
HAL Id: hal-00431275
https://hal.science/hal-00431275v4

Preprint submitted on 12 Aug 2010 (v4), last revised 20 Mar 2011 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Black Holes and Galactic Density Cusps I Radial Orbit
Cusps and Bulges

Morgan Le Delliou, Richard Henriksen, Joseph D. Macmillan

To cite this version:
Morgan Le Delliou, Richard Henriksen, Joseph D. Macmillan. Black Holes and Galactic Density Cusps
I Radial Orbit Cusps and Bulges. 2010. �hal-00431275v4�

https://hal.science/hal-00431275v4
https://hal.archives-ouvertes.fr


Mon. Not. R. Astron. Soc. 000, 1–10 (2010) Printed August 12, 2010 (MN LATEX style file v2.2)

Black Holes and Galactic Density Cusps I:

Radial Orbit Cusps and Bulges

M. Le Delliou1⋆, R.N. Henriksen2⋆ and J.D. MacMillan3⋆

1Instituto de Física Teórica UAM/CSIC, Facultad de Ciencias, C-XI, Universidad Autónoma de Madrid
Cantoblanco, 28049 Madrid SPAIN
2Queen’s University, Kingston, Ontario, Canada
3Faculty of Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada L1H 7K4

Send offprint requests to: MLeD Preprint: IFT-UAM/CSIC-09-26
Submitted ...; Received ...; Accepted...

ABSTRACT

In this paper we study density cusps made from radial orbits that may contain cen-
tral mass concentrations. The actual co-eval self-similar growth would not distinguish
between the central object and the surroundings. We expect purely radial orbits to be
only a crude approximation to real collisionless halos. In subsequent papers we con-
sider more realistic possibilities, but this introductory paper introduces our techniques.
To describe the environment of an existing mass concentration we seek distribution
functions that may contain a mass concentration and that retain at least a memory of
the approximate self-similarity observed in simulations. We refer to the environment
in brief as the ‘bulge’ or sometimes the ‘halo’. The hierarchy might extend to include
galactic bulge and halo. We find simple descriptions of simulated collisionless matter in
the process of examining the presence of central masses. The Fridman & Polyachenko
distribution function describes co-eval growth of a bulge and mass concentration that
might explain the observed mass correlation. We derive our results from first principles
assuming either self-similar virialisation or normal steady virialisation. The implied
energy relaxation of the collisionless matter is due to the time dependence. Phase
mixing relaxation may be enhanced by clump-clump interactions.

Key words: Cosmology:theory – Dark Matter – large-scale structure of Universe -
Galaxies:formation – galaxies:haloes – galaxies: bulges - gravitation

1 INTRODUCTION

The relation between the formation of black holes and of
galaxies has developed into a key astrophysical question.
From the early papers by Kormendy and Richstone (Kor-
mendy & Richstone 1995), to the more recent discoveries by
Magorrian et al. (Magorrian et al. 1998), Ferrarese and Mer-
ritt (Ferrase & Merritt 2000), and Gebhardt et al.(Gebhardt
et al., 2000). These papers establish a strong correlation be-
tween what is essentially the black hole mass and the sur-
rounding stellar bulge mass (or velocity dispersion). The
origin of this proportionality, which extends well beyond
the gravitational dominance of the black hole, remains un-
proven. But it is generally taken to imply a coeval growth
of the black hole and bulge.

We know that much of the black hole growth into su-
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per massive black holes takes place in a dissipative fashion
involving baryons during the AGN (Active Galactic Nuclei)
phase. In this phase the accretion rate (and therefore the
black hole mass given a cosmological time scale) is limited
by either a Bondi type choke point or by the Eddington ra-
diation limit. The mass source is either diffuse gas or tidally
disrupted stars. The observed AGN luminosities are in rough
agreement with the mass accretion rates that are necessary
to grow the super massive black holes, assuming substantial
black hole ‘seeds’ initially.

The tidal disruption of an individual star causes spo-
radic flaring of the AGN. One expects the mean accretion
rate of this sort to be set by slow diffusion from an essen-
tially collisionless stellar environment (Bahcall & Wolf 1976;
Merritt & Szell 2006, for e.g.) into the ‘loss cone’. This is
thought to end in a steady zero flux limit (Bahcall & Wolf
1976) with a density cusp proportional to r−7/4. However
this process is generally slow, requiring at least a relaxation
time (Merritt & Szell 2006, for e.g.).

Various proposals have been offered to explain the black
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hole mass-bulge mass proportionality as a consequence of
the AGN phase. There is as yet no generally accepted sce-
nario although a kind of ‘auto-levitation’ or feed-back mech-
anism is plausible. In any event there remains the question
of the origin of the seed masses. In some galaxies at very
high red shift the inferred black hole masses are already of
order 109 M⊙ (Kurk et al., 2007, for e.g.) after about one
Ga of cosmic time. This may require frequent, extremely lu-
minous early events (Walter et al., 2009, for e.g.), or it may
suggest an alternate growth mechanism.

The latter possibility is reinforced by the detection of
a change in the normalization of the black hole mass-bulge
mass proportionality in the sense of relatively larger black
holes at high red shift (Maiolino et al. 2007, for e.g.). As
suggested in that paper it seems that the black holes may
grow first, independently of the bulge.

Recently (Peirani & de Freitas Pacheco 2008) have stud-
ied the possible size of the dark matter component in black
hole masses. By assuming that the dimensional or ’pseudo
phase space density’ (H2006, i.e. Henriksen 2006b, for e.g.)
is strictly constant they convert the relativistic accretion
of the dark matter into an adiabatic Bondi flow problem
and obtain the resulting accretion rate. Then by adopting
the mass proportionality between bulge and black hole and
fitting boundary conditions from cosmological halo simula-
tions, they deduce that between 1% and 10% of the black
hole mass could be due to dark matter.

If we accept this result at face value, it seems that a
seed mass of say 106M⊙ could have grown from dark mat-
ter. It would now be part of a super massive black hole that
subsequently grew in the AGN phase. Some seeds may be
primordial. As early as 1978 fully general relativistic nu-
merical collapse calculations (Bicknell & Henriksen 1979)
predicted primordial black hole masses in the range 102 to
106M⊙.

In this present series of papers, hereafter referred to
as paper (I; II; III), we explore this possible growth from
dark matter. Our technique will be to infer reasonable dis-
tribution functions for collisionless matter from the time de-
pendent Vlasov and Poisson set, augmented by an initially
dominant central mass. For consistency we will study cases
where the loss cones are not empty, since we are investigating
dynamical evolution of the system. This temporal evolution
allows for relaxation of collisionless matter in addition to
possible ‘clump-clump’ (two clump) interactions.

We adopt a system of coordinates that allows us either
to readily take the self-similar limit or to retain a memory
of previous self-similar dynamical relaxation. In this way
we can remain ‘close’ to self-similarity just as the simula-
tions appear to do. These coordinates (H2006; H2006A, i.e.
Henriksen 2006a) allow the general expression of the Vlasov-
Poisson set, but they also contain the parameter that reflects
underlying self-similarity (generally written as a). The self-
similar limit is taken by assuming ‘self-similar virialisation’,
wherein the system is steady in these coordinates, although
it is not absolutely steady since mass is accumulating.

Density cusps surrounding black holes have been stud-
ied extensively. Classic studies by (Peebles 1972) and by
(Bahcall & Wolf 1976) dealt with the problem of feeding
the black hole. In addition to these diffusion studies, Young
(Young 1980) explored the cusps produced by the adiabatic
growth of a black hole in a pre-existing isothermal stellar

environment. This was extended by (Quinlan et al 1995)
and by (MacMillan & Henriksen 2002) to more general en-
vironments. In a cosmological context, Bertschinger (1985)
also studied the growth of a central black hole by radial in-
fall. The conclusions were that the black hole induced cusps
were never flatter than r−1.5 (the isothermal and cosmologi-
cal case) and that no black hole mass-bulge mass correlation
was established (MacMillan & Henriksen 2002). This latter
conclusion has spurred the investigation of coeval dynamical
growth of the black hole and bulge in contrast to adiabatic
growth (MacMillan & Henriksen 2003).

Such concerns have passed from the abstract to the
practical with the detection of stellar cusps around galac-
tic nuclear black holes (Gillessen et al., 2009). This latter
paper reports stellar cusp power laws for the central Milky
Way in the range −1.1±0.3, significantly shallower than the
adiabatic −1.5 or the zero flux −1.75. We seek to find under
what general conditions such power laws may arise in this
series of papers.

An effective method of evolving flat cusps is to in-
voke tight binary black hole systems produced by mergers
that ’scour’ the stellar environment (Merritt & Szell 2006;
Nakano & Makino 1999, for e.g.). Depending on the power
law assumed for the initial stellar environment, Merritt and
Szell simulate scoured power laws that can be as flat as −1
in an initially −1.5 cusp, and as flat as −0.5 in an initially
−1 stellar cusp. Flatter values are reduced to essentially
constant density cores. The −1 slope as noted above is a
reasonable fit to the Milky Way (ibid).

Subsequently, but taking at least the central relaxation
time, the cusps should regenerate to the zero flux condi-
tion (r−1.75) according to the simulations in (Merritt & Szell
2006). However this will extend only out to about 0.2 of the
gravitational influence radius of the black hole. This regener-
ation is not thought to be relevant to the Milky Way central
stellar cusp, but may be present on small scales elsewhere.

Such a picture is seductive, especially given the recent
detection of a strong correlation between the nuclear black
hole mass and the central luminosity deficit (Kormendy &
Bender 2009). However the correlation in itself only impli-
cates the influence of the black hole. It does not necessarily
require the merger history, which in any case is unlikely to
be the same for different galaxies. Consequently we explore
in this series of papers (I; II; III) whether cusps as flat as
those resulting from scouring might also be produced during
the dynamical formation of the black hole or mass concen-
tration. In this first paper we present a summary of the
situation for radial orbits since the arguments are typical
but easily carried out in that case. The results may apply
to the outer (beyond the NFW scale radius) regions of dark
matter halos.

The first general result on radial infall was in fact given
in (Fillmore & Goldreich, 1984) and the Bertschinger (1985)
result follows by putting their parameter ǫFG = 1/3. How-
ever neither this work nor that of Bertschinger attempted
to infer closed forms for the equilibrium distribution func-
tion. This was begun by Henriksen and Widrow in 1995. We
recommend to read (H2006) for a summary and an intro-
duction to asymptotic self-similarity. It is pointed out there
that a = 9/8 (ǫ = 3) yields the Bertschinger solution in its
entirety, including the recently heralded power law of the
proxy for phase space density. The parameter ǫ = 3ǫFG and
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it is related to the index called ‘a’, both by simulations and
theory. We do not believe that homogeneous radial infall is
cosmologically correct as one sees in our subsequent papers
of this series. We are aware that such a system is unsta-
ble to the radial orbit instability (MWH 2006, coined ROI)
although the distribution function is NOT generally isother-
mal. However even fully cosmological simulations show an
outer envelope wherein the orbits are trending to be radial.
Moreover isolated halos, which also show statistical relax-
ation that is begging to be understood, show quite radial or-
bits in the envelope (ibid). We have argued that the growth
of the core in such an envelope may be described in terms
of radial infall, and that this might continue hierarchically
after relaxation by the ROI and clump-clump interactions.
Such interactions would remove angular momentum from
some particles in favour of others. However, as we state ex-
plicitly, we use the radial example mainly as an ideal case
that we should be able to understand in detail using our
methods.

Our technique will be to infer reasonable distribution
functions for collisionless matter from the time dependent
Vlasov and Poisson set, augmented by an initially dominant
central mass. For consistency we will study cases where the
loss cones are not empty, since we are investigating dynam-
ical evolution of the system. This temporal evolution allows
for relaxation of collisionless matter in addition to possible
‘clump-clump’ (two clump) interactions.

We adopt a system of coordinates that allows us either
to readily take the self-similar limit or to retain a memory
of previous self-similar dynamical relaxation. In this way
we can remain ‘close’ to self-similarity just as the simu-
lations appear to do. These coordinates (H2006; H2006A)
allow the general expression of the Vlasov-Poisson set, but
they also contain the parameter that reflects underlying self-
similarity. The self-similar limit is taken by assuming ‘self-
similar virialisation’, wherein the system is steady in these
coordinates although not absolutely steady since mass is ac-
cumulating.

We begin the next section with the general formulation
in spherical symmetry. Subsequently we discuss the various
possible distribution functions (DF from now on) for radial
orbits. Finally we show that the DF of Fridman and Poly-
achenko (Fridmann & Polyachenko 1984, hereafter called
FPDF) can be generated through the technique of coarse
graining (HLeD 2002, i.e. Henriksen & Le Delliou 2002) and
then give our conclusions.

2 DYNAMICAL EQUATIONS IN INFALL

VARIABLES

Following the formulation of (H2006) we transform to infall
variables the collisionless Boltzmann and Poisson equations
for a spherically symmetric anisotropic system in the ‘Fuji-
wara’ form (Fujiwara 1983, for e.g.) namely

∂f

∂t
+ vr

∂f

∂r
+

(
j2

r3
− ∂Φ

∂r

)
∂f

∂vr
= 0, (1)

∂

∂r

(
r2

∂Φ

∂r

)
= 4π2G

ˆ

f(r, vr, j
2)dvrdj

2, (2)

where f is the phase-space mass density, Φ is the ‘mean’

field gravitational potential, j2 is the square of the specific
angular momentum and other notation is more or less stan-
dard.

The transformation to infall variables has the form
(H2006, for e.g.)

R = r e−αT/a, Y = vre
−(1/a−1)αT ,

Z = j2e−(4/a−2)αT , eαT = αt,

P (R, Y, Z; T ) = e(3/a−1)αTπf
(
r, vr, j

2; t
)
,(3)

Ψ(R;T ) = e−2(1/a−1)αTΦ(r), Θ(R;T ) = ρ(r, t)e2αT .

The passage to the self-similar limit requires taking
∂T = 0 when acting on the transformed variables. Thus the
self-similar limit is a stationary system in these variables,
which is a state that we refer to as ‘self-similar virialisation’
(HW 1999; Le Delliou 2001, i.e. Henriksen & Widrow 1999).
The virial ratio 2K/|W | is a constant in this state (although
greater than one; K is kinetic energy and W is potential),
but the system is not steady in physical variables as infall
continues.

The single quantity a is the constant that determines
the dynamical similarity, called the self-similar index. It is
composed of two separate reciprocal scalings, α in time and
δ in space, in the form a ≡ α/δ. As it varies it contains
all dominant physical constants of mass, length and time
dimensions, since the mass scaling µ has been reduced to
3δ− 2α in order to maintain Newton’s constant G invariant
(H2006, for e.g.).

We assume that time, radius, velocity and density are
measured in fiducial units ro/vo,ro, vo and ρo respectively.
The unit of the distribution function is fo and that of the
potential is v2o . We remove constants from the transformed
equations by taking

fo = ρo/v
3
o , v2o = 4πGρor

2
o . (4)

These transformations convert equations (1),(2) to the
respective forms

1

α
∂TP − (3/a− 1)P + (

Y

α
− R

a
)∂RP

−
(
(1/a− 1)Y +

1

α

(
∂Ψ

∂R
− Z

R3

))
∂Y P−(4/a−2)Z∂ZP = 0

(5)

and

1

R2

d

dR

(
R2 ∂Ψ

∂R

)
= Θ. (6)

This integro-differential system is closed by

Θ =
1

R2

ˆ

PdY dZ. (7)

We consider in this paper the filled loss cone limit of
radial infall (HLeD 2002). This is mainly as a test of our
techniques although it may have application on large scales.
To proceed we set P = F (R,Y ;T )δ(Z) (δ() is the Dirac
delta, not the scaling delta) which changes the scaling for
the DF to

πf = F (R,Y, ;T )e(1/a−1)αT δ(j2), (8)

while other scalings remain unchanged.
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The governing equations now become (6) plus

1

α
∂TF + (1/a− 1)F +

(
Y

α
− R

a

)
∂RF

−
(
(1/a− 1)Y +

1

α

∂Ψ

∂R

)
∂Y F = 0. (9)

Finally equation (7) reduces to

Θ =
1

R2

ˆ

F dY. (10)

This completes the formalism that we will use to ob-
tain the results below. We begin in the next section with
the radial limit. The ‘cusps’ we describe there will gener-
ally end in what is the central ‘bulge’ surrounding the mass
concentration, rather than in the mass concentration itself.

3 RADIAL ORBIT STEADY CUSPS AND

BULGES

We expect one mode of relaxation in collisionless cusps to be
of the ‘moderately violent’ type satisfying, in terms of the
particle energy E and mean field potential Φ, the relation

dE

dt
=

∂Φ

∂t
|r. (11)

This includes phase-mixing. Another mode (Diemand et
al., 2006) is furnished by the presence of hierarchical sub-
structure . The sub-structure can interact in clump-clump
interactions that can induce relaxation on a coarse-grained
scale (H2009, i.e. Henriksen 2009).

However the temporal evolution of the system is difficult
to follow analytically even in the self-similar limit, so we nor-
mally look for equilibria established by the evolution.This
may be either a strictly steady state in some appropriate
coarse-grained description, or it may be a self-similar viri-
alised state. The memory of the temporal relaxation is in-
corporated into the parameter a as indicated above.

One can allow for the presence of a mass concentration
by iterating about an equilibrium state determined initially
by the mass concentration. This allows the central mass and
the environment to evolve together towards a new equilib-
rium, although normally only a single loop is feasible.

Using the characteristics of equation (9) plus

dΨ

ds
=

∂Ψ

∂s
+

dR

ds
∂RΨ (12)

where ds ≡ αdT , one finds by a simple manipulation that

d(Y
2

2
+Ψ)

ds
= −2(1/a − 1)

Y 2

2
− R

a
∂RΨ+

∂Ψ

∂s
. (13)

In order for this equation to yield the energy as an isolating
integral (i.e. characteristic constant) the last two terms must
sum to give −2(1/a − 1)Ψ. This is most simply effected by
setting ∂Ψ/∂s = 0 and R∂RΨ = pΨ, which turns out to be a
condition for both self-similarity and a steady state,1 where

p = 2(1− a). (14)

1 The general solution to the sum condition is Ψ = RpG(r) where
the function G(r) is arbitrary: however this leads only to the
general Jeans form.

Whence, setting E ≡ Y 2/2 + Ψ, we have

dE
ds

= −2(1/a− 1)E . (15)

This variation does render E constant on characteris-
tics (and therefore in time) as one sees by integrating to the
form Eo exp (−2(1/a− 1)s), and then by using the transfor-
mations (3) to find E = E exp (2(1/a − 1)αT ) ≡ Eo. Such a
state occurs for example in a system whose potential is dom-
inated by the central mass, for which a = 3/2 and p = −1.

Equation (9) also yields along the characteristic

dF

ds
= −(1/a− 1)F, (16)

so that with equation (15)

F = F̃ (κ)|E|1/2. (17)

The steady unscaled DF follows from this last equation
and the transformations (3) as (a 6= 1)

πf = F̃ (κ)|E|1/2δ(j2). (18)

An upper energy cut-off E+ ∝ Φ is required for finiteness
in the positive energy (a < 1) case. In general one can add
an arbitrary constant Eo to E in this expression, which re-
flects the constant in the potential. A large positive constant
would express a negative energy cut-off at the value −Eo and
the DF would increase toward zero energy.

The quantity κ in equation (18) labels any other possi-
ble characteristic constant, but in general nothing is readily
available. One does find additional constants with coarse
graining as is discussed below.

The DF (18) with F̃ constant describes a steady system
of radial orbits at the end of self-similar evolution charac-
terized by the index a. It was found previously (HW95, i.e.
Henriksen & Widrow 1995), and in (HW 1999) it was shown
to be a natural end state for self-similar infall. The potential
and density laws take the form2 (a 6= 1)

Ψ = ΨoR
(2−2a), Θ = 2(3− 2a)(1− a)ΨoR

−2a. (19)

In the context of a dominant central ‘mass concentra-
tion’, we can use this DF to generate a ‘near Keplerian’
system by taking a = 3/2. This yields a point mass poten-
tial surrounded by massless particles. The massless parti-
cles may be distributed in any manner, but self-similarity
suggests that the number density N should vary as N ∝
e−3s/aR−3 ∝ r−3. Such a halo could exist outside any dom-
inant mass as was discussed in (HW 1999).

The direct density integral over the DF (18) yields for
ρ

ρ =
πF̃√
2

|Φ|
r2

. (20)

Hence one can include a central mass by iteration, beginning
with a point mass potential for Φ in the density (20), and

2 We have used our current notation when using the results of
previous papers, in which δ,X, S in ((HW 1999)) are respectively
1/a, R,ΘR2. In ((HW95)) δ there becomes 1/(1 − a) in current
notation.
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Figure 1. A shell code evaluation of the DF (Le Delliou 2001), evolved from a system with initial density ρ ∝ r−1.5. The first fit is with
a cut off power law (F ∝ E−pe−E/Ec with p ≃ 1/2, Ec ≃ −10−2; upper left panel), while the second fit is just a power law (lower left),
confirming (HW99). The cut off is confirmed by higher resolution in the DF (upper right) and in density of states g(E) (lower right).

then using the Poisson equation to obtain a new potential
in a form that is no longer self-similar. This yields

Φ = −M⋆ + C2(1 + ln r)

r
, (21)

whence follows a new density by (20). The constant M⋆

would be the central mass while C2 = πF̃ /
√
2M⋆. There

is only a logarithmic modification to the r−3 law at large
r, but at small r the density flattens. Since this is only the
first iteration cycle, the expression is unlikely to apply very
near the central mass where formally it declines to zero. The
large scale behaviour does not fit the bulge simulations in-
side the NFW (Navarro, Frenk & White 1996) scale length,
but it could describe the halo region outside a central bulge
of mass M⋆.

Since the density is linear in the potential we may solve
for a self-consistent cusp having the DF (18) by letting the
potential be determined by the Poisson equation. Working
in transformed variables we find

Ψ = −ARp
− −BRp+ , (22)

where A, B are arbitrary real constants > 0 and

p± = −1

2
±

√
1

4
− π√

2
F̃ . (23)

By letting F̃ → 0 we see that p− is the power that
should be taken near the centre if we wish to create a strong
central mass concentration. It tends to −1 in this limit while
p+ tends to zero. Hence we set B = 0 in this limiting domain.
The potential then satisfies our basic condition (14) with a
new self-similar index. This is given by a = 1 − p−/2 or
explicitly

a− =
5

4
+

1

2

√
1

4
− π√

2
F̃ . (24)

Equation (19) now gives the inner cusp density law as

Θ = |p−|(1 + p−)|Ψo|R(−2+p
−
).) (25)

This can not be flatter than R−2.5, which appears only for
the ‘ maximum bulge’ for which F̃ = 1/(2π

√
2).

In the context of dark matter simulations such a steady
halo of radial orbits could describe the region just beyond
the NFW scale radius, based on the density profile alone. It
is not stable in a strict steady state according to the usual
Antonov criteria (Binney & Tremaine 1987 , for e.g.), unless
the energy is negative. Consequently we do not expect it
in central regions where a < 1 where the energy is positive
(with a central zero: the potential increases outward accord-
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6 Le Delliou et al.

Figure 2. We show the Fridman and Polyachenko fit to the
mass distribution dM/dE = f(E).g(E), density of states g(E),
and the phase space distribution function f(E). The figure is
based on the radial simulations of an isolated dark matter halo
by MacMillan (2006). The system is maintained in self-similar
virialisation by steady accretion. The fits use equation (26) with
K = −Eo/(4

√
2π3) and Eo ≈ −80 in machine units.

ing to Eq. 19). The radial velocity dispersion is v2r = |Φ|/2.
In paper II we shall see that although this DF is not unique,
alternate DF’s are biased towards zero angular momentum.

In (HW 1999) weak evidence was presented to show
that the |E|1/2 law did appear near the end of the infall
for the most tightly bound particles. This was re-enforced
by additional Lagrangian shell code evolution from (Le Del-
liou 2001) (see figure 1). We have therefore considered its
implications at length here. However the DF (18) does not

appear in high resolution simulations of radial orbit grow-

ing isolated halos (MacMillan 2006, for e.g.) in a state of
self-similar virialisation (HW 1999). In such a state, infall
continues. Instead of the steady DF, the DF of Fridman and
Polyachenko (Fridmann & Polyachenko 1984) is found to

predict accurately all of the measured quantities as in the
accompanying figures. These include an inverse square den-
sity law and a power law pseudo phase space density of
≈ −1.5 (MacMillan 2006, there are logarithmic corrections
to the power law). The latter power is flatter (MWH 2006,
i.e. MacMillan, Widrow & Henriksen 2006) than is gener-
ally found in full cosmological simulations. These results are
illustrated in figures (2) and (3).

This DF (Fridmann & Polyachenko 1984) used to make
the fits in figures (2) and (3) is

f =
K

(−E + Eo)1/2
δ(j2), (26)

for E < Eo ≤ 0, and r ≤ rf (where Φ(rf ) = Eo) and zero
otherwise. In an infinite system we may take Eo = 0. The
density profile is r−2 and the potential is logarithmic. The
logarithmic variation of the velocity dispersion together with
the inverse square density profile accounts for the pseudo

density approximate power law found in the simulations
(MacMillan 2006).

By using our method of coarse graining, we show below
that the effective index a = 1 in this mode( hence the mea-
sured potential is indeed logarithmic as follows with coarse
graining when a = 1). Thus the deduction above of the DF
(18) does not apply (nor do the arguments of (HW95) where
a = 1 was inadvertently excluded). The limit of a = 1 always
needs to be discussed separately.

The rather precise fit of a pure function of the energy to
the DF of a time dependent non-closed system (MacMillan
2006) is somewhat surprising. We expect that E = E(t)
so that it is no longer an isolating integral and (with K
constant) the DF (26) is no longer strictly a solution of the
Boltzmann equation. However if we assume the separated
form f = K(t)F (E)δ(j2) then d lnK/dt+d lnF/dE∂tΦ = 0
from equation (5). With F (E) as in equation (26) we obtain
d lnF/dE = 1/(2(−E+Eo)). Thus with |E| sufficiently large
or ∂tΦ sufficiently small, K is approximately constant.

The persistence of this DF is also undoubtedly due to
the strict proscription of non-radial forces in the simulations.
It is not linearly stable by the Antonov criteria for E < 0.
When this proscription is relaxed (MacMillan 2006) shows
that the equilibrium Fridman and Polyachenko DF is sub-
ject to the radial orbit instability. It may require continual
non-equilibrium excitation as provided by steady infall to
be realized.

The unique feature of the distribution function (26) is
that the density is independent of the potential. Hence one
can simply add a point mass potential to the logarithmic
bulge value and the density will remain

√
2πKr−2. The ve-

locity dispersion however goes as v2r = |Φ−Eo| and we may
take Φ = −M⋆/r +

√
2πK ln r + Eo. Normally the log term

is negative since r ≤ rf , and here rf = ro. MacMillan (ibid)
finds a good fit to this radial dispersion in his simulations
without a central mass.

In the next section we seek the origin of the FPDF
from self-similarity by using a coarse-graining expansion,
first discussed in (HLeD 2002). We seek the origin of the
Fridman and Polyachenko DF. This approach has been used
extensively since the original paper in such works as (H2006;
H2007; H2009, i.e. Henriksen 2007). The simplest procedure
which terminates the series at first order and so produces
constraints on the maximally coarse-grained, steady, DF re-
mains useful. We outline the procedure in the next section,
but the principal result is that the Fridman and Polyachenko
distribution function can be understood as a self-similar DF
with a = 1 in addition to equation (18). We do this by
finding that only these two distribution functions are inde-
pendent of initial conditions.

4 COARSE-GRAINED RADIAL

DISTRIBUTION FUNCTIONS

We follow the procedure introduced in (HLeD 2002) wherein
we write

F = Fo +
F1

α
+

F2

α2
+ . . . (27)

and allow α to become large while holding the similarity
index a constant. This expansion may be regarded as either
a coarse graining of phase space or as a long time limit (each
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Figure 3. We show the the Fridman and Polyachenko fit to the
mass density, the velocity dispersion and the ‘pseudo phase space
density’ for the same simulations by MacMillan.

as α → ∞). The zeroth order term yields the smoothed,
equilibrium distribution function which will be self-similar
(∂TFo = 0).

Substituting the expansion (27) into equation (9) with-
out insisting on self-similarity initially and solving to zeroth
order by the method of characteristics yields the general
form

Fo = Foo(ζ, r)R
(1−a). (28)

The characteristic constants are

ζ ≡ Y

R(1−a)
,

ro ≡ Res/a, (29)

and s is measured along a characteristic. The shape of these
characteristics in phase space is the same to all orders and
the preceding characteristic constants hold to all orders,
but the variation along the characteristic of the distribution
function changes with the order.

The general relationship between the interval along
the characteristic, ds, and exponential time variable, dT,
is dT/ds = 1/α. This integrates to T = s/α + τ ({κi}),
where τ is an arbitrary constant on each characteristic that
may be written as a function of the other characteristic
constants {κi}. This allows us to see the relationship be-
tween ro and r by substituting into R = re−δT (3), to find
R = re−s/ae−τ . But on the characteristics R = roe

−s/a

(29), so that ro ≡ re−τ .
The constant ro is the value of R at the position s = 0

on each characteristic at an arbitrary exponential time, T .
Alternatively at T = 0, R = roe

τ . Normally we regard
the characteristics asymptotically in time as geometrical ob-
jects (wherein s is independent of T ) and we have taken
ro = r = 1 so that s = 0 is at the same actual radius on
each characteristic. This is correct in a statistical sense in
spherical symmetry once the system is well developed in self-

similar virialisation (dominant zeroth order), but it does not
allow us to retain the memory of initial conditions. Such a
dependence on initial conditions can only be introduced in
spherical symmetry by retaining the variable ro, that is by
taking τ 6= 0. This allows for angular (characteristic) de-
pendence in a ‘phase front’ (say τ = T − s/α equal a fixed
constant) even though there is none in real space.

Generally we ignore any dependence on initial condi-
tions except as they are contained in a, since otherwise it
leads to

Ioo ≡
ˆ

Foodζ, (30)

being a function of ro and hence r, which prevents a term
by term solution for the potential from the Poisson equa-
tion. However we will retain this dependence on r in Foo

temporarily , even while continuing to proceed as though
Ioo were independent of r. It is the eventual reconciliation
of these requirements that leads to (26).

In order to obtain a solution for the equilibrium (zeroth
order) distribution function we need to find Foo(ζ, ro). Fol-
lowing (HLeD 2002) we achieve this by finding a condition
that terminates the series at zeroth order for arbitrary α.
This should approximate the long time limit as α → ∞.

By proceeding with the expansion to first order we may
find a condition that gives Fn = 0 for n > 0. It turns out
that this condition reduces to requiring that F1 = 0. This is
possible provided that Foo(ζ, ro) satisfies

∂ζFoo

(
(1− a)ζ2 +

Ioo
3− 2a

+
γ⋆

R(3−2a)

)

− ζro∂roFoo − (1− a)ζFoo = 0. (31)

In this condition we have set any mass concentration po-
tential Ψ⋆ = −(M⋆/r)e

−2(1/a−1)αT ≡ −γ⋆/R, where M⋆ is
a central point mass. Thus M⋆ = γ⋆e

(3/a−2)αT , and so the
central mass grows self-similarly (HW 1999) if γ⋆ is constant.
A solution of equation (31) may be found by the method of
characteristics, although one should note that the charac-
teristics are no longer in phase space. Suffice it to say for
brevity that, for general a, the only solution consistent with
our assumption of self-similar virialisation (equilibrium) and
Ioo independent of ro requires M⋆ = 0, so that there is no
accretion onto a central mass. Subsequently one finds from
equation (31) that only Fo = K|E|1/2(R/ro)

(1−a) renders
Ioo independent of ro. Since this is the ultimate equilibrium,
we may now identify ro with r as discussed previously, so
that after recalling equation (3) we find πfo = K|E|1/2δ(j2).
This is the same result that we found in section three for
an exact self-similar equilibrium distribution function. This
gives us some confidence in the termination procedure.

However the special case a = 1 is more interesting. The
characteristics of equation (31) show that Foo = Foo(E). In
order to prove this note that γ⋆/R = (γ⋆/ro)e

s and, that s
is constant in the characteristic space of equation (31) The
energy argument can be taken as (restoring units)

E =
v2r
2

+ Ioo ln r − GM⋆

r
. (32)

Here we have again set ro = r after the coarse-grained steady
solution is obtained, and we use γ⋆/R ≡ M⋆/r by recalling
that M⋆ = γ⋆e

αT . Thus in this limit the accretion is contin-

uing linearly with time.
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It seems therefore that we have failed to find an explicit
form for the distribution function in this limit where the
central object continues to grow. This is quite distinct from
the exactly steady state discussed briefly in the next section,
wherein a Gaussian distribution function is deduced. One
would have liked to find the Fridman and Polyachenko result
explicitly, since this is what fits the simulated growing radial
halos so well.

However the strong r dependence in E that enters
through the potential is inconsistent with the assumption
that Ioo is independent of r, unless the integral that defines
Ioo is independent of the potential. This is true only for
the Fridman and Polyachenko distribution function. Hence
we conclude that, only the Fridman and Polyachenko dis-
tribution function is consistent with forgetting the initial
conditions during the continuing accretion. We expect this
distribution function to be as close to the exact self-similar
virialised state as this case (a = 1) can get. It is clearly
not exactly self-similar since the potential (and hence the
velocity dispersion) is logarithmic rather than a power law.
The density to this order is ρo = Ioo/r

2 =
´

πfdvr, which
follows on using the Fridman and Polyachenko form (26) in
the integral.

This is the only way in which the Fridman and Poly-
achenko DF appears naturally as a description of self-similar
virialisation using our methods. It is approximately self-
similar but not exactly steady. Proceeding farther in the
series (27), either by terminating at second order or by renor-
malising, will give small corrections to this result ((H2006),
(H2007)) that describe the approach to equilibrium. This
DF remains our best phase-space description of radial ac-
cretion onto a growing central point mass.

We repeat finally that the DF (18) only appears when:
(i) the independence of r is required for consistency in the
coarse graining; and (ii) when a strict self-similar steady
state is enforced as in section ??.

5 COMPLETELY RELAXED, NEARLY

INVERSE SQUARE, SOLUTION

A careful treatment of the a = 1 radial, exactly steady state,
may be carried out in the fashion of (HW95) (not given in
that paper, although the relevant equations are given and
may be translated into our notation and solved). This ap-
proach replaces the formulation of section 2 in this paper.
The argument implies a logarithmic potential and an inverse
square density law. The DF takes the Gaussian form

f = K e(−2E/Ψo)δ(vθ)δ(vφ), (33)

where E ≡ v2r/2 + Ψo ln (δr) in terms of the kinetic and
potential energies. This reveals the solution as the singular
isothermal sphere (ρ ∝ r−2) with only radial orbits present.
The quantity δ may be regarded as the reciprocal of a char-
acteristic radius. Beyond this radius the energy is positive
and unbounded, while inside this radius it is negative and
bounded. The constant Ψo must be positive, in order to have
an attractive gravitational force.

The natural region is the external region as one might
expect for radial orbits. This follows because in order to
satisfy the Poisson equation we must have in the external

region

Ψo =
4πGK

δ2
√
πΨo, (34)

or

Ψo =
16π3(GK)2

δ4
. (35)

However in the internal region equation (34) has the addi-
tional factor erf

√
− ln δ2r2 on the right, so that the equation

can only be satisfied to logarithmic accuracy.
The relation between the density and the DF constant

K is given for r ≥ 1/δ by

ρ =
4π2GK2

δ2(δr)2
. (36)

This is dimensionally correct since [K] = [ρ]/[v]. In practice
one would assign a density at δr = 1 and calculate the re-
quired K and hence the potential constant Ψo from equation
(35).

Our purpose in this section has been merely to contrast
the exactly steady and self-similar steady state for a = 1,
with the coarse-grained growing state discussed in the pre-
vious section. The growing state is clearly the more relevant
for the description of growing central masses.

6 DISCUSSION

The growth rate of a central mass (i.e. a collisionless con-
centration, not a true black hole) from a reservoir of radial
orbits is zero if there is a true steady state. However in a
state of self-similar virialisation we can expect them to set-
tle into a bulge as they become trapped by the increasing
mass. The growth rate is not zero if the central mass is a
black hole, since then the outward bound radial orbits are
suppressed. In that case however the steady state is only a
crude approximation, and the true timescale would be the
free-fall time of the bulk of the accreting mass. It is unlikely
that a black hole can grow directly from a large scale sys-
tem of radial orbits since there is no reason why the distant
particles should ‘know’ where it is.

The radial alignment required to hit a growing black
hole from a few hundred parsecs is at least one part in
108 to 1010 depending on its mass! This suggests that in-
stead (MacMillan & Henriksen 2003, see for e.g.) the actual
growth is by way of a multi-stage process. In the first stage,
radial orbits accrete from the galactic halo to form a bound
spherical bulge of intermediate size, due to finite angular
momentum about the centre. They are trapped there either
by the usual mechanism of self-similar infall as the poten-
tial increases in time with increasing internal mass, or by
dissipative interactions. If there is substructure in the col-
lisionless matter (e.g. stars and dark matter clumps), then
these are able to produce dissipational collisions. Ultimately
these collisions and tidal interactions can lead to a more
gradual growth of a more central mass (MacMillan & Hen-
riksen 2003, for e.g., in the Carnegie meeting).

Moreover the radial orbit instability can lead to the de-
velopment of a bar (MWH 2006). This bar can then trans-
port angular momentum away from the bulge by the ejection
of particles. Such ‘interrupted accretion’ may repeat several
times on the way to the actual central object. The rapid
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radial accretion of a bulge is in fact the way in which dark
matter halos are thought to grow (Zhao et al., 2003; Lu et
al. 2006) initially. This is then followed by a slower growth
phase. The DF (26) can be used to describe the environment
of the central mass on each scale of the interrupted cascade.

In the previous section we have discussed distribution
functions that have been found to describe simulated ra-
dial collisionless systems. Only the steady DF (18) allows
for a memory (i.e. through a general ‘a’) of the preceding
dynamics, but a mass concentration can only be included in
the system by iteration. The radial orbit singular isothermal
sphere DF (33) gives an approximate r−2 density cusp, but
a central mass concentration is not easily treatable.

The most successful DF that persists during infall and
that may contain a central point mass is that of Fridman and
Polyachenko (26). This yields an inverse square density cusp
and a velocity dispersion that first decreases (near the mass
concentration) and then increases with radius. It may apply
in the series of ‘interrupted accretions’ discussed above.

In this connection we refer to the work of Mutka (Mutka
2009) on gravitationally lensed galaxies with double images.
He concludes that there are two classes of density cusps with
the larger sample (about 80%) showing a logarithmic density
slope of ≈ −1.95 well inside the NFW scale radius. The other
20% show this slope as ≈ −1.45. These may be unresolved
triple image lens and ,if so, the measured value should be
rejected.

Mutka’s result is a measure of the total mass distribu-
tion rather than just the dark matter. Perhaps we are seeing
enhanced relaxation in the mixture of stars and dark mat-
ter, that leads towards an isothermal cusp, rather than the
shallower cusps of the dark matter simulations. It is signifi-
cant that this inverse square slope is also frequently found by
direct dynamical modeling of galaxies (van der Marel 2009).

However an inverse square slope is not restricted to a
system of purely radial orbits as the isotropic isothermal dis-
tribution shows. In the next paper we survey anisotropic dis-
tribution functions in spherical spatial symmetry that also
have a self-similar memory. Some of these also provide an
inverse square density profile.

The significance of the hierarchy of co-evolving struc-
tures is that there will always be a mass correlation between
them. Thus if the mass concentration derives its ultimate
mass M• from a halo of radius rh, while rs encloses the
mass that forms the ultimate bulge mass Ms then

M•

Ms
=

rh
rs

. (37)

This assumes the pure inverse square density law, which
might in fact have a logarithmic correction. In paper II, we
shall find a slightly more general correlation that involves the
self-similar memory. Taken at face value this simple relation
gives rh/rs ≈ 100.

7 CONCLUSIONS

We have attempted in this paper to find distribution func-
tions that describe both dark matter bulges and a central
mass concentration or at least a central mass concentra-
tion. Our method was to compare dynamically developing
distribution functions to the results of simulations. These

distribution functions develop self-similarly and can retain
an explicit memory of the self-similarity. The most success-
ful DF for describing an accreting mass concentration is the
FPDF, which arises in the coarse graining expansion when
all memory of the initial state is lost. It corresponds to the
special approximate self-similarity when a = 1.

In the discussion of cusps and bulges, we were able to
distinguish the Distribution function of Fridman and Poly-
achenko (26) from that of Henriksen and Widrow (18). A
shell code study confirmed the development of the latter in
a strictly steady state subject to a cut-off at high binding en-
ergy. The FPDF was found to describe accurately the purely
radial simulations of isolated collisionless halos carried out in
(MacMillan 2006). These simulations retained cosmological
initial conditions although non-radial forces were switched
off. The final state is close to self-similar virialisation since
the infall continues and memory of the initial state is lost.
Moreover we have also shown that the FPDF appears in the
self-similar coarse graining at zeroth order, provided that
sensitivity to initial conditions is lost dynamically.

This correspondence between the theory and the sim-
ulations gives us some confidence in the DF’s found by re-
maining ‘close’ to self-similarity.

The FPDF may contain a central mass concentration
that is unlikely to be a true black hole at least in the early
stages. It may represent a central mass concentration or
bulge initially. The growth time of such a central mass in
a system of radial orbits is given simply by the dynami-
cal time, so that this would be a rapid phase. Subsequently
with the rise of dissipation and instabilities, there may be
a slower phase of radial accretion towards the centre. It is
possible that this cycle could repeat several times in a pro-
cess we have referred to as ‘interrupted accretion’. Under
this process the r−2 density law would apply almost every-
where. The radial velocity dispersion is proportional to the
potential. Thus it decreases as r−1 near the central mass,
and subsequently decreases logarithmically with r.

The HWDF (18) is restricted to a strictly steady and
self-similar bulge, but it has the merit of allowing a family
of densities and potentials (velocity dispersion) according to
the self-similar prescription. A central mass is allowed only
in the Keplerian limit wherein a = 3/2. This case gives a
massless bulge with ρ ∝ r−3. This is naturally iterated to
give an inner flattening, but continued iteration is effectively
in powers of ln r.

The HWDF gives a density that is linear in the potential
and hence a self-consistent bulge is found from the Poisson
equation. The density profile is never flatter than r−2.5 near
the central mass and tends to r−3 in the near Keplerian limit
of dominant central mass. This restricts the applicability
to a region outside the central bulge (i.e. beyond the scale
radius rb). It does not seem to be relevant to a near mass
concentration domain.

Our final result concerning steady radial orbits con-
cerned the special case a = 1. The DF is a Gaussian that has
been found previously in coarse graining. We include it here
as a second example of a radial DF that produces an r−2

density profile (Mutka 2009), although there is a logarithmic
correction. It is not strictly self-similar.

In the next paper in this series (II), we shall extend
the exploration of the cusps and DF to that produced by
anisotropies in spherical symmetry.
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