations. It
is not linearly stable by the Antonov criteria for E < 0.
When this proscription is relaxed (MacMillan 2006) shows
that the equilibrium Fridman and Polyachenko DF is sub-
ject to the radial orbit instability. It may require continual
non-equilibrium excitation as provided by steady infall to
be realized.

The unique feature of the distribution function (31) is
that the density is independent of the potential. Hence one
can simply add a point mass potential to the logarithmic
bulge value and the density will remain Ψor

−2. In the case
of a true absorbing central black hole one should only permit

Figure 2. We show the Fridman and Polyachenko fit to the
mass distribution dM/dE = f(E).g(E), density of states g(E),
and the phase space distribution function f(E). The figure is
based on the radial simulations of an isolated dark matter halo
by MacMillan (2006). The system is maintained in self-similar
virialisation by steady accretion. The fits use equation (31) with
K = −Eo/(4

√
2π3) and Eo ≈ −80 in machine units.

negative radial velocities in the system. This means that K
in equation (30) should be multiplied by a factor 2. The
velocity dispersion however goes as v2r = |Φ − Eo| and we
may take Φ = −M⋆/r +

√
2πK ln r+Eo. MacMillan (ibid)

finds a good fit to this radial dispersion in his simulations,
but without a central mass.

The actual growth of the black hole mass will be sim-
ply that of the general self-similar mass growth as discussed
above. That is

M∗(t) =M∗(0)e
αT =M∗(0)αt. (32)

Its radius will be growing according to the same law.
One can not however take seriously the growth of a

black hole due to radially infalling material from cosmolog-
ical distances, since the material there can not know the
actual location of the black hole. However, as we will spec-
ulate in the discussion section, such growth may apply to a
hierarchy of ‘central’ masses extending to ever smaller scales.
That is M∗ might be successively the bulge of a galaxy, the
core, the nucleus, and so on to the black hole. In each case
there must be a way of scattering orbits into the essentially
radial loss cone.

It is worth contrasting the above infall DF with the eter-
nally steady system of radial orbits in spherical symmetry.
This case was inadvertently omitted in (HW95), and so we
pause to present it in our general style.

The main difference with the time dependent case is
that that the scaling motion must be taken in space rather
than in time. This means that we use the variable R, where
eδR ≡ δr so that dR/dr = e−δR. In addition we write

f = Fδ(vθ)δ(vφ), (33)
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8 Le Delliou et al.

Figure 3. We show the the Fridman and Polyachenko fit to the
mass density, the velocity dispersion and the ‘pseudo phase space
density’ for the same simulations by MacMillan.

where F satisfies (integrate the steady equation (1) over vθ
and vφ)

vr
∂F

∂r
− ∂Φ

∂r

∂F

∂vr
= 0. (34)

In addition we have the Poisson equation as

1

r2

(
d

dr
(r2

dΦ

dr
)

)
= ρ =

ˆ

F dvr. (35)

The dimension vectors in our usual scaling space are
~dF = (1,−4, 1), ~dv = (−1, 1, 0),~dρ = (0,−3, 1) and ~dΦ =
(−2, 2, 0). Recalling that µ = 3δ − 2α the vector for F be-
comes (−1,−1), the vector for ρ becomes (−2, 0) while the
others remain unchanged in the reduced (α, δ) space. How-
ever we will only consider the case a = 1 or α = δ since the
other cases were discussed in (HW95) and reduce to the DF
(18). When α = δ the dimension vectors reduce in delta di-
mension space to (−2), (−2), (0) and (0) respectively. Hence
the equivalent of equation (3) is

δr = eδR, Y = vr,

e−2δRP (R,Y ) = f (r, vr) , (36)

Ψ(R) = Φ(r, t),

e−2δRΘ(R) = ρ(r).

If self-similarity is enforced normally, then in this case
∂R = 0 when it acts on the scaled variables. However this
can not apply to Ψ(R) = Φ since then equation (34) be-
comes trivial. The answer lies in the realization that in this
case the potential is logarithmic in r, rather than being a
power law. The condition α = δ requires that there be a
constant Ψo with dimensions of the potential, just as in the
time dependent case. These conditions are satisfied here by
setting

Ψ(R) = Ψo(δR) ≡ Ψo ln δr = Φ(r).

Since only ∂RΨ appears in the problem, the self-similar re-
quirement of independence of R is maintained for F .

A direct substitution of the transformation (36) plus
the form of the potential into equation (34) reduces it to

1

P

dP

dY
= −2Y

Ψo
,

and hence

P = Ke
−Y

2

Ψo .

Consequently we find finally from F = Pe−2δR ≡ P/(δr)2

the eternally steady DF in the Gaussian form

F = Ke
− 2E

Ψo , (37)

where

E ≡ v2r
2

+ Ψo ln δr.

From the Poisson equation (35) we obtain

ρ =
Ψo

r2
,

and this must agree with the integral over F . The system is
infinite and letting both inward and outward going particles
be present one finds that

ρ =
K
√
Ψoπ

δ2r2
.

Thus

K =

√
Ψo

π
,

and there would be a factor two on the right if only inward
(or less likely) outward going particles were present.

Such behaviour has been found previously as the steady,
coarse-grained limit both in spherical symmetry and in ar-
bitrary symmetry (H2004; Lynden-Bell 1967). It is impor-
tant to note that unlike the time-dependent result, this eter-
nally steady system is infinite in space and in mass. The
Fridmann-Polyachenko DF found for the time-dependent in-
fall system, gives a finite although growing mass. Hence it
removes one objection to the Gaussian DF for radial or-
bits. The contrast between the two solutions emphasizes the
difference between the completely relaxed DF in the steady
state (18) and the DF that is maintained by continuing infall
(31).

5 DISCUSSION

In our section on the steady state we have found the the
steady, spherically symmetric DF with radial orbits that
yields infinite systems with power law profiles. This was
found previously but we have attempted to perturb the DF
by embedding a central mass. The DF is universal for these
systems but the potential-density pair depends on the self-
similar index a which in turn depends on dominant constants
or boundary conditions. If it is a memory of a cosmological
fluctuation profile, then a = 3ǫ/(2(ǫ + 1)).

The iteration for an embedded central mass predicts a
transition region in the halo of the mass that is an r−3 profile
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modified by logarithmic corrections. It does not correspond
to the power law density of stars found close to the black
hole in the galactic centre(Gillessen et al., 2009), but may
apply in the halo of a bulge mass.

We also looked for solution that broke the self-similarity
by seeking non-power-law solutions of Poisson’s equation
(pure power laws only exist in the limits) with the density
(20). The density profile can not be flatter than r−2.5 near
a central point mass, but it may be as flat as r−2 at large
scales in the low density limit.

In the section concerning the logarithmic exception we
showed that it corresponded to continuing time-dependent
infall. We found both theoretically and numerically that the
Fridmann and Polyachenko DF is the distribution estab-
lished by continuing radial infall. Remarkably, it allows a
growing central point mass (or indeed a bulge mass on a
larger scale) to be embedded in the infall self-consistently.
We were able to contrast this result with an eternally steady,
infinite system of radial orbits. This is described by the
Gaussian DF that has also been inferred in the past for
fully relaxed, infinite systems. In both the steady and the
time-dependent cases the density profile is r−2, but a black
hole is not readily incorporated into the steady case even
by iteration. The time-dependent logarithmic case allows a
consistent calculation of the central mass growth rate ac-
cording to M∗ ∝ t. Such a growth rate from a surrounding
envelope was found in (MacMillan & Henriksen 2003).

The growth rate of a central mass (i.e. a collisionless
concentration, not a true black hole) from a reservoir of ra-
dial orbits is zero if there is a true steady state. However
in a state of self-similar virialisation we can expect them to
settle into a bulge as they become trapped by the increasing
mass. The growth rate is not zero if the central mass is a
black hole, since then the outward bound radial orbits are
suppressed. In that case however the steady state is only
an approximation, except in an infinite system. for a finite
system the true timescale would be the free-fall time of the
bulk of the accreting mass.

One is inclined not to take these growth estimates seri-
ously, since they simply assume an endless supply of radial
particles, and hence an arbitrarily filled loss cone. In fact the
radial alignment required to hit a growing black hole from
a few hundred parsecs is at least one part in 108 to 1010 de-
pending on the mass of the black hole! This suggests that in-
stead (MacMillan & Henriksen 2003, see for e.g.) the actual
growth involving radial orbits may be by way of a multi-
stage process. In the first stage, radial orbits accrete from
the galactic halo to form a bound spherical bulge of interme-
diate size, due to finite angular momentum about the centre
(MacMillan & Henriksen 2003). They are trapped there
either by the usual mechanism of self-similar infall as the po-
tential increases in time with increasing internal mass, or by
dissipative interactions. If there is substructure in the col-
lisionless matter (e.g. stars and dark matter clumps), then
these are able to produce dissipational collisions. Ultimately
these collisions and tidal interactions can lead to a more
gradual growth of a more central mass (MacMillan & Hen-
riksen 2003, for e.g., in the Carnegie meeting).

Recently a high resolution study (Stadel et al 2009)
of sub-structure in an isolated halo revealed that this sub-
structure disappears in the inner few parsecs. this coincides
with the region where the halo is becoming spherical and

where the density power-law is flattening to less that 1.
Hence the interactions leading to the sub-structure disap-
pearance may well lead to relaxation.

In addition the radial orbit instability can lead to the
development of a bar (MWH 2006). This bar can then trans-
port angular momentum away from the bulge by the ejection
of particles. Such ‘interrupted accretion’ may repeat several
times on the way to the actual central object. The rapid
radial accretion of a bulge is in fact the way in which dark
matter halos are thought to grow (Zhao et al., 2003; Lu et
al. 2006) initially. This is then followed by a slower growth
phase. The DF (31) can be used to describe the environment
of the central mass on each scale of the interrupted cascade.

In this connection we refer to the work of Mutka (Mutka
2009) on gravitationally lensed galaxies with double images.
He concludes that there are two classes of density cusps with
the larger sample (about 80%) showing a logarithmic density
slope of ≈ −1.95 well inside the NFW scale radius. The other
20% show this slope as ≈ −1.45. These may be unresolved
triple image lens and ,if so, the measured value should be
rejected.

Mutka’s result is a measure of the total mass distribu-
tion rather than just the dark matter. Perhaps we are seeing
enhanced relaxation in the mixture of stars and dark mat-
ter, that leads towards an isothermal cusp, rather than the
shallower cusps of the dark matter simulations. It is signifi-
cant that this inverse square slope is also frequently found by
direct dynamical modeling of galaxies (van der Marel 2009).

However an inverse square slope is not restricted to a
system of purely radial orbits as the isotropic isothermal dis-
tribution shows. In a subsequent paper we survey anisotropic
distribution functions in spherical spatial symmetry that
also have a self-similar memory. Some of these also provide
an inverse square density profile.

The significance of the hierarchy of co-evolving struc-
tures is that there will always be a mass correlation between
them. Thus if the mass concentration derives its ultimate
mass M• from a halo of radius rh, while rs encloses the
mass that forms the ultimate bulge mass Ms then

M•

Ms
=
rh
rs
. (38)

This assumes the pure inverse square density law, which
might in fact have a logarithmic correction. In the subse-
quent paper, we shall find a slightly more general correla-
tion that involves the self-similar memory. Taken at face
value this simple relation gives rh/rs ≈ 100.

6 CONCLUSIONS

We have attempted in this paper to find causal reasons for
distribution functions that contain a central point mass, or
at least a dominant central mass concentration. The par-
ticle distribution is confined to particles on radial orbits.
Our method was to compare analytic steady state and dy-
namically developing distribution functions to the results of
simulations. In almost every case a self-similar memory was
assumed.

The rigorously steady, self-similar steady state (a 6=
1,18) does not lend itself to an embedded mass concentra-
tion. A central mass is allowed exactly only in the Keplerian
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limit wherein a = 3/2. This case gives a massless bulge with
ρ ∝ r−3. This is naturally iterated to give an inner flatten-
ing, but continued iteration is effectively in powers of ln r.

However, since the inferred particle density based on
the steady distribution function is linear in the potential, a
non-self-similar solution may be found that does tend to a
point mass potential near the centre. The consequent cen-
tral density profile is too steep however to fit observations
of Sagittarius A*, but the larger scale profile is a better fit
to simulated density profiles. An iterative procedure start-
ing with a point mass potential yields flattening logarithmic
corrections to an r−3 profile. The iteration can not be used
close to the centre of the system, but the central mass may
be ‘renormalised’ to a dominant central mass concentration.
This allows a description of the ‘halo region’ around a cen-
tral bulge that agrees with previous results. Radial orbits
are likely to be more realistic as the scale increases.

A shell code and a full N-body study each confirmed the
development of the Henriksen and Widrow DF (18, HWDF)
in a strictly steady state occupied principally by particles at
high binding energy (subject to an eventual numerical cut-
off). The special case where the self-similar index a = 1 and
no assumed steady state was shown to lead to the Fridmann
and Polyachenko distribution function (FPDF). The FPDF
was found to describe accurately the purely radial simula-
tions of isolated collisionless halos carried out in (MacMillan
2006). These simulations retained cosmological initial con-
ditions although non-radial forces were switched off. The
final state is close to self-similar virialisation since the in-
fall continues and memory of the initial state is lost. These
correspondence between the theory and the simulations al-
low us some confidence in the distribution functions that we
found by remaining ‘close’ to self-similarity.

We may embed a central mass exactly in the FPDF.
The density profile retains the r−2 behaviour, but the radial
velocity dispersion would reflect the variation of the total
potential. Thus it decreases as r−1 near the central mass,
and then decreases logarithmically with r until the moving
boundary of the self-similarly virialised state is reached. Re-
alistically the central mass is unlikely to be a true black
hole, at least in the early stages of the growth of a galaxy
where radial accretion onto the centre is unlikely. The FPDF
system may represent a large central mass concentration or
‘bulge’ in an early stage. The growth time of such a central
mass in a system of radial orbits is simply proportional to t
(measured from the onset of self-similar virialization) so that
this would be a relatively rapid phase. Subsequently, with
the rise of dissipation and instabilities in the bulge, there
may be a slower phase of radial accretion towards the cen-
tre. It is possible that this cycle could repeat several times
in a process we have referred to as ‘interrupted accretion’.
Under this process the r−2 density law would apply almost
everywhere, although its amplitude would be reset in the dif-
ferent stages. This allows us to expect that the bulge from
which a central black hole is fed self-similarly would have a
mass proportional to the black-hole mass.

Our final result concerning a rigorously steady system
of radial orbits also concerned the special case a = 1. We
give the deduction of the distribution function because it
was omitted elsewhere. It also emphasizes the difference be-
tween the self-similar virialised system with continuing infall
and the rigorously steady virialised system that is infinite in

extent. The exact DF is a Gaussian that has been associ-
ated previously with self-similarity by coarse graining. The
assumption of coarse-grained self-similarity has been argued
previously to be a more restricted way of reaching the orig-
inal conclusion of Lynden-Bell (ibid).

This concludes our exploration of reasonable distribu-
tion functions comprised of particles on radial orbits that
interact collectively to establish self-similarity. In the next
paper in this series (II), we shall extend the exploration of
self-similarity to include velocity space anisotropies in spher-
ical symmetry.
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