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Abstract

Aims. In this paper we study density cusps made from radial ofséiisrhay contain central black holes. The actual co-evaisseiilar
growth would not distinguish between the central objecttiedsurroundings.

Methods. To study the environment of an existing black hole we seekibligion functions that may contain a black hole and that
retain at least a memory of self-similarity. We refer to tigisonment in brief as the ‘bulge’ or sometimes the ‘halchig depends
on whether the black hole is a true singularity dominatisgilo or rather a core mass concentration that dominategex laulge.
The hierarchy might extend to include galactic bulge and.hal

Results. We find simple descriptions of simulated collisionless ®¥att the process of examining the presence of central masses
Fridmann & Polyachenko distribution function describesegal growth of a bulge and black hole that might explain theesved
mass correlation.

Conclusions. We derive our results from first principles assuming eittedf-similar virialisation or normal steady virialisatioifhe
implied energy relaxation of the collisionless matter i® da the time dependence. Phase mixing relaxation may beneathdy
clump-clump interactions.

Key words. theory-dark matter-galaxies:haloes-galaxies:nudiitbhole physics-gravitation.

1. Introduction of this sort to be set by slow diffusion from an essentially

. : cpllisionless _stellar environment (e.g. Bahcall & Wolf H7

The relation between the formation of black holes and heritt & Szell 2006) into the ‘loss cone’. This is thought to

galaxies has developed into a key as"OPhYS'CF end in a steady zero flux limif (Bahcall & Wolf 1976) with
0

the early papers by Kormendy and Richstope (KR1995), density cusp proportional to~’/4. However this process
the more recent discoveries by Magorrian et al. (N a981 iy . :
generally slow, requiring at least a relaxation time (e.g

Ferrarese and Merritt (Ferrase & Merritt 2D00), and Gebiretrd .

al.(Gebhardt et al., 20D0). These papers establish a stoner Merritt .& Szell 2000). .

lation between what is essentially the black hole mass amd th Various proposals have been offered to explain the blaak hol
surrounding stellar bulge mass (or velocity dispersiohj ori- mass-bulge mass proportionality as a consequence O.f the AGN
gin of this proportionality, which extends well beyond thag phz?\se. There Is as yet no generally accepted sScenario glthou
itational dominance of the black hole, remains unproven.igu & kind of ‘auto-levitation’ or feed-back mechanism is piéles

; ; In any event there remains the question of the origin of tleel se
Ily taken t I I th of the black hal
;)su?gegera ylakentoimply a coevalgrowth ofthe blac da masses. In some galaxies at very high red shift the infeleatkb

We know that much of the black hole growth into super ma§Q!€ masses are already of ordef M), (e.g[Kurk etal., 2047)
sive black holes takes place in a dissipative fashion irmgly 2/t about one Ga of cosmic time. This may require frequent,
baryons during the AGN (Active Galactic Nuclei) phase. lis th €Xtremely luminous early events (e{g. Walter et al., PQas))t
phase the accretion rate (and therefore the black hole rass gMaY Suggest an alternate growth mechanism. _

a cosmological time scale) is limited by either a Bondi type The _Iatter p035|b|_llty_|s reinforced by the detection of a
choke point or by the Eddington radiation limit. The massseu change in the normalization of the black hole mass-bulgesmas
is either diffuse gas or tidally disrupted stars. The obseGN  Proportionality in the sense of relatively larger black émhat
luminosities are in rough agreement with the mass accretiBigh red shift (e.gf Maiolino et al. 2007). As suggested iatth
rates that are necessary to grow the super massive black hd¥@per it seems that the black holes may grow first, indepetyden
assuming substantial black hole ‘seeds’ initially. of the bulge. . _ _

The tidal disruption of an individual star causes sporadic Recently (Peirani & de Freitas Pacheo 4008) have studied
flaring of the AGN. One expects the mean accretion ratee possible size of the dark matter component in black hole
masses. By assuming that the 'pseudo phase space dengjty’ (e
Send offprint requeststo: MLeD ~ Preprint: IFT-UAM/CSIC-09-26 H200§) is strictly constant they convert the relativiscrtion
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of the dark matter into an adiabatic Bondi flow problem and oldial orbits since the arguments are typical but easily edrout
tain the resulting accretion rate. Then by adopting the mess in that case. The results may apply to the outer (beyond th¥ NF
portionality above and fitting boundary conditions frommas scale radius) regions of dark matter halos.
logical halo simulations, they deduce that between 1% aftl 10 Our technique will be to infer reasonable distribution func
of the black hole mass could be due to dark matter. tions for collisionless matter from the time dependent Wlas
The pseudo-density assumption may be questionable, batd Poisson set, augmented by an initially dominant central
if we accept this result at face value, it seems that a sem@ss. For consistency we will study cases where the losscone
mass of say 1. could have grown from dark matter. Itare not empty, since we are investigating dynamical ewvartuti
would now be part of a super massive black hole that subfthe system. This temporal evolution allows for relaxatas
sequently grew in the AGN phase. Some seeds may be mdllisionless matter in addition to possible ‘clump-clur(io
mordial. As early as 1978 fully relativistic collapse cdiu clump) interactions.
tions (Bicknell & Henriksen 1979) predicted primordial bika We adopt a system of coordinates that allows us either to
hole masses in the range?1td 10°M. readily take the self-similar limit or to retain a memory okp
Density cusps surrounding black holes have been studeus self-similar dynamical relaxation. In this way we aan
ied_extensively. Classic studies bj (Peebles]1972) and imain ‘close’ to self-similarity just as the simulations @pp to
(Bahcall & Wolf 197) dealt with the problem of feeding thedo. These coordinatef (H29(46, H2006A) allow the general ex-
black hole. In addition to these diffusion studies, Youngression of the Vlasov-Poisson set, but they also contaipaha
(voung 198p) explored the cusps produced by the adiabatimeter that reflects underlying self-similarity. The sgthilar
growth of a black hole in a pre-existing isothermal stelimit is taken by assuming ‘self-similar virialisation’, verein
lar environment. This was extended by (Quinlan et al 998)e system is steady in these coordinates although notudbbol
and by [MacMillan & Henriksen 2002) to more general ensteady since mass is accumulating.
vironments. The conclusions were that the black hole in- We begin the next section with the general formulation in
duced cusps were never flatter thart-> (the isothermal case) spherical symmetry. Subsequently we discuss the variosspo
and that no black hole mass-bulge mass correlation was bk distribution functions (DF from now on) for radial orit
tablished (MacMillan & Henriksen 20P02). This latter concluFinally we show_that the DF of Fridmann and Polyachenko
sion has spurred the investigation of coeval dynamical grow(hereafter FPDF, Fridmann & Polyachenko 1984) can be gener-
of the black hole and bulge in contrast to adiabatic growtted through the technique of coarse grainjng (HLeD P00&) an
(MacMillan & Henriksen 2003). then give our conclusions.
Such concerns have passed from the abstract to the practi-
cal with the detection of stellar cusps around galactic earcl . . . .
black holes|(Gillessen et al., 2009). This latter papernismoel- 2- Dynamical Equations in Infall Variables

lar cusp power laws for the central Milky Way in the ranggo|jowing the formulation of H2006 we transform to infallriza
—1.1+0.3, significantly shallower than the adiabatid.5 or  gpjes the collisionless Boltzmann and Poisson equationa fo

the zero flux—1.75. We seek to find under what general conspnerically symmetric anisotropic system in the ‘Fujiwoam
ditions such power laws may arise in this series of papers. g.[Fujiwara 1983) namely

note also that the measured stellar orbits for the Milky Way

cusp [Gillessen et al., 2009) show them to be mainly isotropi

although some may be found in an outer disc or discs. of of 2 oo\ of
An effective method of evolving flat cusps is to in- 5t +Vrﬁ (r_3 - W) v, =Y

voke tight binary black hole systems produced by mergers

that 'scour’ the stellar environment (ejg. Merritt & SzeliGh, 9 (rZa_q)) — 47-,2(3/ f(r,v, j%)dvdj2, 2)

Nakano & Makino 1999). Depending on the power law assumed r or

for the initial stellar environment, Merritt and Szell sifate ) )

scoured power laws that can be as flat-dsin an initially —1.5 ~ Wheref is the phase-space mass densiyis the ‘mean’

cusp, and as flat as0.5 in an initially —1 stellar cusp. Flatter field gravitational potentialj© is the square of the specific angu-

values are reduced to essentially constant density cohes-T 1ar momentum and other notation is more or less standard.

slope as noted above is a reasonable fit to the Milky Way (ibid)__The transformation to infall variables has the form (e.g.
Subsequently, but taking at least the central relaxatioe ti H2006)

the cusps should regenerate to the zero flux conditioh’f)

according to the simulations ip (Merritt & Szell 2006). Hovee _

this will extend only out to about.Q of the gravitational influ- R=re

ence radius of the black hole. This regeneration is not thbug Z=jle#Wa2aT T _ gt

to be relevant to the Milky Way central stellar cusp, but may b . 3/a—1)aT ey

present on small scales elsewhere. P g PRY,ZT)= e¥/a Tt (r’Vr’J ’t)’ ®)
Such a picture is seductive, especially given the receptdetW (R;T) = e 2Y2 DT o), ©(RT) = p(r,t)e 2T.

tion of a strong correlation between the nuclear black hassn

and the central luminosity deficif (Kormendy & Bender 2009). The passage to the self-similar limit requires takihg=

However the correlation in itself only implicates the infhee of 0 when acting on the transformed variables. Thus the self-

the black hole. It does not necessarily require the mergéotty,  similar limit is a stationary system in these variables, chhis

which in any case is unlikely to be the same for different galaa state that we refer to as ‘self-similar virialisation” (H1999,

ies. Consequently we explore in this series of pafpfg (Ill}l, e Delliou 200[L). The virial ratio B /|W| is a constant in this

whether cusps as flat as those resulting from scouring migihit astate (although greater than oné;is kinetic energy andlV is

be produced during the dynamical formation of the black holpotential), but the system is not steady in physical vaesias

In this first paper we present a summary of the situation for rifall continues.

(1)

aT/a —(1/a-1)aT

Y =vie ,
aT
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The single quantity is the constant that determines the dy3. Radial Orbit Steady Cusps and Bulges
namical similarity, called the self-similar index. It isroposed
of two separate reciprocal scalings,in time andd in space,
in the forma= a/d. As it varies it contains all dominant phys-
ical constants of mass, length and time dimensions, sinee
mass scalingt has been reduced t@3- 2a in order to main- dE  dd
tain Newton’s constar® invariant (e.g[ H2096). o

We assume that time, radius, velocity and density are mea- t t
sured in fiducial unitsy/vo,ro, Vo andp, respectively. The unit This includes phase-mixing. Another mode
of the distribution function isf, and that of the potential ig. (Diemand et al., 2006) is furnished by the presence of hi-
We remove constants from the transformed equations bygakierarchical sub-structure . The sub-structure can interact

clump-clump interactions that can induce relaxation on a

fo— Po/V3, V2 = 4TIGpor2. (4) coarse-grained scalk (H2009).
However the temporal evolution of the system is difficult to

. . follow analytically even in the self-similar limit, so we rmaally
Spe'l(;g\?g?o';rrﬁgsformatlons convert equahoﬂs KIl),(Z) to the § Bok for equilibria established by the evolution.This maydi-
ther a strictly steady state in some appropriate coarsedgtae-

scription, or it may be a self-similar virialised state. Themory
of the temporal relaxation is incorporated into the paramreeas

We expect one mode of relaxation in collisionless cusps tof be
the ‘moderately violent’ type satisfying, in terms of thetice
gnergye and mean field potentiab, the relation

(11)

1 Y R indicated ab
ZHP—(3 DP+ (— — —)osP Indicated above. .
aaT (3/a-1)P+ (a a) R One can allow for the presence of a black hole by iterat-
ov Z ing about an equilibrium state determined initially by tHadk
- (1/a- 1)Y+ R B —(4/a=2)Z0zP=0  pole. This allows the central mass and the environment tivevo

(5) together towards a new equilibrium, although normally oaly
single loop is feasible.
Using the characteristics of equatm[h (9) plus

and
1d vy _ v _ov dR
This integro-differential system is closed by whereds= adT, one finds by a simple manipulation that
1 diz +v) _ Y2 oW
== [ PdY dz. 7 ~2 77 I . iy
=/ ™ BRI SV S VR AINCE)

n order for this equation to yield the energy as an isolaimg

We consider in this paper the filled loss cone limit of radi . T
bap gral (i.e. characteristic constant) the last two termstrsum

infall (HLeD 2002). This is mainly as a test of our technique,
although it may have application on large scales. To proeeed g)‘-l-’g“d/e Zél/adR;)tE Th'&', IS rrr]mﬁttsmply ??e%ted by sgtttmg
setP=F(R)Y;T)d(Z) (&() is the Dirac delta, not the scaling /9s= andror’y = P, which turns outto be a condition
delta) which changes the scaling for the DF to for both self-similarity and a steady stdte/here

p=2(1-a). (14)
mf =F(RY,;T)eY/a 1T 5(j2), ®) e

Whence, setting’ = Y?/2+ W, we have
while other scalings remain unchanged.

The governing equations now becorfie (6) plus (3_@@ =—-2(1/a—-1)&. (15)
s
This variation does rendeE constant on characteristics
Y (and therefore in time) as one sees by integrating to the form
_aTF +(/a-1F+ (_ N _) ORF Eoexp(—2(1/a—1)s), and then by using the transformatiofis (3)

19y to findE = &exp(2(1/a—1)aT) = E,. Such a state occurs for

— ((1/a— 1)Y + __) o&F=0. (9) exampleina system whose potential is dominated by thealentr
mass, for whicka=3/2 andp= —1.

_ ) Equation [P) also yields along the characteristic

Finally equat|0n7) reduces to

1 %—F =—(1/a—1)F, (16)
== / F dY. (10) S
so that with equatior] (15)
This completes the formalism that we will use to obtain the F— ﬁ(K)|£|1/2. 17)

results below. We begin in the next section with the radmaltli
The ‘cusps’ we describe there will generally end in what B th 1 The general solution to the sum conditiorts= RPG(r) where the
central ‘bulge’ surrounding the black hole, rather thanhie t functionG(r) is arbitrary: however this leads only to the general Jeans
black hole itself. form.
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Figurel. A shell code evaluation of the DI (Le Delliou 2001), evolveohfi a system with initial densitg O r~15. The first fit

is with a cut off power lawF 0 E~Pe E/E with p~ 1/2, E; ~ —10"2; upper left panel), while the second fit is just a power law
(lower left), confirming HW 1999. The cut off is confirmed bygher resolution in the DF (upper right) and in density ofesgtE)
(lower right).

The steady unscaled DF follows from this last equation artdvas shown to be a natural end state for self-similar infitte
the transformationsﬂ(S) aa 1) potential and density laws take the fcﬁ(la;é 1)

W=Y,RZA  ©=23-2a)(l-a)WR 2 (19)
= 1/250:2

mf = F(K)[E| / 6(J%)- (18) In the context of a dominant central ‘black hole’, we can use
this DF to generate a ‘near Keplerian’ system by taldrg3/2.
This yields a point mass potential surrounded by massleasis pa
. ] o ) cles. The massless particles may be distributed in any manne
An upper energy cut-oft, [ @ is required for finiteness in the pyt self-similarity suggests that the number densitshould
positive energyd < 1) case. In general one can add an arbitra%ry asN 0 e3/2R-3 1 r—3. Such a halo could exist outside
constants, to E in this expression, which reflects the Constargny dominant mass as was discussein (HW]1999).

in the potential. A large positive constant would expressgen The direct density integral over the DF [18) yields for
tive energy cut-off at the value E, and the DF would increase

toward zero energy. B nF |o|

The quantityk in equation [(1J8) labels any other possible p= V22’ (20)

characteristic constant, but in general nothing is reaalitsil- . _ . o
able. One does find additional constants with coarse gigimén Hence one can include a central mass by iteration, beginning
is discussed below. with a point mass potential fap in the density O), and then

The DF (18) withF constant describes a steady system of2 \we have used our current notation when using the resultsevf-pr
radial orbits at the end of self-similar evolution charaizd by ous papers, in which, X, Sin (HW 1999) are respectively/a, R, OR?.
the indexa. It was found previousl5), and if (HW 1999)in (HW9%) 5 there becomes/T1—a) in current notation.
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using the Poisson equation to obtain a new potential in a form
that is no longer self-similar. This yields 100 ¢ E
= [
M, +Cy(1+Inr 2 I
o= —$—H7 (1) = '° £
whence follows a new density bfy {20). The constsiatwould b 3

be the central mass whi@& = nﬁ/\/iM*. There is only a log-
arithmic modification to the 3 law at larger, but at smallr
the density flattens. Since this is only the first iteratiooleythe 1999 ¢
expression is unlikely to apply very near the central massresh «
formally it declines to zero. The large scale behaviour dugs i
fit the bulge simulations inside the NFW_(NFW) scale length, 100 ;
but it could describe the halo region outside a central bofge o
massM,. oL
Since the density is linear in the potential we may solve for
a self-consistent cusp having the (18) by letting the e
be determined by the Poisson equation. Working in transédrm-
variables we find

001 E

107° ¢ d
W= —ARP- — BRP, (22) S e
. —400 —-300 —-200 —-100
whereA, B are arbitrary real constants0 and .
1 1 -~ Figure2. We show the Fridmann and Polyachenko fit to the
Pe=—35\2- 5" (23)  mass distributiordM /dE = f(E).g(E), density of states(E),

and the phase space distribution functibfiE). The figure is

based on the radial simulations of an isolated dark matter ha

By letting F — O we see thap_ is the power that should be . ; e .
taken near the centre if we wish to create a strong centrad mgé{ MacMillan (MacMillan 2005). The system is maintained in
Self-similar virialisation by steady accretion. The fiteesjua-

concentration. It tends te 1 in this limit while p,. tends to zero. ° . . .
Hence we seB = 0 in this limiting domain. The potential then N () with K = —Eo/(4v2r) andEo ~ ~80 in machine

satisfies our basic conditiop (14) with a new self-similater. UMt
This is given bya=1— p_/2 or explicitly

FPDF,[Fridmann & Polyachenko 1984 found to predict ac-

5 1 /1 m-=~ curately all of the measured gquantities as in the accompanying
& =zt512" 72':- (24)  figures. These include an inverse square density law and arpow
law pseudo phase space density=of-1.5 ;
i o i i i there are logarithmic corrections to the power law). Theetat
Equation [IB) now gives the inner cusp density law as power is flatter [MWH 2006) than is generally found in full eos
o=p |1+ p7)|qJO|R(*2+p—>.) (25) moC:o i)cal simulations. These results are illustrated inrgg [12)
an .
This can not be flatter thaR~2°, which appears only for the *  This DF (Fridmann & Polyachenko 1984) used to make the
maximum bulge’ for whictF = 1/(2rv/2). fits in figures [P) and|{3) is
In the context of dark matter simulations such a steady halo K
of radial orbits could describe the region just beyond th&\NF f= 71/26@2), (26)
scale radius, based on the density profile alone. It is nbtesta (—E+Eo)

in a strict steady state according to the usual Antonov réite o, £ < E, <0, andr < r (where®(r{) = E,) and zero oth-
(e.g.|Binney & Tremaine 1987 ),. qnless the energy is negatiVyise. In an infinite s_ystem we may takg = 0. The density
Consequently we do not expect it in central regions whetel  prqfile jsr—2 and the potential is logarithmic. The logarithmic
where the energy is positive (with a central zero: the p@enty5yiation of the velocity dispersion together with the irse
increases outward according to fq. 19). The radial velatiity square density profile accounts for the pseudo density appro
persion isv? = |®|/2. In paper Il we shall see that although thismate power law found in the simulati006).

DF is not unique, alternate DF’s are biased towards zerolangu By using our method of coarse graining, we show below
momentum. that the effective indea = 1 in this mode( hence the measured
In (HW 1999) weak evidence was presented to show thebtential is indeed logarithmic as follows with coarse giraj
the |E|'/? law did appear near the end of the infall for thavhena= 1). Thus the deduction above of the (18) does not

most tightly bound particles. This was re-enforced by addapply (nor do the argument395 where- 1 was inadver-
tional Lagrangian shell code evolution frgm Le Delliou 2001ently excluded). The limit o& = 1 always needs to be discussed
(see figure[]l). We have therefore considered its implicatioseparately.

at length here. However the DE[18) doest appear in high The rather precise fit of a pure function of the energy to the
resolution_simulations of radial orbigrowing isolated halos DF of a time dependent non-closed syst§m (MacMillan PO06)
e.g. [MacMillan 2006) in a state of self-similar virialigat is somewhat surprising. We expect that= E(t) so that it is
(HW 1999). In such a state, infall continues. Instead of the longer an isolating integral and (with constant) the DF
steady DF, the DF of Fridmann and Polyachenko (hereaf@) is no longer strictly a solution of the Boltzmann eqoati
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4, Coarse-Grained Radial Distribution Functions

We follow the procedure introduced in (HLeD 2002) wherein we
write

Fy

F
F:F0+_+ 2
a

— Tt

m (27)

and allowa to become large while holding the similarity index
a constant. Substituting this expansion into equat@n (9Yevh
insisting on self-similarity & = 0) and solving by the method
of characteristics yields

Fo = Foo(Z,r)RE), (28)
The characteristic constants are
Y
Z - R(lfa) )
r = Re¥?, (29)

ands is measured along a characteristic. The radinsay be
taken as the initial position of a particle on the charasteriWe
have usually regarded the characteristics as geomethjatts
(heresis independent of ) and we have taken= 1 so thas=0

Figure3. We show the the Fridmann and Polyachenko fit ti3 at the same radius on each characteristic. This is carrect
the mass density, the velocity dispersion and the ‘pseuds@hstatistical sense once the system is well developed irsgaifar

space density’ for the same simulations by MacMillan.

However if we assume the separated foirme: K(t)F (E)d(j?)
thendInK/dt+dInF /dEd® =0 from equationﬁS). Wittt (E)
asin equation[(36) we obtaiinF /dE = 1/(2(—E +E,)). Thus
with |E| sufficiently large o ® sufficiently smallK is approx-
imately constant.

The persistence of this DF is also undoubtedly due to t

strict proscription of non-radial forces in the simulatont is
not linearly stable by the Antonov criteria f&r< 0. When this

proscription is relaxed (MacMillan 20D6) shows that theikiou

rium Fridmann and Polyachenko DF is subject to the radiat or
instability. It may require continual non-equilibrium etation
as provided by steady infall to be realized.

The unique feature of the distribution functidn](26) is th

ply add a point mass potential to the logarithmic bulge val
and the density will remair/2rKr 2. The velocity dispersion
however goes a = |® — Eo| and we may take& = —M, /r +
V2rK Inr + E,. Normally the log term is negative since< ry,
and here s = ro. MacMillan (ibid) finds a good fit to this radial
dispersion in his simulations without a central mass.

In the next section we seek the origin of the FPDF from
self-similarity by using a coarse-graining expansiont fifis-
cussed in 2). We seek the origin of the Fridmanffe have set, =
and Polyachenko DF. This approach has been used extensi&l§ central point mass. Thud,
since the original paper in such works §s (H3006, HR007 ag@ntral mass grows self-similarl

virialisation, but it does not allow us to retain the memofyao
initial distribution of particles, which a dependence oragaable
r implies.

Generally we ignore any dependence on initial conditions
except as they are containedansince otherwise it leads to

|005/ Foodd, (30)

being a function of, which prevents a term by term solution

fr the potential. However we will retain this dependenceron

in Foo temporarily , even while continuing to assume thgtis
independent of. It is the eventual reconciliation of these as-
sumptions that leads tp (26).
We observe that, although in the final DFrom equations
) may be considered identical with that in equatipn (29yt
should be kept separate during the characteristic analykes
radius in equation| (3) is general while that in equatiErb (29)

LA X &onstant on a characteristic.
the density is independent of the potential. Hence one ¢an si

__Proceeding to the first order term following the procedure in
(HLeD 2002) we obtain thd = 0 (givingF, as correct to order
1/a<) is possible provided thd,, satisfies

I00
_|_ R —

3-2a R(32a))
- ZrarFoo— (1— a)ZFQO - O

05F00<(1—a)62+ Y

(31)
—(M,/r)e-2t/a-1aT — _y /R whereM,

3/a-2)aT and so the

— e
99)yif is constant.

[F2009). The simplest procedure which terminates the saties solution of equation[(31) is easily found by charactecsti
first order and so produces constraints on the maximallysesarSuffice it to say for brevity that, for general the only solution
grained, steady, DF remains useful. We outline the proaeiur consistent with our assumption of self-similar virialisat and
the next section, but the principal result is that the Fridmand loo independent of requiresM, = 0. Consequently one finds
Polyachenko distribution function can be understood adfa s& = K|E|Y?(R/r)*~® so thatrtf, = K|E|'/25(j?), just as re-
similar DF witha = 1 in addition to equati08). We do thisported above.

by finding that only these two distribution functions areepén- However the special case= 1 is more interesting. The char-
dent of initial conditions. acteristics of equatiorﬂ[?.l) show (note thatR = M, /r) that
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Foo = Foo(E), where the energy can be taken as (restoring unitsjialisation we can expect them to settle into a bulge ag tee
come trapped by the increasing mass. The growth rate is nmt ze
if the central mass is a black hole, since then the outwarddbou
radial orbits are suppressed. In that case however theysteste

is only a crude approximation, and the true timescale woeld b
the free-fall time of the bulk of the accreting mass. It isikelly
that a black hole can grow directly from a large scale system o
radial orbits since there is no reason why the distant pastic
should ‘know’ where it is.

The radial alignment required to hit a growing black hole
from a few hundred parsecs is at least one part ftdaL0"°
depending on its mass! This suggests that instead (see e.g.
MacMillan & Henriksen 2003) the actual growth is by way of a

ulti-stage process. In the first stage, radial orbits aedrem

2 GM
E:VEr+Ioolnr— . (32)

The strongr dependence in the potential, and hencé&jrim-
plies that only the Fridmann-Polyachenko solution is cstesit
with I being independent af, as was assumed initially. This
is because the distribution functi(ﬁk26) yields an intefymal o0
) that is independent of the potential, and hence of thialin
conditions. We expect this to be the fully relaxed state. dére-
sity to this order i, = loo/r? = J mfdv, using ) where we
write the result in terms of the coarse graining constane. DR
) appears when the independenceisfassumed consistently

in the coarse graining, and when as above a strict steadyista ) . ey
9 9 dyis he galactic halo to form a bound spherical bulge of interiated
enforced. . -
ize, due to finite angular momentum about the centre. Treey ar

This is the only way in which the Fridman and POIy"’mhenkt%r)apped there either by the usual mechanism of self-sirimifal

DF appears naturally as a description of self-similar Uiz as the potential increases in time with increasing intenmads
tion using our methods. It is self-similar but not exactlgasty. potential Ir i . g intex '
or by dissipative interactions. If there is substructurénia col-

Proceeding farther in the seri(27), either by termigadirsec- |, .
ond order or by renormalising, will give small correctionghis lisionless matter (e.g. stars and dark matter clumps), these

result (H200B] H2007) that describe the approach to e are able to produce dissipational collisions. Ultimatalyge col-

This DF remains our best description of interrupted radiatex g?';rrfoﬁgi;ﬁt?;:?Ttgsa,‘scgg)lnsI\(/:lgr;;ﬁﬁgﬂ%i:ﬁﬁ%ﬂﬁ%%ﬁﬁhe
tion onto a central point mass. 9.

Carnegie meeting).
Moreover the radial orbit instability can lead to the deyelo
5. Completely Relaxed, Nearly Inverse Square, ment of a bar [(MWH 2046). This bar can then transport angu-
Solution lar momentum away from the bulge by the ejection of particles
Such ‘interrupted accretion’ may repeat several times emdy
A careful treatment of tha = 1 radial, exactly steady state, into the actual central object. The rapid radial accretion lndflge
the fashion of [(HWY5) (not given there, although the relévais in fact the way in which dark matter halos are thought taxgro
equations are given and may be translated into our notatidn gZhao et al., 2008,Lu et al. 2006) initially. This is thenlfoved
solved) yields a logarithmic potential and an inverse sgdan- by a slower growth phase. The DEI(ZG) can be used to describe
sity law to within logarithmic corrections. We use the folaru the environment of the central mass on each scale of the inter

tion of (HW9%). The DF takes the Gaussian form rupted cascade.
In the previous section we have discussed distribution-func
F =Kel"2E/%)5(vg)5(vy), (33) tions that have been found to describe simulated radidbami-

less systems. Only the steady OJF](18) allows for a memory of
whereE = v2/2+ W,In (dr) in terms of the kinetic and poten-the preceding dynamics, but a black hole can only be included
tial energies. This reveals the solution as the singuldhé&mal in the system by iteration. The radial orbit singular isothal

sphere 6 O r—2) with only radial orbits present. sphere DF @3) gives an approximate? density cusp, but a
We require¥, > 0 in order to have an attractive gravitationatentral black hole is not easily treatable.
force. In a negative energy regi@might be replaced b, — The most successful DF that persists during infall and

E where® < E < E, < 0 to allow for an arbitrary referencethat contains a central point mass is that of Fridmann and
potential. In the presence of a dominant central point mass Ponachenko@G). This yields an inverse square density and
energy will be negative an#, should be replaced by the totala velocity dispersion that first decreases and then incsesitle

potential|®|. radius. It may apply in the shells of ‘interrupted accretidis-
The solution is only valid to logarithmic accuracy howevetussed above.
since, although a logarithmic potential corresponds éxs&man In this connection we refer to the work of Mutka
inverse square density law, the density integral over th¢fdf (Mutka 2009) on gravitationally lensed galaxies with deinh-
gives ages. He concludes that there are two classes of densitg cusp
Vmerf(2)K 12 with the larger sample (about 80%) showing a logarithmic-den
p= r72|cb| . (34) sity slope of~ —1.95 well inside the NFW scale radius. The

. — . . other 20% show this slope as —1.45. These may be unre-
Th|§ gives a Iogarl'ghml_c correction to thg dgnsﬂy f.“’!“ e p go1ved triple image lens and ,if so, the measured value ghoul
tential, so the solution is not in fact self-similar. An ggion by Re rejected.

using this density in the Poisson equation is now possible. A \;,tca's result is a measure of the total mass distribution

least this is true near the black hole where the point MagSpOt jier than just the dark matter. Perhaps we are seeing ezthan
tial dominates. However the iteration does not convergielhap relaxation in the mixture of stars and dark matter, thatdead
wards an isothermal cusp, rather than the shallower cusihe of
dark matter simulations. It is significant that this invess@are
slope is also frequently found by direct dynamical modgllirf

The growth rate of a central mass (i.e. a collisionless cotnae  galaxies|(van der Marel 2009).

tion, not a true black hole) from a reservoir of radial oristsero However an inverse square slope is not restricted to a sys-
if there is a true steady state. However in a state of selftaim tem of purely radial orbits as the isotropic isothermalrifisition

6. Discussion
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shows. In the next paper we survey anisotropic distributioc-  self-similar prescription. A central mass is allowed omiythe
tions in spherical spatial symmetry that also have a seiflai  Keplerian limit whereina = 3/2. This gives a massless bulge
memory. Some of these also provide an inverse square dengifth p O r—3. This is naturally iterated to give an inner flatten-
profile. ing but continued iteration is effectively in powers of Jwhich
The significance of the hierarchy of co-evolving structureshould therefore be small.
is that there will always be a mass correlation between them. The HWDF gives a density that is linear in the potential and
Thus if the black hole derives its ultimate mads from a halo hence a self-consistent bulge is found from the Poissontiequa
of radiusrp, while rs encloses the mass that forms the ultimatghe density profile is never flatter than?® near the central

bulge mas$/s then mass and tends o2 in the near Keplerian limit of dominant
M. _Tn (35) central mass. This restricts the applicability to a regiatsime
Ms s the central bulge (i.e. beyond the scale radigs It does not

gem to be relevant to a near black hole domain.

Our final result concerning steady radial orbits concerhed t
special case = 1. The DF is a Gaussian that has been found
previously in coarse graining. We include it here as a second

. . . . S
This assumes the pure inverse square density law, whichtmig
in fact have a logarithmic correction. In paper Il, we shaitfi
a slightly more general correlation that involves the sétfilar
memory. Taken at face value this simple relation giugss ~

100 example of a radial DF that produces ar? density profile

' ), although there is a logarithmic correctidnisl
not strictly self-similar.

7. Conclusions In the next paper in this series (paﬂsr 1), we shall exterd th

exploration of the cusps and DF to that produced by anisisop

We have attempted in this paper to find distribution fundiorin spherical symmetry.
that describe both dark matter bulges and a central blaak hol
or at least a central mass concentration. Our method was to
compare dynamically developing distribution functiontitere- 8. Acknowledgements
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